blob: 95423945d07c5d92925f38e44f1f80da4ccd012e [file] [log] [blame]
/*
SPDX-License-Identifier: GPL-2.0-only
Copyright (C) 2006 Mandriva Conectiva S.A.
Copyright (C) 2006 Arnaldo Carvalho de Melo <acme@mandriva.com>
Copyright (C) 2007 Red Hat Inc.
Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
*/
#include <assert.h>
#include <dirent.h>
#include <dwarf.h>
#include <errno.h>
#include <fcntl.h>
#include <fnmatch.h>
#include <libelf.h>
#include <search.h>
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/utsname.h>
#include "config.h"
#include "list.h"
#include "dwarves.h"
#include "dutil.h"
#include "strings.h"
#include <obstack.h>
#define obstack_chunk_alloc malloc
#define obstack_chunk_free free
#define min(x, y) ((x) < (y) ? (x) : (y))
const char *cu__string(const struct cu *cu, strings_t s)
{
if (cu->dfops && cu->dfops->strings__ptr)
return cu->dfops->strings__ptr(cu, s);
return NULL;
}
static inline const char *s(const struct cu *cu, strings_t i)
{
return cu__string(cu, i);
}
int __tag__has_type_loop(const struct tag *tag, const struct tag *type,
char *bf, size_t len, FILE *fp,
const char *fn, int line)
{
char bbf[2048], *abf = bbf;
if (type == NULL)
return 0;
if (tag->type == type->type) {
int printed;
if (bf != NULL)
abf = bf;
else
len = sizeof(bbf);
printed = snprintf(abf, len, "<ERROR(%s:%d): detected type loop: type=%d, tag=%s>",
fn, line, tag->type, dwarf_tag_name(tag->tag));
if (bf == NULL)
printed = fprintf(fp ?: stderr, "%s\n", abf);
return printed;
}
return 0;
}
static void lexblock__delete_tags(struct tag *tag, struct cu *cu)
{
struct lexblock *block = tag__lexblock(tag);
struct tag *pos, *n;
list_for_each_entry_safe_reverse(pos, n, &block->tags, node) {
list_del_init(&pos->node);
tag__delete(pos, cu);
}
}
void lexblock__delete(struct lexblock *block, struct cu *cu)
{
lexblock__delete_tags(&block->ip.tag, cu);
obstack_free(&cu->obstack, block);
}
void tag__delete(struct tag *tag, struct cu *cu)
{
assert(list_empty(&tag->node));
switch (tag->tag) {
case DW_TAG_union_type:
type__delete(tag__type(tag), cu); break;
case DW_TAG_class_type:
case DW_TAG_structure_type:
class__delete(tag__class(tag), cu); break;
case DW_TAG_enumeration_type:
enumeration__delete(tag__type(tag), cu); break;
case DW_TAG_subroutine_type:
ftype__delete(tag__ftype(tag), cu); break;
case DW_TAG_subprogram:
function__delete(tag__function(tag), cu); break;
case DW_TAG_lexical_block:
lexblock__delete(tag__lexblock(tag), cu); break;
default:
obstack_free(&cu->obstack, tag);
}
}
void tag__not_found_die(const char *file, int line, const char *func)
{
fprintf(stderr, "%s::%s(%d): tag not found, please report to "
"acme@kernel.org\n", file, func, line);
exit(1);
}
struct tag *tag__follow_typedef(const struct tag *tag, const struct cu *cu)
{
struct tag *type = cu__type(cu, tag->type);
if (type != NULL && tag__is_typedef(type))
return tag__follow_typedef(type, cu);
return type;
}
struct tag *tag__strip_typedefs_and_modifiers(const struct tag *tag, const struct cu *cu)
{
struct tag *type = cu__type(cu, tag->type);
while (type != NULL && (tag__is_typedef(type) || tag__is_modifier(type)))
type = cu__type(cu, type->type);
return type;
}
size_t __tag__id_not_found_fprintf(FILE *fp, type_id_t id,
const char *fn, int line)
{
return fprintf(fp, "<ERROR(%s:%d): %d not found!>\n", fn, line, id);
}
static struct base_type_name_to_size {
const char *name;
strings_t sname;
size_t size;
} base_type_name_to_size_table[] = {
{ .name = "unsigned", .size = 32, },
{ .name = "signed int", .size = 32, },
{ .name = "unsigned int", .size = 32, },
{ .name = "int", .size = 32, },
{ .name = "short unsigned int", .size = 16, },
{ .name = "signed short", .size = 16, },
{ .name = "unsigned short", .size = 16, },
{ .name = "short int", .size = 16, },
{ .name = "short", .size = 16, },
{ .name = "char", .size = 8, },
{ .name = "signed char", .size = 8, },
{ .name = "unsigned char", .size = 8, },
{ .name = "signed long", .size = 0, },
{ .name = "long int", .size = 0, },
{ .name = "long", .size = 0, },
{ .name = "signed long", .size = 0, },
{ .name = "unsigned long", .size = 0, },
{ .name = "long unsigned int", .size = 0, },
{ .name = "bool", .size = 8, },
{ .name = "_Bool", .size = 8, },
{ .name = "long long unsigned int", .size = 64, },
{ .name = "long long int", .size = 64, },
{ .name = "long long", .size = 64, },
{ .name = "signed long long", .size = 64, },
{ .name = "unsigned long long", .size = 64, },
{ .name = "double", .size = 64, },
{ .name = "double double", .size = 64, },
{ .name = "single float", .size = 32, },
{ .name = "float", .size = 32, },
{ .name = "long double", .size = sizeof(long double) * 8, },
{ .name = "long double long double", .size = sizeof(long double) * 8, },
{ .name = "__int128", .size = 128, },
{ .name = "unsigned __int128", .size = 128, },
{ .name = "__int128 unsigned", .size = 128, },
{ .name = "_Float128", .size = 128, },
{ .name = NULL },
};
void base_type_name_to_size_table__init(struct strings *strings)
{
int i = 0;
while (base_type_name_to_size_table[i].name != NULL) {
if (base_type_name_to_size_table[i].sname == 0)
base_type_name_to_size_table[i].sname =
strings__find(strings,
base_type_name_to_size_table[i].name);
++i;
}
}
size_t base_type__name_to_size(struct base_type *bt, struct cu *cu)
{
int i = 0;
char bf[64];
const char *name, *orig_name;
if (bt->name_has_encoding)
name = s(cu, bt->name);
else
name = base_type__name(bt, cu, bf, sizeof(bf));
orig_name = name;
try_again:
while (base_type_name_to_size_table[i].name != NULL) {
if (bt->name_has_encoding) {
if (base_type_name_to_size_table[i].sname == bt->name) {
size_t size;
found:
size = base_type_name_to_size_table[i].size;
return size ?: ((size_t)cu->addr_size * 8);
}
} else if (strcmp(base_type_name_to_size_table[i].name,
name) == 0)
goto found;
++i;
}
if (strstarts(name, "signed ")) {
i = 0;
name += sizeof("signed");
goto try_again;
}
fprintf(stderr, "%s: %s %s\n",
__func__, dwarf_tag_name(bt->tag.tag), orig_name);
return 0;
}
static const char *base_type_fp_type_str[] = {
[BT_FP_SINGLE] = "single",
[BT_FP_DOUBLE] = "double",
[BT_FP_CMPLX] = "complex",
[BT_FP_CMPLX_DBL] = "complex double",
[BT_FP_CMPLX_LDBL] = "complex long double",
[BT_FP_LDBL] = "long double",
[BT_FP_INTVL] = "interval",
[BT_FP_INTVL_DBL] = "interval double",
[BT_FP_INTVL_LDBL] = "interval long double",
[BT_FP_IMGRY] = "imaginary",
[BT_FP_IMGRY_DBL] = "imaginary double",
[BT_FP_IMGRY_LDBL] = "imaginary long double",
};
const char *base_type__name(const struct base_type *bt, const struct cu *cu,
char *bf, size_t len)
{
if (bt->name_has_encoding)
return s(cu, bt->name);
if (bt->float_type)
snprintf(bf, len, "%s %s",
base_type_fp_type_str[bt->float_type],
s(cu, bt->name));
else
snprintf(bf, len, "%s%s%s",
bt->is_bool ? "bool " : "",
bt->is_varargs ? "... " : "",
s(cu, bt->name));
return bf;
}
void namespace__delete(struct namespace *space, struct cu *cu)
{
struct tag *pos, *n;
namespace__for_each_tag_safe_reverse(space, pos, n) {
list_del_init(&pos->node);
/* Look for nested namespaces */
if (tag__has_namespace(pos))
namespace__delete(tag__namespace(pos), cu);
tag__delete(pos, cu);
}
tag__delete(&space->tag, cu);
}
struct class_member *
type__find_first_biggest_size_base_type_member(struct type *type,
const struct cu *cu)
{
struct class_member *pos, *result = NULL;
size_t result_size = 0;
type__for_each_data_member(type, pos) {
if (pos->is_static)
continue;
struct tag *type = cu__type(cu, pos->tag.type);
size_t member_size = 0, power2;
struct class_member *inner = NULL;
if (type == NULL) {
tag__id_not_found_fprintf(stderr, pos->tag.type);
continue;
}
reevaluate:
switch (type->tag) {
case DW_TAG_base_type:
member_size = base_type__size(type);
break;
case DW_TAG_pointer_type:
case DW_TAG_reference_type:
member_size = cu->addr_size;
break;
case DW_TAG_class_type:
case DW_TAG_union_type:
case DW_TAG_structure_type:
if (tag__type(type)->nr_members == 0)
continue;
inner = type__find_first_biggest_size_base_type_member(tag__type(type), cu);
member_size = inner->byte_size;
break;
case DW_TAG_array_type:
case DW_TAG_const_type:
case DW_TAG_typedef:
case DW_TAG_rvalue_reference_type:
case DW_TAG_volatile_type: {
struct tag *tag = cu__type(cu, type->type);
if (type == NULL) {
tag__id_not_found_fprintf(stderr, type->type);
continue;
}
type = tag;
}
goto reevaluate;
case DW_TAG_enumeration_type:
member_size = tag__type(type)->size / 8;
break;
}
/* long long */
if (member_size > cu->addr_size)
return pos;
for (power2 = cu->addr_size; power2 > result_size; power2 /= 2)
if (member_size >= power2) {
if (power2 == cu->addr_size)
return inner ?: pos;
result_size = power2;
result = inner ?: pos;
}
}
return result;
}
static void cu__find_class_holes(struct cu *cu)
{
uint32_t id;
struct class *pos;
cu__for_each_struct(cu, id, pos)
class__find_holes(pos);
}
void cus__add(struct cus *cus, struct cu *cu)
{
cus->nr_entries++;
list_add_tail(&cu->node, &cus->cus);
cu__find_class_holes(cu);
}
static void ptr_table__init(struct ptr_table *pt)
{
pt->entries = NULL;
pt->nr_entries = pt->allocated_entries = 0;
}
static void ptr_table__exit(struct ptr_table *pt)
{
free(pt->entries);
pt->entries = NULL;
}
static int ptr_table__add(struct ptr_table *pt, void *ptr, uint32_t *idxp)
{
const uint32_t nr_entries = pt->nr_entries + 1;
const uint32_t rc = pt->nr_entries;
if (nr_entries > pt->allocated_entries) {
uint32_t allocated_entries = pt->allocated_entries + 256;
void *entries = realloc(pt->entries,
sizeof(void *) * allocated_entries);
if (entries == NULL)
return -ENOMEM;
pt->allocated_entries = allocated_entries;
pt->entries = entries;
}
pt->entries[rc] = ptr;
pt->nr_entries = nr_entries;
*idxp = rc;
return 0;
}
static int ptr_table__add_with_id(struct ptr_table *pt, void *ptr,
uint32_t id)
{
/* Assume we won't be fed with the same id more than once */
if (id >= pt->allocated_entries) {
uint32_t allocated_entries = roundup(id + 1, 256);
void *entries = realloc(pt->entries,
sizeof(void *) * allocated_entries);
if (entries == NULL)
return -ENOMEM;
pt->allocated_entries = allocated_entries;
pt->entries = entries;
}
pt->entries[id] = ptr;
++pt->nr_entries;
return 0;
}
static void *ptr_table__entry(const struct ptr_table *pt, uint32_t id)
{
return id >= pt->nr_entries ? NULL : pt->entries[id];
}
static void cu__insert_function(struct cu *cu, struct tag *tag)
{
struct function *function = tag__function(tag);
struct rb_node **p = &cu->functions.rb_node;
struct rb_node *parent = NULL;
struct function *f;
while (*p != NULL) {
parent = *p;
f = rb_entry(parent, struct function, rb_node);
if (function->lexblock.ip.addr < f->lexblock.ip.addr)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
}
rb_link_node(&function->rb_node, parent, p);
rb_insert_color(&function->rb_node, &cu->functions);
}
int cu__table_add_tag(struct cu *cu, struct tag *tag, uint32_t *type_id)
{
struct ptr_table *pt = &cu->tags_table;
if (tag__is_tag_type(tag))
pt = &cu->types_table;
else if (tag__is_function(tag)) {
pt = &cu->functions_table;
cu__insert_function(cu, tag);
}
return ptr_table__add(pt, tag, type_id) ? -ENOMEM : 0;
}
int cu__table_nullify_type_entry(struct cu *cu, uint32_t id)
{
return ptr_table__add_with_id(&cu->types_table, NULL, id);
}
int cu__add_tag(struct cu *cu, struct tag *tag, uint32_t *id)
{
int err = cu__table_add_tag(cu, tag, id);
if (err == 0)
list_add_tail(&tag->node, &cu->tags);
return err;
}
int cu__table_add_tag_with_id(struct cu *cu, struct tag *tag, uint32_t id)
{
struct ptr_table *pt = &cu->tags_table;
if (tag__is_tag_type(tag)) {
pt = &cu->types_table;
} else if (tag__is_function(tag)) {
pt = &cu->functions_table;
cu__insert_function(cu, tag);
}
return ptr_table__add_with_id(pt, tag, id);
}
int cu__add_tag_with_id(struct cu *cu, struct tag *tag, uint32_t id)
{
int err = cu__table_add_tag_with_id(cu, tag, id);
if (err == 0)
list_add_tail(&tag->node, &cu->tags);
return err;
}
struct cu *cu__new(const char *name, uint8_t addr_size,
const unsigned char *build_id, int build_id_len,
const char *filename)
{
struct cu *cu = malloc(sizeof(*cu) + build_id_len);
if (cu != NULL) {
uint32_t void_id;
cu->name = strdup(name);
cu->filename = strdup(filename);
if (cu->name == NULL || cu->filename == NULL)
goto out_free;
obstack_init(&cu->obstack);
ptr_table__init(&cu->tags_table);
ptr_table__init(&cu->types_table);
ptr_table__init(&cu->functions_table);
/*
* the first entry is historically associated with void,
* so make sure we don't use it
*/
if (ptr_table__add(&cu->types_table, NULL, &void_id) < 0)
goto out_free_name;
cu->functions = RB_ROOT;
cu->dfops = NULL;
INIT_LIST_HEAD(&cu->tags);
INIT_LIST_HEAD(&cu->tool_list);
cu->addr_size = addr_size;
cu->extra_dbg_info = 0;
cu->nr_inline_expansions = 0;
cu->size_inline_expansions = 0;
cu->nr_structures_changed = 0;
cu->nr_functions_changed = 0;
cu->max_len_changed_item = 0;
cu->function_bytes_added = 0;
cu->function_bytes_removed = 0;
cu->build_id_len = build_id_len;
if (build_id_len > 0)
memcpy(cu->build_id, build_id, build_id_len);
}
out:
return cu;
out_free_name:
free(cu->name);
free(cu->filename);
out_free:
free(cu);
cu = NULL;
goto out;
}
void cu__delete(struct cu *cu)
{
ptr_table__exit(&cu->tags_table);
ptr_table__exit(&cu->types_table);
ptr_table__exit(&cu->functions_table);
if (cu->dfops && cu->dfops->cu__delete)
cu->dfops->cu__delete(cu);
obstack_free(&cu->obstack, NULL);
free(cu->filename);
free(cu->name);
free(cu);
}
bool cu__same_build_id(const struct cu *cu, const struct cu *other)
{
return cu->build_id_len != 0 &&
cu->build_id_len == other->build_id_len &&
memcmp(cu->build_id, other->build_id, cu->build_id_len) == 0;
}
struct tag *cu__function(const struct cu *cu, const uint32_t id)
{
return cu ? ptr_table__entry(&cu->functions_table, id) : NULL;
}
struct tag *cu__tag(const struct cu *cu, const uint32_t id)
{
return cu ? ptr_table__entry(&cu->tags_table, id) : NULL;
}
struct tag *cu__type(const struct cu *cu, const type_id_t id)
{
return cu ? ptr_table__entry(&cu->types_table, id) : NULL;
}
struct tag *cu__find_first_typedef_of_type(const struct cu *cu,
const type_id_t type)
{
uint32_t id;
struct tag *pos;
if (cu == NULL || type == 0)
return NULL;
cu__for_each_type(cu, id, pos)
if (tag__is_typedef(pos) && pos->type == type)
return pos;
return NULL;
}
struct tag *cu__find_base_type_by_name(const struct cu *cu,
const char *name, type_id_t *idp)
{
uint32_t id;
struct tag *pos;
if (cu == NULL || name == NULL)
return NULL;
cu__for_each_type(cu, id, pos) {
if (pos->tag != DW_TAG_base_type)
continue;
const struct base_type *bt = tag__base_type(pos);
char bf[64];
const char *bname = base_type__name(bt, cu, bf, sizeof(bf));
if (!bname || strcmp(bname, name) != 0)
continue;
if (idp != NULL)
*idp = id;
return pos;
}
return NULL;
}
struct tag *cu__find_base_type_by_sname_and_size(const struct cu *cu,
strings_t sname,
uint16_t bit_size,
type_id_t *idp)
{
uint32_t id;
struct tag *pos;
if (sname == 0)
return NULL;
cu__for_each_type(cu, id, pos) {
if (pos->tag == DW_TAG_base_type) {
const struct base_type *bt = tag__base_type(pos);
if (bt->bit_size == bit_size &&
bt->name == sname) {
if (idp != NULL)
*idp = id;
return pos;
}
}
}
return NULL;
}
struct tag *cu__find_enumeration_by_sname_and_size(const struct cu *cu,
strings_t sname,
uint16_t bit_size,
type_id_t *idp)
{
uint32_t id;
struct tag *pos;
if (sname == 0)
return NULL;
cu__for_each_type(cu, id, pos) {
if (pos->tag == DW_TAG_enumeration_type) {
const struct type *t = tag__type(pos);
if (t->size == bit_size &&
t->namespace.name == sname) {
if (idp != NULL)
*idp = id;
return pos;
}
}
}
return NULL;
}
struct tag *cu__find_struct_by_sname(const struct cu *cu, strings_t sname,
const int include_decls, type_id_t *idp)
{
uint32_t id;
struct tag *pos;
if (sname == 0)
return NULL;
cu__for_each_type(cu, id, pos) {
struct type *type;
if (!tag__is_struct(pos))
continue;
type = tag__type(pos);
if (type->namespace.name == sname) {
if (!type->declaration)
goto found;
if (include_decls)
goto found;
}
}
return NULL;
found:
if (idp != NULL)
*idp = id;
return pos;
}
static struct tag *__cu__find_struct_by_name(const struct cu *cu, const char *name,
const int include_decls, bool unions, type_id_t *idp)
{
if (cu == NULL || name == NULL)
return NULL;
uint32_t id;
struct tag *pos;
cu__for_each_type(cu, id, pos) {
struct type *type;
if (!(tag__is_struct(pos) || (unions && tag__is_union(pos))))
continue;
type = tag__type(pos);
const char *tname = type__name(type, cu);
if (tname && strcmp(tname, name) == 0) {
if (!type->declaration)
goto found;
if (include_decls)
goto found;
}
}
return NULL;
found:
if (idp != NULL)
*idp = id;
return pos;
}
struct tag *cu__find_struct_by_name(const struct cu *cu, const char *name,
const int include_decls, type_id_t *idp)
{
return __cu__find_struct_by_name(cu, name, include_decls, false, idp);
}
struct tag *cu__find_struct_or_union_by_name(const struct cu *cu, const char *name,
const int include_decls, type_id_t *idp)
{
return __cu__find_struct_by_name(cu, name, include_decls, true, idp);
}
static struct tag *__cus__find_struct_by_name(const struct cus *cus,
struct cu **cu, const char *name,
const int include_decls, bool unions, type_id_t *id)
{
struct cu *pos;
list_for_each_entry(pos, &cus->cus, node) {
struct tag *tag = __cu__find_struct_by_name(pos, name, include_decls, unions, id);
if (tag != NULL) {
if (cu != NULL)
*cu = pos;
return tag;
}
}
return NULL;
}
struct tag *cus__find_struct_by_name(const struct cus *cus, struct cu **cu, const char *name,
const int include_decls, type_id_t *idp)
{
return __cus__find_struct_by_name(cus, cu, name, include_decls, false, idp);
}
struct tag *cus__find_struct_or_union_by_name(const struct cus *cus, struct cu **cu, const char *name,
const int include_decls, type_id_t *idp)
{
return __cus__find_struct_by_name(cus, cu, name, include_decls, true, idp);
}
struct function *cu__find_function_at_addr(const struct cu *cu,
uint64_t addr)
{
struct rb_node *n;
if (cu == NULL)
return NULL;
n = cu->functions.rb_node;
while (n) {
struct function *f = rb_entry(n, struct function, rb_node);
if (addr < f->lexblock.ip.addr)
n = n->rb_left;
else if (addr >= f->lexblock.ip.addr + f->lexblock.size)
n = n->rb_right;
else
return f;
}
return NULL;
}
struct function *cus__find_function_at_addr(const struct cus *cus,
uint64_t addr, struct cu **cu)
{
struct cu *pos;
list_for_each_entry(pos, &cus->cus, node) {
struct function *f = cu__find_function_at_addr(pos, addr);
if (f != NULL) {
if (cu != NULL)
*cu = pos;
return f;
}
}
return NULL;
}
struct cu *cus__find_cu_by_name(const struct cus *cus, const char *name)
{
struct cu *pos;
list_for_each_entry(pos, &cus->cus, node)
if (pos->name && strcmp(pos->name, name) == 0)
return pos;
return NULL;
}
struct tag *cu__find_function_by_name(const struct cu *cu, const char *name)
{
if (cu == NULL || name == NULL)
return NULL;
uint32_t id;
struct function *pos;
cu__for_each_function(cu, id, pos) {
const char *fname = function__name(pos, cu);
if (fname && strcmp(fname, name) == 0)
return function__tag(pos);
}
return NULL;
}
static size_t array_type__nr_entries(const struct array_type *at)
{
int i;
size_t nr_entries = 1;
for (i = 0; i < at->dimensions; ++i)
nr_entries *= at->nr_entries[i];
return nr_entries;
}
size_t tag__size(const struct tag *tag, const struct cu *cu)
{
size_t size;
switch (tag->tag) {
case DW_TAG_member: {
struct class_member *member = tag__class_member(tag);
if (member->is_static)
return 0;
/* Is it cached already? */
size = member->byte_size;
if (size != 0)
return size;
break;
}
case DW_TAG_pointer_type:
case DW_TAG_reference_type: return cu->addr_size;
case DW_TAG_base_type: return base_type__size(tag);
case DW_TAG_enumeration_type: return tag__type(tag)->size / 8;
}
if (tag->type == 0) { /* struct class: unions, structs */
struct type *type = tag__type(tag);
/* empty base optimization trick */
if (type->size == 1 && type->nr_members == 0)
size = 0;
else
size = tag__type(tag)->size;
} else {
const struct tag *type = cu__type(cu, tag->type);
if (type == NULL) {
tag__id_not_found_fprintf(stderr, tag->type);
return -1;
} else if (tag__has_type_loop(tag, type, NULL, 0, NULL))
return -1;
size = tag__size(type, cu);
}
if (tag->tag == DW_TAG_array_type)
return size * array_type__nr_entries(tag__array_type(tag));
return size;
}
const char *variable__name(const struct variable *var, const struct cu *cu)
{
if (cu->dfops && cu->dfops->variable__name)
return cu->dfops->variable__name(var, cu);
return s(cu, var->name);
}
const char *variable__type_name(const struct variable *var,
const struct cu *cu,
char *bf, size_t len)
{
const struct tag *tag = cu__type(cu, var->ip.tag.type);
return tag != NULL ? tag__name(tag, cu, bf, len, NULL) : NULL;
}
void class_member__delete(struct class_member *member, struct cu *cu)
{
obstack_free(&cu->obstack, member);
}
static struct class_member *class_member__clone(const struct class_member *from,
struct cu *cu)
{
struct class_member *member = obstack_alloc(&cu->obstack, sizeof(*member));
if (member != NULL)
memcpy(member, from, sizeof(*member));
return member;
}
static void type__delete_class_members(struct type *type, struct cu *cu)
{
struct class_member *pos, *next;
type__for_each_tag_safe_reverse(type, pos, next) {
list_del_init(&pos->tag.node);
class_member__delete(pos, cu);
}
}
void class__delete(struct class *class, struct cu *cu)
{
if (class->type.namespace.sname != NULL)
free(class->type.namespace.sname);
type__delete_class_members(&class->type, cu);
obstack_free(&cu->obstack, class);
}
void type__delete(struct type *type, struct cu *cu)
{
type__delete_class_members(type, cu);
obstack_free(&cu->obstack, type);
}
static void enumerator__delete(struct enumerator *enumerator, struct cu *cu)
{
obstack_free(&cu->obstack, enumerator);
}
void enumeration__delete(struct type *type, struct cu *cu)
{
struct enumerator *pos, *n;
type__for_each_enumerator_safe_reverse(type, pos, n) {
list_del_init(&pos->tag.node);
enumerator__delete(pos, cu);
}
}
void class__add_vtable_entry(struct class *class, struct function *vtable_entry)
{
++class->nr_vtable_entries;
list_add_tail(&vtable_entry->vtable_node, &class->vtable);
}
void namespace__add_tag(struct namespace *space, struct tag *tag)
{
++space->nr_tags;
list_add_tail(&tag->node, &space->tags);
}
void type__add_member(struct type *type, struct class_member *member)
{
if (member->is_static)
++type->nr_static_members;
else
++type->nr_members;
namespace__add_tag(&type->namespace, &member->tag);
}
struct class_member *type__last_member(struct type *type)
{
struct class_member *pos;
list_for_each_entry_reverse(pos, &type->namespace.tags, tag.node)
if (pos->tag.tag == DW_TAG_member)
return pos;
return NULL;
}
static int type__clone_members(struct type *type, const struct type *from,
struct cu *cu)
{
struct class_member *pos;
type->nr_members = type->nr_static_members = 0;
INIT_LIST_HEAD(&type->namespace.tags);
type__for_each_member(from, pos) {
struct class_member *clone = class_member__clone(pos, cu);
if (clone == NULL)
return -1;
type__add_member(type, clone);
}
return 0;
}
struct class *class__clone(const struct class *from,
const char *new_class_name, struct cu *cu)
{
struct class *class = obstack_alloc(&cu->obstack, sizeof(*class));
if (class != NULL) {
memcpy(class, from, sizeof(*class));
if (new_class_name != NULL) {
class->type.namespace.name = 0;
class->type.namespace.sname = strdup(new_class_name);
if (class->type.namespace.sname == NULL) {
free(class);
return NULL;
}
}
if (type__clone_members(&class->type, &from->type, cu) != 0) {
class__delete(class, cu);
class = NULL;
}
}
return class;
}
void enumeration__add(struct type *type, struct enumerator *enumerator)
{
++type->nr_members;
namespace__add_tag(&type->namespace, &enumerator->tag);
}
void lexblock__add_lexblock(struct lexblock *block, struct lexblock *child)
{
++block->nr_lexblocks;
list_add_tail(&child->ip.tag.node, &block->tags);
}
const char *function__name(struct function *func, const struct cu *cu)
{
if (cu->dfops && cu->dfops->function__name)
return cu->dfops->function__name(func, cu);
return s(cu, func->name);
}
static void parameter__delete(struct parameter *parm, struct cu *cu)
{
obstack_free(&cu->obstack, parm);
}
void ftype__delete(struct ftype *type, struct cu *cu)
{
struct parameter *pos, *n;
if (type == NULL)
return;
ftype__for_each_parameter_safe_reverse(type, pos, n) {
list_del_init(&pos->tag.node);
parameter__delete(pos, cu);
}
obstack_free(&cu->obstack, type);
}
void function__delete(struct function *func, struct cu *cu)
{
lexblock__delete_tags(&func->lexblock.ip.tag, cu);
ftype__delete(&func->proto, cu);
}
int ftype__has_parm_of_type(const struct ftype *ftype, const type_id_t target,
const struct cu *cu)
{
struct parameter *pos;
ftype__for_each_parameter(ftype, pos) {
struct tag *type = cu__type(cu, pos->tag.type);
if (type != NULL && tag__is_pointer(type)) {
if (type->type == target)
return 1;
}
}
return 0;
}
void ftype__add_parameter(struct ftype *ftype, struct parameter *parm)
{
++ftype->nr_parms;
list_add_tail(&parm->tag.node, &ftype->parms);
}
void lexblock__add_tag(struct lexblock *block, struct tag *tag)
{
list_add_tail(&tag->node, &block->tags);
}
void lexblock__add_inline_expansion(struct lexblock *block,
struct inline_expansion *exp)
{
++block->nr_inline_expansions;
block->size_inline_expansions += exp->size;
lexblock__add_tag(block, &exp->ip.tag);
}
void lexblock__add_variable(struct lexblock *block, struct variable *var)
{
++block->nr_variables;
lexblock__add_tag(block, &var->ip.tag);
}
void lexblock__add_label(struct lexblock *block, struct label *label)
{
++block->nr_labels;
lexblock__add_tag(block, &label->ip.tag);
}
const struct class_member *class__find_bit_hole(const struct class *class,
const struct class_member *trailer,
const uint16_t bit_hole_size)
{
struct class_member *pos;
const size_t byte_hole_size = bit_hole_size / 8;
type__for_each_data_member(&class->type, pos)
if (pos == trailer)
break;
else if (pos->hole >= byte_hole_size ||
pos->bit_hole >= bit_hole_size)
return pos;
return NULL;
}
void class__find_holes(struct class *class)
{
const struct type *ctype = &class->type;
struct class_member *pos, *last = NULL;
int cur_bitfield_end = ctype->size * 8, cur_bitfield_size = 0;
int bit_holes = 0, byte_holes = 0;
int bit_start, bit_end;
int last_seen_bit = 0;
bool in_bitfield = false;
if (!tag__is_struct(class__tag(class)))
return;
if (class->holes_searched)
return;
class->nr_holes = 0;
class->nr_bit_holes = 0;
type__for_each_member(ctype, pos) {
/* XXX for now just skip these */
if (pos->tag.tag == DW_TAG_inheritance &&
pos->virtuality == DW_VIRTUALITY_virtual)
continue;
if (pos->is_static)
continue;
pos->bit_hole = 0;
pos->hole = 0;
bit_start = pos->bit_offset;
if (pos->bitfield_size) {
bit_end = bit_start + pos->bitfield_size;
} else {
bit_end = bit_start + pos->byte_size * 8;
}
bit_holes = 0;
byte_holes = 0;
if (in_bitfield) {
/* check if we have some trailing bitfield bits left */
int bitfield_end = min(bit_start, cur_bitfield_end);
bit_holes = bitfield_end - last_seen_bit;
last_seen_bit = bitfield_end;
}
if (pos->bitfield_size) {
int aligned_start = pos->byte_offset * 8;
/* we can have some alignment byte padding left,
* but we need to be careful about bitfield spanning
* multiple aligned boundaries */
if (last_seen_bit < aligned_start && aligned_start <= bit_start) {
byte_holes = pos->byte_offset - last_seen_bit / 8;
last_seen_bit = aligned_start;
}
bit_holes += bit_start - last_seen_bit;
} else {
byte_holes = bit_start/8 - last_seen_bit/8;
}
last_seen_bit = bit_end;
if (pos->bitfield_size) {
in_bitfield = true;
/* if it's a new bitfield set or same, but with
* bigger-sized type, readjust size and end bit */
if (bit_end > cur_bitfield_end || pos->bit_size > cur_bitfield_size) {
cur_bitfield_size = pos->bit_size;
cur_bitfield_end = pos->byte_offset * 8 + cur_bitfield_size;
/*
* if current bitfield "borrowed" bits from
* previous bitfield, it will have byte_offset
* of previous bitfield's backing integral
* type, but its end bit will be in a new
* bitfield "area", so we need to adjust
* bitfield end appropriately
*/
if (bit_end > cur_bitfield_end) {
cur_bitfield_end += cur_bitfield_size;
}
}
} else {
in_bitfield = false;
cur_bitfield_size = 0;
cur_bitfield_end = bit_end;
}
if (last) {
last->hole = byte_holes;
last->bit_hole = bit_holes;
} else {
class->pre_hole = byte_holes;
class->pre_bit_hole = bit_holes;
}
if (bit_holes)
class->nr_bit_holes++;
if (byte_holes)
class->nr_holes++;
last = pos;
}
if (in_bitfield) {
int bitfield_end = min(ctype->size * 8, cur_bitfield_end);
class->bit_padding = bitfield_end - last_seen_bit;
last_seen_bit = bitfield_end;
} else {
class->bit_padding = 0;
}
class->padding = ctype->size - last_seen_bit / 8;
class->holes_searched = true;
}
static size_t type__natural_alignment(struct type *type, const struct cu *cu);
static size_t tag__natural_alignment(struct tag *tag, const struct cu *cu)
{
size_t natural_alignment = 1;
if (tag__is_pointer(tag)) {
natural_alignment = cu->addr_size;
} else if (tag->tag == DW_TAG_base_type) {
natural_alignment = base_type__size(tag);
} else if (tag__is_enumeration(tag)) {
natural_alignment = tag__type(tag)->size / 8;
} else if (tag__is_struct(tag) || tag__is_union(tag)) {
natural_alignment = type__natural_alignment(tag__type(tag), cu);
} else if (tag->tag == DW_TAG_array_type) {
tag = tag__strip_typedefs_and_modifiers(tag, cu);
natural_alignment = tag__natural_alignment(tag, cu);
}
/*
* Cope with zero sized types, like:
*
* struct u64_stats_sync {
* #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
* seqcount_t seq;
* #endif
* };
*
*/
return natural_alignment ?: 1;
}
static size_t type__natural_alignment(struct type *type, const struct cu *cu)
{
struct class_member *member;
if (type->natural_alignment != 0)
return type->natural_alignment;
type__for_each_member(type, member) {
/* XXX for now just skip these */
if (member->tag.tag == DW_TAG_inheritance &&
member->virtuality == DW_VIRTUALITY_virtual)
continue;
struct tag *member_type = tag__strip_typedefs_and_modifiers(&member->tag, cu);
size_t member_natural_alignment = tag__natural_alignment(member_type, cu);
if (type->natural_alignment < member_natural_alignment)
type->natural_alignment = member_natural_alignment;
}
return type->natural_alignment;
}
/*
* Sometimes the only indication that a struct is __packed__ is for it to
* appear embedded in another and at an offset that is not natural for it,
* so, in !__packed__ parked struct, check for that and mark the types of
* members at unnatural alignments.
*/
void type__check_structs_at_unnatural_alignments(struct type *type, const struct cu *cu)
{
struct class_member *member;
type__for_each_member(type, member) {
struct tag *member_type = tag__strip_typedefs_and_modifiers(&member->tag, cu);
if (!tag__is_struct(member_type))
continue;
size_t natural_alignment = tag__natural_alignment(member_type, cu);
/* Would this break the natural alignment */
if ((member->byte_offset % natural_alignment) != 0) {
struct class *cls = tag__class(member_type);
cls->is_packed = true;
cls->type.packed_attributes_inferred = true;
}
}
}
bool class__infer_packed_attributes(struct class *cls, const struct cu *cu)
{
struct type *ctype = &cls->type;
struct class_member *pos, *last = NULL;
uint16_t max_natural_alignment = 1;
if (!tag__is_struct(class__tag(cls)))
return false;
if (ctype->packed_attributes_inferred)
return cls->is_packed;
class__find_holes(cls);
if (cls->padding != 0 || cls->nr_holes != 0) {
type__check_structs_at_unnatural_alignments(ctype, cu);
cls->is_packed = false;
goto out;
}
type__for_each_member(ctype, pos) {
/* XXX for now just skip these */
if (pos->tag.tag == DW_TAG_inheritance &&
pos->virtuality == DW_VIRTUALITY_virtual)
continue;
if (pos->is_static)
continue;
struct tag *member_type = tag__strip_typedefs_and_modifiers(&pos->tag, cu);
size_t natural_alignment = tag__natural_alignment(member_type, cu);
/* Always aligned: */
if (natural_alignment == sizeof(char))
continue;
if (max_natural_alignment < natural_alignment)
max_natural_alignment = natural_alignment;
if ((pos->byte_offset % natural_alignment) == 0)
continue;
cls->is_packed = true;
goto out;
}
if ((max_natural_alignment != 1 && ctype->alignment == 1) ||
(class__size(cls) % max_natural_alignment) != 0)
cls->is_packed = true;
out:
ctype->packed_attributes_inferred = true;
return cls->is_packed;
}
/*
* If structs embedded in unions, nameless or not, have a size which isn't
* isn't a multiple of the union size, then it must be packed, even if
* it has no holes nor padding, as an array of such unions would have the
* natural alignments of non-multiple structs inside it broken.
*/
void union__infer_packed_attributes(struct type *type, const struct cu *cu)
{
const uint32_t union_size = type->size;
struct class_member *member;
if (type->packed_attributes_inferred)
return;
type__for_each_member(type, member) {
struct tag *member_type = tag__strip_typedefs_and_modifiers(&member->tag, cu);
if (!tag__is_struct(member_type))
continue;
size_t natural_alignment = tag__natural_alignment(member_type, cu);
/* Would this break the natural alignment */
if ((union_size % natural_alignment) != 0) {
struct class *cls = tag__class(member_type);
cls->is_packed = true;
cls->type.packed_attributes_inferred = true;
}
}
type->packed_attributes_inferred = true;
}
/** class__has_hole_ge - check if class has a hole greater or equal to @size
* @class - class instance
* @size - hole size to check
*/
int class__has_hole_ge(const struct class *class, const uint16_t size)
{
struct class_member *pos;
if (class->nr_holes == 0)
return 0;
type__for_each_data_member(&class->type, pos)
if (pos->hole >= size)
return 1;
return 0;
}
struct class_member *type__find_member_by_name(const struct type *type,
const struct cu *cu,
const char *name)
{
if (name == NULL)
return NULL;
struct class_member *pos;
type__for_each_data_member(type, pos) {
const char *curr_name = class_member__name(pos, cu);
if (curr_name && strcmp(curr_name, name) == 0)
return pos;
}
return NULL;
}
uint32_t type__nr_members_of_type(const struct type *type, const type_id_t type_id)
{
struct class_member *pos;
uint32_t nr_members_of_type = 0;
type__for_each_member(type, pos)
if (pos->tag.type == type_id)
++nr_members_of_type;
return nr_members_of_type;
}
static void lexblock__account_inline_expansions(struct lexblock *block,
const struct cu *cu)
{
struct tag *pos, *type;
if (block->nr_inline_expansions == 0)
return;
list_for_each_entry(pos, &block->tags, node) {
if (pos->tag == DW_TAG_lexical_block) {
lexblock__account_inline_expansions(tag__lexblock(pos),
cu);
continue;
} else if (pos->tag != DW_TAG_inlined_subroutine)
continue;
type = cu__function(cu, pos->type);
if (type != NULL) {
struct function *ftype = tag__function(type);
ftype->cu_total_nr_inline_expansions++;
ftype->cu_total_size_inline_expansions +=
tag__inline_expansion(pos)->size;
}
}
}
void cu__account_inline_expansions(struct cu *cu)
{
struct tag *pos;
struct function *fpos;
list_for_each_entry(pos, &cu->tags, node) {
if (!tag__is_function(pos))
continue;
fpos = tag__function(pos);
lexblock__account_inline_expansions(&fpos->lexblock, cu);
cu->nr_inline_expansions += fpos->lexblock.nr_inline_expansions;
cu->size_inline_expansions += fpos->lexblock.size_inline_expansions;
}
}
static int list__for_all_tags(struct list_head *list, struct cu *cu,
int (*iterator)(struct tag *tag,
struct cu *cu, void *cookie),
void *cookie)
{
struct tag *pos, *n;
list_for_each_entry_safe_reverse(pos, n, list, node) {
if (tag__has_namespace(pos)) {
struct namespace *space = tag__namespace(pos);
/*
* See comment in type__for_each_enumerator, the
* enumerators (enum entries) are shared, but the
* enumeration tag must be deleted.
*/
if (!space->shared_tags &&
list__for_all_tags(&space->tags, cu,
iterator, cookie))
return 1;
/*
* vtable functions are already in the class tags list
*/
} else if (tag__is_function(pos)) {
if (list__for_all_tags(&tag__ftype(pos)->parms,
cu, iterator, cookie))
return 1;
if (list__for_all_tags(&tag__function(pos)->lexblock.tags,
cu, iterator, cookie))
return 1;
} else if (pos->tag == DW_TAG_subroutine_type) {
if (list__for_all_tags(&tag__ftype(pos)->parms,
cu, iterator, cookie))
return 1;
} else if (pos->tag == DW_TAG_lexical_block) {
if (list__for_all_tags(&tag__lexblock(pos)->tags,
cu, iterator, cookie))
return 1;
}
if (iterator(pos, cu, cookie))
return 1;
}
return 0;
}
int cu__for_all_tags(struct cu *cu,
int (*iterator)(struct tag *tag,
struct cu *cu, void *cookie),
void *cookie)
{
return list__for_all_tags(&cu->tags, cu, iterator, cookie);
}
void cus__for_each_cu(struct cus *cus,
int (*iterator)(struct cu *cu, void *cookie),
void *cookie,
struct cu *(*filter)(struct cu *cu))
{
struct cu *pos;
list_for_each_entry(pos, &cus->cus, node) {
struct cu *cu = pos;
if (filter != NULL) {
cu = filter(pos);
if (cu == NULL)
continue;
}
if (iterator(cu, cookie))
break;
}
}
int cus__load_dir(struct cus *cus, struct conf_load *conf,
const char *dirname, const char *filename_mask,
const int recursive)
{
struct dirent *entry;
int err = -1;
DIR *dir = opendir(dirname);
if (dir == NULL)
goto out;
err = 0;
while ((entry = readdir(dir)) != NULL) {
char pathname[PATH_MAX];
struct stat st;
if (strcmp(entry->d_name, ".") == 0 ||
strcmp(entry->d_name, "..") == 0)
continue;
snprintf(pathname, sizeof(pathname), "%s/%s",
dirname, entry->d_name);
err = lstat(pathname, &st);
if (err != 0)
break;
if (S_ISDIR(st.st_mode)) {
if (!recursive)
continue;
err = cus__load_dir(cus, conf, pathname,
filename_mask, recursive);
if (err != 0)
break;
} else if (fnmatch(filename_mask, entry->d_name, 0) == 0) {
err = cus__load_file(cus, conf, pathname);
if (err != 0)
break;
}
}
if (err == -1)
puts(dirname);
closedir(dir);
out:
return err;
}
/*
* This should really do demand loading of DSOs, STABS anyone? 8-)
*/
extern struct debug_fmt_ops dwarf__ops, ctf__ops, btf_elf__ops;
static struct debug_fmt_ops *debug_fmt_table[] = {
&dwarf__ops,
&ctf__ops,
&btf_elf__ops,
NULL,
};
static int debugging_formats__loader(const char *name)
{
int i = 0;
while (debug_fmt_table[i] != NULL) {
if (strcmp(debug_fmt_table[i]->name, name) == 0)
return i;
++i;
}
return -1;
}
int cus__load_file(struct cus *cus, struct conf_load *conf,
const char *filename)
{
int i = 0, err = 0;
int loader;
if (conf && conf->format_path != NULL) {
char *fpath = strdup(conf->format_path);
if (fpath == NULL)
return -ENOMEM;
char *fp = fpath;
while (1) {
char *sep = strchr(fp, ',');
if (sep != NULL)
*sep = '\0';
err = -ENOTSUP;
loader = debugging_formats__loader(fp);
if (loader == -1)
break;
if (conf->conf_fprintf)
conf->conf_fprintf->has_alignment_info = debug_fmt_table[loader]->has_alignment_info;
err = 0;
if (debug_fmt_table[loader]->load_file(cus, conf,
filename) == 0)
break;
err = -EINVAL;
if (sep == NULL)
break;
fp = sep + 1;
}
free(fpath);
return err;
}
while (debug_fmt_table[i] != NULL) {
if (conf->conf_fprintf)
conf->conf_fprintf->has_alignment_info = debug_fmt_table[i]->has_alignment_info;
if (debug_fmt_table[i]->load_file(cus, conf, filename) == 0)
return 0;
++i;
}
return -EINVAL;
}
#define BUILD_ID_SIZE 20
#define SBUILD_ID_SIZE (BUILD_ID_SIZE * 2 + 1)
#define NOTE_ALIGN(sz) (((sz) + 3) & ~3)
#define NT_GNU_BUILD_ID 3
#ifndef min
#define min(x, y) ({ \
typeof(x) _min1 = (x); \
typeof(y) _min2 = (y); \
(void) (&_min1 == &_min2); \
_min1 < _min2 ? _min1 : _min2; })
#endif
/* Force a compilation error if condition is true, but also produce a
result (of value 0 and type size_t), so the expression can be used
e.g. in a structure initializer (or where-ever else comma expressions
aren't permitted). */
#define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
/* Are two types/vars the same type (ignoring qualifiers)? */
#ifndef __same_type
# define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b))
#endif
/* &a[0] degrades to a pointer: a different type from an array */
#define __must_be_array(a) BUILD_BUG_ON_ZERO(__same_type((a), &(a)[0]))
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
static int sysfs__read_build_id(const char *filename, void *build_id, size_t size)
{
int fd, err = -1;
if (size < BUILD_ID_SIZE)
goto out;
fd = open(filename, O_RDONLY);
if (fd < 0)
goto out;
while (1) {
char bf[BUFSIZ];
GElf_Nhdr nhdr;
size_t namesz, descsz;
if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr))
break;
namesz = NOTE_ALIGN(nhdr.n_namesz);
descsz = NOTE_ALIGN(nhdr.n_descsz);
if (nhdr.n_type == NT_GNU_BUILD_ID &&
nhdr.n_namesz == sizeof("GNU")) {
if (read(fd, bf, namesz) != (ssize_t)namesz)
break;
if (memcmp(bf, "GNU", sizeof("GNU")) == 0) {
size_t sz = min(descsz, size);
if (read(fd, build_id, sz) == (ssize_t)sz) {
memset(build_id + sz, 0, size - sz);
err = 0;
break;
}
} else if (read(fd, bf, descsz) != (ssize_t)descsz)
break;
} else {
int n = namesz + descsz;
if (n > (int)sizeof(bf)) {
n = sizeof(bf);
fprintf(stderr, "%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n",
__func__, filename, nhdr.n_namesz, nhdr.n_descsz);
}
if (read(fd, bf, n) != n)
break;
}
}
close(fd);
out:
return err;
}
static int elf_read_build_id(Elf *elf, void *bf, size_t size)
{
int err = -1;
GElf_Ehdr ehdr;
GElf_Shdr shdr;
Elf_Data *data;
Elf_Scn *sec;
Elf_Kind ek;
void *ptr;
if (size < BUILD_ID_SIZE)
goto out;
ek = elf_kind(elf);
if (ek != ELF_K_ELF)
goto out;
if (gelf_getehdr(elf, &ehdr) == NULL) {
fprintf(stderr, "%s: cannot get elf header.\n", __func__);
goto out;
}
/*
* Check following sections for notes:
* '.note.gnu.build-id'
* '.notes'
* '.note' (VDSO specific)
*/
do {
sec = elf_section_by_name(elf, &ehdr, &shdr,
".note.gnu.build-id", NULL);
if (sec)
break;
sec = elf_section_by_name(elf, &ehdr, &shdr,
".notes", NULL);
if (sec)
break;
sec = elf_section_by_name(elf, &ehdr, &shdr,
".note", NULL);
if (sec)
break;
return err;
} while (0);
data = elf_getdata(sec, NULL);
if (data == NULL)
goto out;
ptr = data->d_buf;
while (ptr < (data->d_buf + data->d_size)) {
GElf_Nhdr *nhdr = ptr;
size_t namesz = NOTE_ALIGN(nhdr->n_namesz),
descsz = NOTE_ALIGN(nhdr->n_descsz);
const char *name;
ptr += sizeof(*nhdr);
name = ptr;
ptr += namesz;
if (nhdr->n_type == NT_GNU_BUILD_ID &&
nhdr->n_namesz == sizeof("GNU")) {
if (memcmp(name, "GNU", sizeof("GNU")) == 0) {
size_t sz = min(size, descsz);
memcpy(bf, ptr, sz);
memset(bf + sz, 0, size - sz);
err = descsz;
break;
}
}
ptr += descsz;
}
out:
return err;
}
static int filename__read_build_id(const char *filename, void *bf, size_t size)
{
int fd, err = -1;
Elf *elf;
if (size < BUILD_ID_SIZE)
goto out;
fd = open(filename, O_RDONLY);
if (fd < 0)
goto out;
elf = elf_begin(fd, ELF_C_READ, NULL);
if (elf == NULL) {
fprintf(stderr, "%s: cannot read %s ELF file.\n", __func__, filename);
goto out_close;
}
err = elf_read_build_id(elf, bf, size);
elf_end(elf);
out_close:
close(fd);
out:
return err;
}
static int build_id__sprintf(const unsigned char *build_id, int len, char *bf)
{
char *bid = bf;
const unsigned char *raw = build_id;
int i;
for (i = 0; i < len; ++i) {
sprintf(bid, "%02x", *raw);
++raw;
bid += 2;
}
return (bid - bf) + 1;
}
static int sysfs__sprintf_build_id(const char *root_dir, char *sbuild_id)
{
char notes[PATH_MAX];
unsigned char build_id[BUILD_ID_SIZE];
int ret;
if (!root_dir)
root_dir = "";
snprintf(notes, sizeof(notes), "%s/sys/kernel/notes", root_dir);
ret = sysfs__read_build_id(notes, build_id, sizeof(build_id));
if (ret < 0)
return ret;
return build_id__sprintf(build_id, sizeof(build_id), sbuild_id);
}
static int filename__sprintf_build_id(const char *pathname, char *sbuild_id)
{
unsigned char build_id[BUILD_ID_SIZE];
int ret;
ret = filename__read_build_id(pathname, build_id, sizeof(build_id));
if (ret < 0)
return ret;
else if (ret != sizeof(build_id))
return -EINVAL;
return build_id__sprintf(build_id, sizeof(build_id), sbuild_id);
}
/* asnprintf consolidates asprintf and snprintf */
static int asnprintf(char **strp, size_t size, const char *fmt, ...)
{
va_list ap;
int ret;
if (!strp)
return -EINVAL;
va_start(ap, fmt);
if (*strp)
ret = vsnprintf(*strp, size, fmt, ap);
else
ret = vasprintf(strp, fmt, ap);
va_end(ap);
return ret;
}
#define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
static int vmlinux_path__nr_entries;
static char **vmlinux_path;
static void vmlinux_path__exit(void)
{
while (--vmlinux_path__nr_entries >= 0)
zfree(&vmlinux_path[vmlinux_path__nr_entries]);
vmlinux_path__nr_entries = 0;
zfree(&vmlinux_path);
}
static const char * const vmlinux_paths[] = {
"vmlinux",
"/boot/vmlinux"
};
static const char * const vmlinux_paths_upd[] = {
"/boot/vmlinux-%s",
"/usr/lib/debug/boot/vmlinux-%s",
"/lib/modules/%s/build/vmlinux",
"/usr/lib/debug/lib/modules/%s/vmlinux",
"/usr/lib/debug/boot/vmlinux-%s.debug"
};
static int vmlinux_path__add(const char *new_entry)
{
vmlinux_path[vmlinux_path__nr_entries] = strdup(new_entry);
if (vmlinux_path[vmlinux_path__nr_entries] == NULL)
return -1;
++vmlinux_path__nr_entries;
return 0;
}
static int vmlinux_path__init(void)
{
struct utsname uts;
char bf[PATH_MAX];
char *kernel_version;
unsigned int i;
vmlinux_path = malloc(sizeof(char *) * (ARRAY_SIZE(vmlinux_paths) +
ARRAY_SIZE(vmlinux_paths_upd)));
if (vmlinux_path == NULL)
return -1;
for (i = 0; i < ARRAY_SIZE(vmlinux_paths); i++)
if (vmlinux_path__add(vmlinux_paths[i]) < 0)
goto out_fail;
if (uname(&uts) < 0)
goto out_fail;
kernel_version = uts.release;
for (i = 0; i < ARRAY_SIZE(vmlinux_paths_upd); i++) {
snprintf(bf, sizeof(bf), vmlinux_paths_upd[i], kernel_version);
if (vmlinux_path__add(bf) < 0)
goto out_fail;
}
return 0;
out_fail:
vmlinux_path__exit();
return -1;
}
static int cus__load_running_kernel(struct cus *cus, struct conf_load *conf)
{
int i, err = 0;
char running_sbuild_id[SBUILD_ID_SIZE];
elf_version(EV_CURRENT);
vmlinux_path__init();
sysfs__sprintf_build_id(NULL, running_sbuild_id);
for (i = 0; i < vmlinux_path__nr_entries; ++i) {
char sbuild_id[SBUILD_ID_SIZE];
if (filename__sprintf_build_id(vmlinux_path[i], sbuild_id) > 0 &&
strcmp(sbuild_id, running_sbuild_id) == 0) {
err = cus__load_file(cus, conf, vmlinux_path[i]);
break;
}
}
vmlinux_path__exit();
return err;
}
int cus__load_files(struct cus *cus, struct conf_load *conf,
char *filenames[])
{
int i = 0;
while (filenames[i] != NULL) {
if (cus__load_file(cus, conf, filenames[i]))
return -++i;
++i;
}
return i ? 0 : cus__load_running_kernel(cus, conf);
}
int cus__fprintf_load_files_err(struct cus *cus, const char *tool, char *argv[], int err, FILE *output)
{
/* errno is not properly preserved in some cases, sigh */
return fprintf(output, "%s: %s: %s\n", tool, argv[-err - 1],
errno ? strerror(errno) : "No debugging information found");
}
struct cus *cus__new(void)
{
struct cus *cus = malloc(sizeof(*cus));
if (cus != NULL) {
cus->nr_entries = 0;
INIT_LIST_HEAD(&cus->cus);
}
return cus;
}
void cus__delete(struct cus *cus)
{
struct cu *pos, *n;
if (cus == NULL)
return;
list_for_each_entry_safe(pos, n, &cus->cus, node) {
list_del_init(&pos->node);
cu__delete(pos);
}
free(cus);
}
void dwarves__fprintf_init(uint16_t user_cacheline_size);
int dwarves__init(uint16_t user_cacheline_size)
{
dwarves__fprintf_init(user_cacheline_size);
int i = 0;
int err = 0;
while (debug_fmt_table[i] != NULL) {
if (debug_fmt_table[i]->init) {
err = debug_fmt_table[i]->init();
if (err)
goto out_fail;
}
++i;
}
return 0;
out_fail:
while (i-- != 0)
if (debug_fmt_table[i]->exit)
debug_fmt_table[i]->exit();
return err;
}
void dwarves__exit(void)
{
int i = 0;
while (debug_fmt_table[i] != NULL) {
if (debug_fmt_table[i]->exit)
debug_fmt_table[i]->exit();
++i;
}
}
struct argp_state;
void dwarves_print_version(FILE *fp, struct argp_state *state __unused)
{
fprintf(fp, "%s\n", DWARVES_VERSION);
}