blob: ac04bfd4fff07bf654c3b8e385c504cf3e19384d [file] [log] [blame]
/*
* isohybrid.c: Post process an ISO 9660 image generated with mkisofs or
* genisoimage to allow - hybrid booting - as a CD-ROM or as a hard
* disk.
*
* This is based on the original Perl script written by H. Peter Anvin. The
* rewrite in C is to avoid dependency on Perl on a system under installation.
*
* Copyright (C) 2010 P J P <pj.pandit@yahoo.co.in>
*
* isohybrid is a free software; you can redistribute it and/or modify it
* under the terms of GNU General Public License as published by Free Software
* Foundation; either version 2 of the license, or (at your option) any later
* version.
*
* isohybrid is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with isohybrid; if not, see: <http://www.gnu.org/licenses>.
*
*/
#include <err.h>
#include <time.h>
#include <ctype.h>
#include <fcntl.h>
#include <stdio.h>
#include <alloca.h>
#include <getopt.h>
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/stat.h>
#include <inttypes.h>
#include <uuid/uuid.h>
#include "isohybrid.h"
char *prog = NULL;
extern int opterr, optind;
struct stat isostat;
unsigned int padding = 0;
uuid_t disk_uuid, part_uuid, iso_uuid;
uint8_t mode = 0;
enum { VERBOSE = 1 , EFI = 2 , MAC = 4};
/* user options */
uint16_t head = 64; /* 1 <= head <= 256 */
uint8_t sector = 32; /* 1 <= sector <= 63 */
uint8_t entry = 0; /* partition number: 1 <= entry <= 4 */
uint8_t offset = 0; /* partition offset: 0 <= offset <= 64 */
uint16_t type = 0x17; /* partition type: 0 <= type <= 255 */
uint32_t id = 0; /* MBR: 0 <= id <= 0xFFFFFFFF(4294967296) */
uint8_t hd0 = 0; /* 0 <= hd0 <= 2 */
uint8_t partok = 0; /* 0 <= partok <= 1 */
uint16_t ve[16];
uint32_t catoffset = 0;
uint32_t c = 0, cc = 0, cs = 0;
uint32_t psize = 0, isosize = 0;
/* boot catalogue parameters */
uint32_t de_lba = 0;
uint16_t de_seg = 0, de_count = 0, de_mbz2 = 0;
uint8_t de_boot = 0, de_media = 0, de_sys = 0, de_mbz1 = 0;
uint32_t efi_lba = 0, mac_lba = 0;
uint16_t efi_count = 0, mac_count = 0;
uint8_t efi_boot = 0, efi_media = 0, efi_sys = 0;
int apm_parts = 3;
uint8_t afp_header[] = { 0x45, 0x52, 0x08, 0x00, 0x00, 0x00, 0x90, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
uuid_t efi_system_partition = {0xC1, 0x2A, 0x73, 0x28, 0xF8, 0x1F, 0x11, 0xD2, 0xBA, 0x4B, 0x00, 0xA0, 0xC9, 0x3E, 0xC9, 0x3B};
uuid_t basic_partition = {0xEB,0xD0,0xA0,0xA2,0xB9,0xE5,0x44,0x33,0x87,0xC0,0x68,0xB6,0xB7,0x26,0x99,0xC7};
uuid_t hfs_partition = {0x48, 0x46, 0x53, 0x00, 0x00, 0x00, 0x11, 0xAA, 0xAA, 0x11, 0x00, 0x30, 0x65, 0x43, 0xEC, 0xAC};
uint32_t crc_tab[256] =
{
0, 0x77073096, 0xEE0E612C, 0x990951BA,
0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3,
0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988,
0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91,
0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE,
0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7,
0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC,
0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5,
0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172,
0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B,
0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940,
0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59,
0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116,
0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F,
0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924,
0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D,
0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A,
0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433,
0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818,
0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01,
0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E,
0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457,
0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C,
0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65,
0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2,
0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB,
0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0,
0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9,
0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086,
0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4,
0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD,
0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A,
0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683,
0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8,
0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1,
0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE,
0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7,
0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC,
0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5,
0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252,
0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B,
0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60,
0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79,
0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236,
0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F,
0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04,
0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D,
0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A,
0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713,
0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38,
0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21,
0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E,
0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777,
0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C,
0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45,
0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2,
0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB,
0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0,
0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9,
0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6,
0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF,
0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94,
0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D
};
struct iso_primary_descriptor {
uint8_t ignore [80];
uint32_t size;
uint8_t ignore2 [44];
uint16_t block_size;
};
struct gpt_header {
uint64_t signature;
uint32_t revision;
uint32_t headerSize;
uint32_t headerCRC;
uint32_t reserved;
uint64_t currentLBA;
uint64_t backupLBA;
uint64_t firstUsableLBA;
uint64_t lastUsableLBA;
uuid_t diskGUID;
uint64_t partitionEntriesLBA;
uint32_t numParts;
uint32_t sizeOfPartitionEntries;
uint32_t partitionEntriesCRC;
uint8_t reserved2[420];
};
struct gpt_part_header {
uuid_t partTypeGUID;
uuid_t partGUID;
uint64_t firstLBA;
uint64_t lastLBA;
uint64_t attributes;
uint16_t name[36];
};
#define APM_OFFSET 2048
struct apple_part_header {
uint16_t signature; /* expected to be MAC_PARTITION_MAGIC */
uint16_t res1;
uint32_t map_count; /* # blocks in partition map */
uint32_t start_block; /* absolute starting block # of partition */
uint32_t block_count; /* number of blocks in partition */
char name[32]; /* partition name */
char type[32]; /* string type description */
uint32_t data_start; /* rel block # of first data block */
uint32_t data_count; /* number of data blocks */
uint32_t status; /* partition status bits */
uint32_t boot_start;
uint32_t boot_count;
uint32_t boot_load;
uint32_t boot_load2;
uint32_t boot_entry;
uint32_t boot_entry2;
uint32_t boot_cksum;
char processor[16]; /* Contains 680x0, x=0,2,3,4; or empty */
uint32_t driver_sig;
char _padding[372];
};
void
usage(void)
{
printf("Usage: %s [OPTIONS] <boot.iso>\n", prog);
}
void
printh(void)
{
#define FMT "%-18s %s\n"
usage();
printf("\n");
printf("Options:\n");
printf(FMT, " -h <X>", "Number of default geometry heads");
printf(FMT, " -s <X>", "Number of default geometry sectors");
printf(FMT, " -e --entry", "Specify partition entry number (1-4)");
printf(FMT, " -o --offset", "Specify partition offset (default 0)");
printf(FMT, " -t --type", "Specify partition type (default 0x17)");
printf(FMT, " -i --id", "Specify MBR ID (default random)");
printf(FMT, " -u --uefi", "Build EFI bootable image");
printf(FMT, " -m --mac", "Add AFP table support");
printf("\n");
printf(FMT, " --forcehd0", "Assume we are loaded as disk ID 0");
printf(FMT, " --ctrlhd0", "Assume disk ID 0 if the Ctrl key is pressed");
printf(FMT, " --partok", "Allow booting from within a partition");
printf("\n");
printf(FMT, " -? --help", "Display this help");
printf(FMT, " -v --verbose", "Display verbose output");
printf(FMT, " -V --version", "Display version information");
printf("\n");
printf("Report bugs to <pj.pandit@yahoo.co.in>\n");
}
int
check_option(int argc, char *argv[])
{
char *err = NULL;
int n = 0, ind = 0;
const char optstr[] = ":h:s:e:o:t:i:fcp?vV";
struct option lopt[] = \
{
{ "entry", required_argument, NULL, 'e' },
{ "offset", required_argument, NULL, 'o' },
{ "type", required_argument, NULL, 't' },
{ "id", required_argument, NULL, 'i' },
{ "forcehd0", no_argument, NULL, 'f' },
{ "ctrlhd0", no_argument, NULL, 'c' },
{ "partok", no_argument, NULL, 'p'},
{ "uefi", no_argument, NULL, 'u'},
{ "mac", no_argument, NULL, 'm'},
{ "help", no_argument, NULL, '?' },
{ "verbose", no_argument, NULL, 'v' },
{ "version", no_argument, NULL, 'V' },
{ 0, 0, 0, 0 }
};
opterr = mode = 0;
while ((n = getopt_long_only(argc, argv, optstr, lopt, &ind)) != -1)
{
switch (n)
{
case 'h':
head = strtoul(optarg, &err, 0);
if (head < 1 || head > 256)
errx(1, "invalid head: `%s', 1 <= head <= 256", optarg);
break;
case 's':
sector = strtoul(optarg, &err, 0);
if (sector < 1 || sector > 63)
errx(1, "invalid sector: `%s', 1 <= sector <= 63", optarg);
break;
case 'e':
entry = strtoul(optarg, &err, 0);
if (entry < 1 || entry > 4)
errx(1, "invalid entry: `%s', 1 <= entry <= 4", optarg);
if (mode & MAC || mode & EFI)
errx(1, "setting an entry is unsupported with EFI or Mac");
break;
case 'o':
offset = strtoul(optarg, &err, 0);
if (*err || offset > 64)
errx(1, "invalid offset: `%s', 0 <= offset <= 64", optarg);
break;
case 't':
type = strtoul(optarg, &err, 0);
if (*err || type > 255)
errx(1, "invalid type: `%s', 0 <= type <= 255", optarg);
break;
case 'i':
id = strtoul(optarg, &err, 0);
if (*err)
errx(1, "invalid id: `%s'", optarg);
break;
case 'f':
hd0 = 1;
break;
case 'c':
hd0 = 2;
break;
case 'p':
partok = 1;
break;
case 'u':
mode |= EFI;
if (entry)
errx(1, "setting an entry is unsupported with EFI or Mac");
break;
case 'm':
mode |= MAC;
if (entry)
errx(1, "setting an entry is unsupported with EFI or Mac");
break;
case 'v':
mode |= VERBOSE;
break;
case 'V':
printf("%s version %s\n", prog, VERSION);
exit(0);
case ':':
errx(1, "option `-%c' takes an argument", optopt);
default:
case '?':
if (optopt)
errx(1, "invalid option `-%c', see --help", optopt);
printh();
exit(0);
}
}
return optind;
}
uint16_t
bendian_short(const uint16_t s)
{
uint16_t r = 1;
if (!*(uint8_t *)&r)
return s;
r = (s & 0x00FF) << 8 | (s & 0xFF00) >> 8;
return r;
}
uint32_t
bendian_int(const uint32_t s)
{
uint32_t r = 1;
if (!*(uint8_t *)&r)
return s;
r = (s & 0x000000FF) << 24 | (s & 0xFF000000) >> 24
| (s & 0x0000FF00) << 8 | (s & 0x00FF0000) >> 8;
return r;
}
uint16_t
lendian_short(const uint16_t s)
{
uint16_t r = 1;
if (*(uint8_t *)&r)
return s;
r = (s & 0x00FF) << 8 | (s & 0xFF00) >> 8;
return r;
}
uint32_t
lendian_int(const uint32_t s)
{
uint32_t r = 1;
if (*(uint8_t *)&r)
return s;
r = (s & 0x000000FF) << 24 | (s & 0xFF000000) >> 24
| (s & 0x0000FF00) << 8 | (s & 0x00FF0000) >> 8;
return r;
}
uint64_t
lendian_64(const uint64_t s)
{
uint64_t r = 1;
if (*(uint8_t *)&r)
return s;
r = (s & 0x00000000000000FF) << 56 | (s & 0xFF00000000000000) >> 56
| (s & 0x000000000000FF00) << 40 | (s & 0x00FF000000000000) >> 40
| (s & 0x0000000000FF0000) << 24 | (s & 0x0000FF0000000000) >> 24
| (s & 0x00000000FF000000) << 8 | (s & 0x000000FF00000000) >> 8;
return r;
}
int
check_banner(const uint8_t *buf)
{
static const char banner[] = "\0CD001\1EL TORITO SPECIFICATION\0\0\0\0" \
"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" \
"\0\0\0\0\0";
if (!buf || memcmp(buf, banner, sizeof(banner) - 1))
return 1;
buf += sizeof(banner) - 1;
memcpy(&catoffset, buf, sizeof(catoffset));
catoffset = lendian_int(catoffset);
return 0;
}
int
check_catalogue(const uint8_t *buf)
{
int i = 0;
for (i = 0, cs = 0; i < 16; i++)
{
ve[i] = 0;
memcpy(&ve[i], buf, sizeof(ve[i]));
ve[i] = lendian_short(ve[i]);
buf += 2;
cs += ve[i];
if (mode & VERBOSE)
printf("ve[%d]: %d, cs: %d\n", i, ve[i], cs);
}
if ((ve[0] != 0x0001) || (ve[15] != 0xAA55) || (cs & 0xFFFF))
return 1;
return 0;
}
int
read_catalogue(const uint8_t *buf)
{
memcpy(&de_boot, buf++, 1);
memcpy(&de_media, buf++, 1);
memcpy(&de_seg, buf, 2);
de_seg = lendian_short(de_seg);
buf += 2;
memcpy(&de_sys, buf++, 1);
memcpy(&de_mbz1, buf++, 1);
memcpy(&de_count, buf, 2);
de_count = lendian_short(de_count);
buf += 2;
memcpy(&de_lba, buf, 4);
de_lba = lendian_int(de_lba);
buf += 4;
memcpy(&de_mbz2, buf, 2);
de_mbz2 = lendian_short(de_mbz2);
buf += 2;
if (de_boot != 0x88 || de_media != 0
|| (de_seg != 0 && de_seg != 0x7C0) || de_count != 4)
return 1;
return 0;
}
int
read_efi_section(const uint8_t *buf)
{
unsigned char header_indicator;
unsigned char platform_id;
short count;
memcpy(&header_indicator, buf++, 1);
memcpy(&platform_id, buf++, 1);
memcpy(&count, buf, 2);
count = lendian_short(count);
buf += 2;
if (platform_id == 0xef)
return 0;
return 1;
}
int
read_efi_catalogue(const uint8_t *buf, uint16_t *count, uint32_t *lba)
{
buf += 6;
memcpy(count, buf, 2);
*count = lendian_short(*count);
buf += 2;
memcpy(lba, buf, 4);
*lba = lendian_int(*lba);
buf += 6;
return 0;
}
void
display_catalogue(void)
{
printf("de_boot: %hhu\n", de_boot);
printf("de_media: %hhu\n", de_media);
printf("de_seg: %hu\n", de_seg);
printf("de_sys: %hhu\n", de_sys);
printf("de_mbz1: %hhu\n", de_mbz1);
printf("de_count: %hu\n", de_count);
printf("de_lba: %u\n", de_lba);
printf("de_mbz2: %hu\n", de_mbz2);
}
int
initialise_mbr(uint8_t *mbr)
{
int i = 0;
uint32_t tmp = 0;
uint8_t ptype = 0, *rbm = mbr;
uint8_t bhead = 0, bsect = 0, bcyle = 0;
uint8_t ehead = 0, esect = 0, ecyle = 0;
extern unsigned char isohdpfx[][MBRSIZE];
memcpy(mbr, &isohdpfx[hd0 + 3 * partok], MBRSIZE);
if (mode & MAC) {
memcpy(mbr, afp_header, sizeof(afp_header));
}
if (!entry)
entry = 1;
if (mode & EFI)
type = 0;
mbr += MBRSIZE; /* offset 432 */
tmp = lendian_int(de_lba * 4);
memcpy(mbr, &tmp, sizeof(tmp));
mbr += sizeof(tmp); /* offset 436 */
tmp = 0;
memcpy(mbr, &tmp, sizeof(tmp));
mbr += sizeof(tmp); /* offset 440 */
tmp = lendian_int(id);
memcpy(mbr, &tmp, sizeof(tmp));
mbr += sizeof(tmp); /* offset 444 */
mbr[0] = '\0';
mbr[1] = '\0';
mbr += 2; /* offset 446 */
ptype = type;
psize = c * head * sector - offset;
bhead = (offset / sector) % head;
bsect = (offset % sector) + 1;
bcyle = offset / (head * sector);
bsect += (bcyle & 0x300) >> 2;
bcyle &= 0xFF;
ehead = head - 1;
esect = sector + (((cc - 1) & 0x300) >> 2);
ecyle = (cc - 1) & 0xFF;
for (i = 1; i <= 4; i++)
{
memset(mbr, 0, 16);
if (i == entry)
{
mbr[0] = 0x80;
mbr[1] = bhead;
mbr[2] = bsect;
mbr[3] = bcyle;
mbr[4] = ptype;
mbr[5] = ehead;
mbr[6] = esect;
mbr[7] = ecyle;
tmp = lendian_int(offset);
memcpy(&mbr[8], &tmp, sizeof(tmp));
tmp = lendian_int(psize);
memcpy(&mbr[12], &tmp, sizeof(tmp));
}
if (i == 2 && (mode & EFI))
{
mbr[0] = 0x0;
mbr[1] = 0xfe;
mbr[2] = 0xff;
mbr[3] = 0xff;
mbr[4] = 0xef;
mbr[5] = 0xfe;
mbr[6] = 0xff;
mbr[7] = 0xff;
tmp = lendian_int(efi_lba * 4);
memcpy(&mbr[8], &tmp, sizeof(tmp));
tmp = lendian_int(efi_count);
memcpy(&mbr[12], &tmp, sizeof(tmp));
}
if (i == 3 && (mode & MAC))
{
mbr[0] = 0x0;
mbr[1] = 0xfe;
mbr[2] = 0xff;
mbr[3] = 0xff;
mbr[4] = 0x0;
mbr[5] = 0xfe;
mbr[6] = 0xff;
mbr[7] = 0xff;
tmp = lendian_int(mac_lba * 4);
memcpy(&mbr[8], &tmp, sizeof(tmp));
tmp = lendian_int(mac_count);
memcpy(&mbr[12], &tmp, sizeof(tmp));
}
mbr += 16;
}
mbr[0] = 0x55;
mbr[1] = 0xAA;
mbr += 2;
return mbr - rbm;
}
void
display_mbr(const uint8_t *mbr, size_t len)
{
unsigned char c = 0;
unsigned int i = 0, j = 0;
printf("sizeof(MBR): %zu bytes\n", len);
for (i = 0; i < len; i++)
{
if (!(i % 16))
printf("%04d ", i);
if (!(i % 8))
printf(" ");
c = mbr[i];
printf("%02x ", c);
if (!((i + 1) % 16))
{
printf(" |");
for (; j <= i; j++)
printf("%c", isprint(mbr[j]) ? mbr[j] : '.');
printf("|\n");
}
}
}
uint32_t chksum_crc32 (unsigned char *block, unsigned int length)
{
register unsigned long crc;
unsigned long i;
crc = 0xFFFFFFFF;
for (i = 0; i < length; i++)
{
crc = ((crc >> 8) & 0x00FFFFFF) ^ crc_tab[(crc ^ *block++) & 0xFF];
}
return (crc ^ 0xFFFFFFFF);
}
void
reverse_uuid(uuid_t uuid)
{
uint8_t t, *p = (uint8_t *)uuid;
t = p[0]; p[0] = p[3]; p[3] = t;
t = p[1]; p[1] = p[2]; p[2] = t;
t = p[4]; p[4] = p[5]; p[5] = t;
t = p[6]; p[6] = p[7]; p[7] = t;
}
void
initialise_gpt(uint8_t *gpt, uint32_t current, uint32_t alternate, int primary)
{
struct gpt_header *header = (struct gpt_header *)gpt;
struct gpt_part_header *part;
int hole = 0;
int gptsize = 128 / 4 + 2;
if (mac_lba) {
/* 2048 bytes per partition, plus round to 2048 boundary */
hole = (apm_parts * 4) + 2;
}
if (primary) {
uuid_generate(disk_uuid);
reverse_uuid(disk_uuid);
}
header->signature = lendian_64(0x5452415020494645);
header->revision = lendian_int(0x010000);
header->headerSize = lendian_int(0x5c);
header->currentLBA = lendian_64(current);
header->backupLBA = lendian_64(alternate);
header->firstUsableLBA = lendian_64(gptsize + hole);
header->lastUsableLBA = lendian_64((isostat.st_size + padding)/512 -
gptsize);
if (primary)
header->partitionEntriesLBA = lendian_64(0x02 + hole);
else
header->partitionEntriesLBA = lendian_64(current - (128 / 4));
header->numParts = lendian_int(0x80);
header->sizeOfPartitionEntries = lendian_int(0x80);
memcpy(header->diskGUID, disk_uuid, sizeof(uuid_t));
if (primary)
gpt += sizeof(struct gpt_header) + hole * 512;
else
gpt -= header->sizeOfPartitionEntries * header->numParts;
part = (struct gpt_part_header *)gpt;
if (primary) {
uuid_generate(part_uuid);
uuid_generate(iso_uuid);
reverse_uuid(part_uuid);
reverse_uuid(iso_uuid);
}
memcpy(part->partGUID, iso_uuid, sizeof(uuid_t));
memcpy(part->partTypeGUID, basic_partition, sizeof(uuid_t));
part->firstLBA = lendian_64(0);
part->lastLBA = lendian_64(psize);
memcpy(part->name, "ISOHybrid ISO", 28);
gpt += sizeof(struct gpt_part_header);
part++;
memcpy(part->partGUID, part_uuid, sizeof(uuid_t));
memcpy(part->partTypeGUID, basic_partition, sizeof(uuid_t));
part->firstLBA = lendian_64(efi_lba * 4);
part->lastLBA = lendian_64(part->firstLBA + efi_count - 1);
memcpy(part->name, "ISOHybrid", 20);
gpt += sizeof(struct gpt_part_header);
if (mac_lba) {
gpt += sizeof(struct gpt_part_header);
part++;
memcpy(part->partGUID, part_uuid, sizeof(uuid_t));
memcpy(part->partTypeGUID, hfs_partition, sizeof(uuid_t));
part->firstLBA = lendian_64(mac_lba * 4);
part->lastLBA = lendian_64(part->firstLBA + mac_count - 1);
memcpy(part->name, "ISOHybrid", 20);
part--;
}
part--;
header->partitionEntriesCRC = lendian_int (chksum_crc32((uint8_t *)part,
header->numParts * header->sizeOfPartitionEntries));
header->headerCRC = lendian_int(chksum_crc32((uint8_t *)header,
header->headerSize));
}
void
initialise_apm(uint8_t *gpt, uint32_t start)
{
struct apple_part_header *part = (struct apple_part_header *)gpt;
part->signature = bendian_short(0x504d);
part->map_count = bendian_int(apm_parts);
part->start_block = bendian_int(1);
part->block_count = bendian_int(0x10);
strcpy(part->name, "Apple");
strcpy(part->type, "Apple_partition_map");
part->data_start = bendian_int(0);
part->data_count = bendian_int(10);
part->status = bendian_int(0x03);
part = (struct apple_part_header *)(gpt + 2048);
part->signature = bendian_short(0x504d);
part->map_count = bendian_int(3);
part->start_block = bendian_int(efi_lba);
part->block_count = bendian_int(efi_count);
strcpy(part->name, "EFI");
strcpy(part->type, "Apple_HFS");
part->data_start = bendian_int(0);
part->data_count = bendian_int(efi_count);
part->status = bendian_int(0x33);
part = (struct apple_part_header *)(gpt + 4096);
if (mac_lba)
{
part->signature = bendian_short(0x504d);
part->map_count = bendian_int(3);
part->start_block = bendian_int(mac_lba);
part->block_count = bendian_int(mac_count);
strcpy(part->name, "EFI");
strcpy(part->type, "Apple_HFS");
part->data_start = bendian_int(0);
part->data_count = bendian_int(mac_count);
part->status = bendian_int(0x33);
} else {
part->signature = bendian_short(0x504d);
part->map_count = bendian_int(3);
part->start_block = bendian_int((start/2048) + 10);
part->block_count = bendian_int(efi_lba - start/2048 - 10);
strcpy(part->name, "ISO");
strcpy(part->type, "Apple_Free");
part->data_start = bendian_int(0);
part->data_count = bendian_int(efi_lba - start/2048 - 10);
part->status = bendian_int(0x01);
}
}
int
main(int argc, char *argv[])
{
int i = 0;
FILE *fp = NULL;
uint8_t *buf = NULL, *bufz = NULL;
int cylsize = 0, frac = 0;
size_t orig_gpt_size, free_space, gpt_size;
struct iso_primary_descriptor descriptor;
prog = strcpy(alloca(strlen(argv[0]) + 1), argv[0]);
i = check_option(argc, argv);
argc -= i;
argv += i;
if (!argc)
{
usage();
return 1;
}
if ((mode & EFI) && offset)
errx(1, "%s: --offset is invalid with UEFI images\n", argv[0]);
srand(time(NULL) << (getppid() << getpid()));
if (!(fp = fopen(argv[0], "r+")))
err(1, "could not open file `%s'", argv[0]);
if (fseek(fp, (16 << 11), SEEK_SET))
err(1, "%s: seek error - 0", argv[0]);
if (fread(&descriptor, sizeof(char), sizeof(descriptor), fp) != sizeof(descriptor))
err(1, "%s: read error - 0", argv[0]);
if (fseek(fp, 17 * 2048, SEEK_SET))
err(1, "%s: seek error - 1", argv[0]);
bufz = buf = calloc(BUFSIZE, sizeof(char));
if (fread(buf, sizeof(char), BUFSIZE, fp) != BUFSIZE)
err(1, "%s", argv[0]);
if (check_banner(buf))
errx(1, "%s: could not find boot record", argv[0]);
if (mode & VERBOSE)
printf("catalogue offset: %d\n", catoffset);
if (fseek(fp, catoffset * 2048, SEEK_SET))
err(1, "%s: seek error - 2", argv[0]);
buf = bufz;
memset(buf, 0, BUFSIZE);
if (fread(buf, sizeof(char), BUFSIZE, fp) != BUFSIZE)
err(1, "%s", argv[0]);
if (check_catalogue(buf))
errx(1, "%s: invalid boot catalogue", argv[0]);
buf += sizeof(ve);
if (read_catalogue(buf))
errx(1, "%s: unexpected boot catalogue parameters", argv[0]);
if (mode & VERBOSE)
display_catalogue();
buf += 32;
if (mode & EFI)
{
if (!read_efi_section(buf)) {
buf += 32;
if (!read_efi_catalogue(buf, &efi_count, &efi_lba) && efi_lba) {
offset = 0;
} else {
errx(1, "%s: invalid efi catalogue", argv[0]);
}
} else {
errx(1, "%s: unable to find efi image", argv[0]);
}
}
buf += 32;
if (mode & MAC)
{
if (!read_efi_section(buf)) {
buf += 32;
if (!read_efi_catalogue(buf, &mac_count, &mac_lba) && mac_lba) {
offset = 0;
} else {
errx(1, "%s: invalid efi catalogue", argv[0]);
}
} else {
errx(1, "%s: unable to find mac efi image", argv[0]);
}
}
if (fseek(fp, (de_lba * 2048 + 0x40), SEEK_SET))
err(1, "%s: seek error - 3", argv[0]);
buf = bufz;
memset(buf, 0, BUFSIZE);
if (fread(buf, sizeof(char), 4, fp) != 4)
err(1, "%s", argv[0]);
if (memcmp(buf, "\xFB\xC0\x78\x70", 4))
errx(1, "%s: boot loader does not have an isolinux.bin hybrid " \
"signature. Note that isolinux-debug.bin does not support " \
"hybrid booting", argv[0]);
if (stat(argv[0], &isostat))
err(1, "%s", argv[0]);
isosize = lendian_int(descriptor.size) * lendian_short(descriptor.block_size);
free_space = isostat.st_size - isosize;
cylsize = head * sector * 512;
frac = isostat.st_size % cylsize;
padding = (frac > 0) ? cylsize - frac : 0;
if (mode & VERBOSE)
printf("imgsize: %zu, padding: %d\n", (size_t)isostat.st_size, padding);
cc = c = ( isostat.st_size + padding) / cylsize;
if (c > 1024)
{
warnx("Warning: more than 1024 cylinders: %d", c);
warnx("Not all BIOSes will be able to boot this device");
cc = 1024;
}
if (!id)
{
if (fseek(fp, 440, SEEK_SET))
err(1, "%s: seek error - 4", argv[0]);
if (fread(&id, 1, 4, fp) != 4)
err(1, "%s: read error", argv[0]);
id = lendian_int(id);
if (!id)
{
if (mode & VERBOSE)
printf("random ");
id = rand();
}
}
if (mode & VERBOSE)
printf("id: %u\n", id);
buf = bufz;
memset(buf, 0, BUFSIZE);
i = initialise_mbr(buf);
if (mode & VERBOSE)
display_mbr(buf, i);
if (fseek(fp, 0, SEEK_SET))
err(1, "%s: seek error - 5", argv[0]);
if (fwrite(buf, sizeof(char), i, fp) != (size_t)i)
err(1, "%s: write error - 1", argv[0]);
if (efi_lba) {
reverse_uuid(basic_partition);
reverse_uuid(hfs_partition);
/* 512 byte header, 128 entries of 128 bytes */
orig_gpt_size = gpt_size = 512 + (128 * 128);
/* Leave space for the APM if necessary */
if (mac_lba)
gpt_size += (4 * 2048);
buf = calloc(gpt_size, sizeof(char));
memset(buf, 0, gpt_size);
/*
* We need to ensure that we have enough space for the secondary GPT.
* Unlike the primary, this doesn't need a hole for the APM. We still
* want to be 1MB aligned so just bump the padding by a megabyte.
*/
if (free_space < orig_gpt_size && padding < orig_gpt_size) {
padding += 1024 * 1024;
}
/*
* Determine the size of the ISO filesystem. This will define the size
* of the partition that covers it.
*/
psize = isosize / 512;
/*
* Primary GPT starts at sector 1, secondary GPT starts at 1 sector
* before the end of the image
*/
initialise_gpt(buf, 1, (isostat.st_size + padding - 1024) / 512, 1);
if (fseek(fp, 512, SEEK_SET))
err(1, "%s: seek error - 6", argv[0]);
if (fwrite(buf, sizeof(char), gpt_size, fp) != (size_t)gpt_size)
err(1, "%s: write error - 2", argv[0]);
}
if (mac_lba)
{
/* Apple partition entries filling 2048 bytes each */
int apm_size = apm_parts * 2048;
buf = realloc(buf, apm_size);
memset(buf, 0, apm_size);
initialise_apm(buf, APM_OFFSET);
fseek(fp, APM_OFFSET, SEEK_SET);
fwrite(buf, sizeof(char), apm_size, fp);
}
if (padding)
{
if (fsync(fileno(fp)))
err(1, "%s: could not synchronise", argv[0]);
if (ftruncate(fileno(fp), isostat.st_size + padding))
err(1, "%s: could not add padding bytes", argv[0]);
}
if (efi_lba) {
buf = realloc(buf, orig_gpt_size);
memset(buf, 0, orig_gpt_size);
buf += orig_gpt_size - sizeof(struct gpt_header);
initialise_gpt(buf, (isostat.st_size + padding - 1024) / 512, 1, 0);
/* Shift back far enough to write the 128 GPT entries */
buf -= 128 * sizeof(struct gpt_part_header);
/*
* Seek far enough back that the gpt header is 512 bytes before the
* end of the image
*/
if (fseek(fp, (isostat.st_size + padding) - orig_gpt_size - 512,
SEEK_SET))
err(1, "%s: seek error - 8", argv[0]);
if (fwrite(buf, sizeof(char), orig_gpt_size, fp) != orig_gpt_size)
err(1, "%s: write error - 4", argv[0]);
}
free(buf);
fclose(fp);
return 0;
}