blob: f4520428e7a96aa029af0b93cd5e6c8fec79ce51 [file] [log] [blame]
/*
* Stupid C parser, version 1e-6.
*
* Let's see how hard this is to do.
*
* Copyright (C) 2003 Transmeta Corp.
* 2003-2004 Linus Torvalds
* Copyright (C) 2004 Christopher Li
*
* Licensed under the Open Software License version 1.1
*/
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <unistd.h>
#include <fcntl.h>
#include <limits.h>
#include "lib.h"
#include "allocate.h"
#include "token.h"
#include "parse.h"
#include "symbol.h"
#include "scope.h"
#include "expression.h"
#include "target.h"
#define warn_on_mixed (1)
static struct symbol_list **function_symbol_list;
struct symbol_list *function_computed_target_list;
struct statement_list *function_computed_goto_list;
static struct token *statement(struct token *token, struct statement **tree);
static struct token *handle_attributes(struct token *token, struct ctype *ctype, unsigned int keywords);
static struct token *struct_specifier(struct token *token, struct ctype *ctype);
static struct token *union_specifier(struct token *token, struct ctype *ctype);
static struct token *enum_specifier(struct token *token, struct ctype *ctype);
static struct token *attribute_specifier(struct token *token, struct ctype *ctype);
static struct token *typeof_specifier(struct token *token, struct ctype *ctype);
static struct token *parse_if_statement(struct token *token, struct statement *stmt);
static struct token *parse_return_statement(struct token *token, struct statement *stmt);
static struct token *parse_loop_iterator(struct token *token, struct statement *stmt);
static struct token *parse_default_statement(struct token *token, struct statement *stmt);
static struct token *parse_case_statement(struct token *token, struct statement *stmt);
static struct token *parse_switch_statement(struct token *token, struct statement *stmt);
static struct token *parse_for_statement(struct token *token, struct statement *stmt);
static struct token *parse_while_statement(struct token *token, struct statement *stmt);
static struct token *parse_do_statement(struct token *token, struct statement *stmt);
static struct token *parse_goto_statement(struct token *token, struct statement *stmt);
static struct token *parse_context_statement(struct token *token, struct statement *stmt);
static struct token *parse_range_statement(struct token *token, struct statement *stmt);
static struct token *parse_asm_statement(struct token *token, struct statement *stmt);
static struct token *toplevel_asm_declaration(struct token *token, struct symbol_list **list);
static struct token *parse_asm_declarator(struct token *token, struct ctype *ctype);
static struct token *attribute_packed(struct token *token, struct symbol *attr, struct ctype *ctype);
static struct token *attribute_modifier(struct token *token, struct symbol *attr, struct ctype *ctype);
static struct token *attribute_address_space(struct token *token, struct symbol *attr, struct ctype *ctype);
static struct token *attribute_aligned(struct token *token, struct symbol *attr, struct ctype *ctype);
static struct token *attribute_mode(struct token *token, struct symbol *attr, struct ctype *ctype);
static struct token *attribute_context(struct token *token, struct symbol *attr, struct ctype *ctype);
static struct token *attribute_transparent_union(struct token *token, struct symbol *attr, struct ctype *ctype);
static struct token *ignore_attribute(struct token *token, struct symbol *attr, struct ctype *ctype);
static struct symbol_op modifier_op = {
.type = KW_MODIFIER,
};
static struct symbol_op qualifier_op = {
.type = KW_QUALIFIER,
};
static struct symbol_op typeof_op = {
.type = KW_TYPEOF,
.declarator = typeof_specifier,
};
static struct symbol_op attribute_op = {
.type = KW_ATTRIBUTE,
.declarator = attribute_specifier,
};
static struct symbol_op struct_op = {
.type = KW_SPECIFIER,
.declarator = struct_specifier,
};
static struct symbol_op union_op = {
.type = KW_SPECIFIER,
.declarator = union_specifier,
};
static struct symbol_op enum_op = {
.type = KW_SPECIFIER,
.declarator = enum_specifier,
};
static struct symbol_op if_op = {
.statement = parse_if_statement,
};
static struct symbol_op return_op = {
.statement = parse_return_statement,
};
static struct symbol_op loop_iter_op = {
.statement = parse_loop_iterator,
};
static struct symbol_op default_op = {
.statement = parse_default_statement,
};
static struct symbol_op case_op = {
.statement = parse_case_statement,
};
static struct symbol_op switch_op = {
.statement = parse_switch_statement,
};
static struct symbol_op for_op = {
.statement = parse_for_statement,
};
static struct symbol_op while_op = {
.statement = parse_while_statement,
};
static struct symbol_op do_op = {
.statement = parse_do_statement,
};
static struct symbol_op goto_op = {
.statement = parse_goto_statement,
};
static struct symbol_op __context___op = {
.statement = parse_context_statement,
};
static struct symbol_op range_op = {
.statement = parse_range_statement,
};
static struct symbol_op asm_op = {
.type = KW_ASM,
.declarator = parse_asm_declarator,
.statement = parse_asm_statement,
.toplevel = toplevel_asm_declaration,
};
static struct symbol_op packed_op = {
.attribute = attribute_packed,
};
static struct symbol_op aligned_op = {
.attribute = attribute_aligned,
};
static struct symbol_op attr_mod_op = {
.attribute = attribute_modifier,
};
static struct symbol_op address_space_op = {
.attribute = attribute_address_space,
};
static struct symbol_op mode_op = {
.attribute = attribute_mode,
};
static struct symbol_op context_op = {
.attribute = attribute_context,
};
static struct symbol_op transparent_union_op = {
.attribute = attribute_transparent_union,
};
static struct symbol_op ignore_attr_op = {
.attribute = ignore_attribute,
};
static struct symbol_op mode_spec_op = {
.type = KW_MODE,
};
static struct init_keyword {
const char *name;
enum namespace ns;
unsigned long modifiers;
struct symbol_op *op;
} keyword_table[] = {
/* Type qualifiers */
{ "const", NS_TYPEDEF, MOD_CONST, .op = &qualifier_op },
{ "__const", NS_TYPEDEF, MOD_CONST, .op = &qualifier_op },
{ "__const__", NS_TYPEDEF, MOD_CONST, .op = &qualifier_op },
{ "volatile", NS_TYPEDEF, MOD_VOLATILE, .op = &qualifier_op },
{ "__volatile", NS_TYPEDEF, MOD_VOLATILE, .op = &qualifier_op },
{ "__volatile__", NS_TYPEDEF, MOD_VOLATILE, .op = &qualifier_op },
/* Typedef.. */
{ "typedef", NS_TYPEDEF, MOD_TYPEDEF, .op = &modifier_op },
/* Extended types */
{ "typeof", NS_TYPEDEF, .op = &typeof_op },
{ "__typeof", NS_TYPEDEF, .op = &typeof_op },
{ "__typeof__", NS_TYPEDEF, .op = &typeof_op },
{ "__attribute", NS_TYPEDEF, .op = &attribute_op },
{ "__attribute__", NS_TYPEDEF, .op = &attribute_op },
{ "struct", NS_TYPEDEF, .op = &struct_op },
{ "union", NS_TYPEDEF, .op = &union_op },
{ "enum", NS_TYPEDEF, .op = &enum_op },
{ "inline", NS_TYPEDEF, MOD_INLINE, .op = &modifier_op },
{ "__inline", NS_TYPEDEF, MOD_INLINE, .op = &modifier_op },
{ "__inline__", NS_TYPEDEF, MOD_INLINE, .op = &modifier_op },
/* Ignored for now.. */
{ "restrict", NS_TYPEDEF, .op = &qualifier_op},
{ "__restrict", NS_TYPEDEF, .op = &qualifier_op},
/* Statement */
{ "if", NS_KEYWORD, .op = &if_op },
{ "return", NS_KEYWORD, .op = &return_op },
{ "break", NS_KEYWORD, .op = &loop_iter_op },
{ "continue", NS_KEYWORD, .op = &loop_iter_op },
{ "default", NS_KEYWORD, .op = &default_op },
{ "case", NS_KEYWORD, .op = &case_op },
{ "switch", NS_KEYWORD, .op = &switch_op },
{ "for", NS_KEYWORD, .op = &for_op },
{ "while", NS_KEYWORD, .op = &while_op },
{ "do", NS_KEYWORD, .op = &do_op },
{ "goto", NS_KEYWORD, .op = &goto_op },
{ "__context__",NS_KEYWORD, .op = &__context___op },
{ "__range__", NS_KEYWORD, .op = &range_op },
{ "asm", NS_KEYWORD, .op = &asm_op },
{ "__asm", NS_KEYWORD, .op = &asm_op },
{ "__asm__", NS_KEYWORD, .op = &asm_op },
/* Attribute */
{ "packed", NS_KEYWORD, .op = &packed_op },
{ "__packed__", NS_KEYWORD, .op = &packed_op },
{ "aligned", NS_KEYWORD, .op = &aligned_op },
{ "__aligned__",NS_KEYWORD, .op = &aligned_op },
{ "nocast", NS_KEYWORD, MOD_NOCAST, .op = &attr_mod_op },
{ "noderef", NS_KEYWORD, MOD_NODEREF, .op = &attr_mod_op },
{ "safe", NS_KEYWORD, MOD_SAFE, .op = &attr_mod_op },
{ "force", NS_KEYWORD, MOD_FORCE, .op = &attr_mod_op },
{ "bitwise", NS_KEYWORD, MOD_BITWISE, .op = &attr_mod_op },
{ "__bitwise__",NS_KEYWORD, MOD_BITWISE, .op = &attr_mod_op },
{ "address_space",NS_KEYWORD, .op = &address_space_op },
{ "mode", NS_KEYWORD, .op = &mode_op },
{ "context", NS_KEYWORD, .op = &context_op },
{ "__transparent_union__", NS_KEYWORD, .op = &transparent_union_op },
{ "__mode__", NS_KEYWORD, .op = &mode_op },
{ "QI", NS_KEYWORD, MOD_CHAR, .op = &mode_spec_op },
{ "__QI__", NS_KEYWORD, MOD_CHAR, .op = &mode_spec_op },
{ "HI", NS_KEYWORD, MOD_SHORT, .op = &mode_spec_op },
{ "__HI__", NS_KEYWORD, MOD_SHORT, .op = &mode_spec_op },
{ "SI", NS_KEYWORD, .op = &mode_spec_op },
{ "__SI__", NS_KEYWORD, .op = &mode_spec_op },
{ "DI", NS_KEYWORD, MOD_LONGLONG, .op = &mode_spec_op },
{ "__DI__", NS_KEYWORD, MOD_LONGLONG, .op = &mode_spec_op },
{ "word", NS_KEYWORD, MOD_LONG, .op = &mode_spec_op },
{ "__word__", NS_KEYWORD, MOD_LONG, .op = &mode_spec_op },
/* Ignored attributes */
{ "nothrow", NS_KEYWORD, .op = &ignore_attr_op },
{ "__nothrow", NS_KEYWORD, .op = &ignore_attr_op },
{ "__nothrow__", NS_KEYWORD, .op = &ignore_attr_op },
{ "__malloc__", NS_KEYWORD, .op = &ignore_attr_op },
{ "nonnull", NS_KEYWORD, .op = &ignore_attr_op },
{ "__nonnull", NS_KEYWORD, .op = &ignore_attr_op },
{ "__nonnull__", NS_KEYWORD, .op = &ignore_attr_op },
{ "format", NS_KEYWORD, .op = &ignore_attr_op },
{ "__format__", NS_KEYWORD, .op = &ignore_attr_op },
{ "format_arg", NS_KEYWORD, .op = &ignore_attr_op },
{ "__format_arg__", NS_KEYWORD, .op = &ignore_attr_op },
{ "section", NS_KEYWORD, .op = &ignore_attr_op },
{ "__section__",NS_KEYWORD, .op = &ignore_attr_op },
{ "unused", NS_KEYWORD, .op = &ignore_attr_op },
{ "__unused__", NS_KEYWORD, .op = &ignore_attr_op },
{ "const", NS_KEYWORD, .op = &ignore_attr_op },
{ "__const", NS_KEYWORD, .op = &ignore_attr_op },
{ "__const__", NS_KEYWORD, .op = &ignore_attr_op },
{ "noreturn", NS_KEYWORD, .op = &ignore_attr_op },
{ "__noreturn__", NS_KEYWORD, .op = &ignore_attr_op },
{ "no_instrument_function", NS_KEYWORD, .op = &ignore_attr_op },
{ "__no_instrument_function__", NS_KEYWORD, .op = &ignore_attr_op },
{ "sentinel", NS_KEYWORD, .op = &ignore_attr_op },
{ "__sentinel__", NS_KEYWORD, .op = &ignore_attr_op },
{ "regparm", NS_KEYWORD, .op = &ignore_attr_op },
{ "__regparm__", NS_KEYWORD, .op = &ignore_attr_op },
{ "weak", NS_KEYWORD, .op = &ignore_attr_op },
{ "__weak__", NS_KEYWORD, .op = &ignore_attr_op },
{ "alias", NS_KEYWORD, .op = &ignore_attr_op },
{ "__alias__", NS_KEYWORD, .op = &ignore_attr_op },
{ "pure", NS_KEYWORD, .op = &ignore_attr_op },
{ "__pure__", NS_KEYWORD, .op = &ignore_attr_op },
{ "always_inline", NS_KEYWORD, .op = &ignore_attr_op },
{ "__always_inline__", NS_KEYWORD, .op = &ignore_attr_op },
{ "syscall_linkage", NS_KEYWORD, .op = &ignore_attr_op },
{ "__syscall_linkage__", NS_KEYWORD, .op = &ignore_attr_op },
{ "visibility", NS_KEYWORD, .op = &ignore_attr_op },
{ "__visibility__", NS_KEYWORD, .op = &ignore_attr_op },
{ "deprecated", NS_KEYWORD, .op = &ignore_attr_op },
{ "__deprecated__", NS_KEYWORD, .op = &ignore_attr_op },
{ "noinline", NS_KEYWORD, .op = &ignore_attr_op },
{ "__noinline__", NS_KEYWORD, .op = &ignore_attr_op },
{ "used", NS_KEYWORD, .op = &ignore_attr_op },
{ "__used__", NS_KEYWORD, .op = &ignore_attr_op },
{ "warn_unused_result", NS_KEYWORD, .op = &ignore_attr_op },
{ "__warn_unused_result__", NS_KEYWORD, .op = &ignore_attr_op },
{ "model", NS_KEYWORD, .op = &ignore_attr_op },
{ "__model__", NS_KEYWORD, .op = &ignore_attr_op },
{ "cdecl", NS_KEYWORD, .op = &ignore_attr_op },
{ "__cdecl__", NS_KEYWORD, .op = &ignore_attr_op },
{ "stdcall", NS_KEYWORD, .op = &ignore_attr_op },
{ "__stdcall__", NS_KEYWORD, .op = &ignore_attr_op },
{ "fastcall", NS_KEYWORD, .op = &ignore_attr_op },
{ "__fastcall__", NS_KEYWORD, .op = &ignore_attr_op },
{ "dllimport", NS_KEYWORD, .op = &ignore_attr_op },
{ "__dllimport__", NS_KEYWORD, .op = &ignore_attr_op },
{ "dllexport", NS_KEYWORD, .op = &ignore_attr_op },
{ "__dllexport__", NS_KEYWORD, .op = &ignore_attr_op },
{ "constructor", NS_KEYWORD, .op = &ignore_attr_op },
{ "__constructor__", NS_KEYWORD, .op = &ignore_attr_op },
{ "destructor", NS_KEYWORD, .op = &ignore_attr_op },
{ "__destructor__", NS_KEYWORD, .op = &ignore_attr_op },
};
void init_parser(int stream)
{
int i;
for (i = 0; i < sizeof keyword_table/sizeof keyword_table[0]; i++) {
struct init_keyword *ptr = keyword_table + i;
struct symbol *sym = create_symbol(stream, ptr->name, SYM_KEYWORD, ptr->ns);
sym->ident->keyword = 1;
sym->ctype.modifiers = ptr->modifiers;
sym->op = ptr->op;
}
}
// Add a symbol to the list of function-local symbols
static void fn_local_symbol(struct symbol *sym)
{
if (function_symbol_list)
add_symbol(function_symbol_list, sym);
}
static int SENTINEL_ATTR match_idents(struct token *token, ...)
{
va_list args;
struct ident * next;
if (token_type(token) != TOKEN_IDENT)
return 0;
va_start(args, token);
do {
next = va_arg(args, struct ident *);
} while (next && token->ident != next);
va_end(args);
return next && token->ident == next;
}
struct statement *alloc_statement(struct position pos, int type)
{
struct statement *stmt = __alloc_statement(0);
stmt->type = type;
stmt->pos = pos;
return stmt;
}
static struct token *struct_declaration_list(struct token *token, struct symbol_list **list);
static int apply_modifiers(struct position pos, struct ctype *ctype)
{
struct symbol *base;
while ((base = ctype->base_type)) {
switch (base->type) {
case SYM_FN:
case SYM_ENUM:
case SYM_ARRAY:
case SYM_BITFIELD:
case SYM_PTR:
ctype = &base->ctype;
continue;
}
break;
}
/* Turn the "virtual types" into real types with real sizes etc */
if (ctype->base_type == &int_type) {
ctype->base_type = ctype_integer(ctype->modifiers);
ctype->modifiers &= ~MOD_SPECIFIER;
} else if (ctype->base_type == &fp_type) {
ctype->base_type = ctype_fp(ctype->modifiers);
ctype->modifiers &= ~MOD_SPECIFIER;
}
if (ctype->modifiers & MOD_BITWISE) {
struct symbol *type;
ctype->modifiers &= ~(MOD_BITWISE | MOD_SPECIFIER);
if (!is_int_type(ctype->base_type)) {
sparse_error(pos, "invalid modifier");
return 1;
}
type = alloc_symbol(pos, SYM_BASETYPE);
*type = *ctype->base_type;
type->ctype.base_type = ctype->base_type;
type->type = SYM_RESTRICT;
type->ctype.modifiers &= ~MOD_SPECIFIER;
ctype->base_type = type;
create_fouled(type);
}
return 0;
}
static struct symbol * alloc_indirect_symbol(struct position pos, struct ctype *ctype, int type)
{
struct symbol *sym = alloc_symbol(pos, type);
sym->ctype.base_type = ctype->base_type;
sym->ctype.modifiers = ctype->modifiers & ~MOD_STORAGE;
ctype->base_type = sym;
ctype->modifiers &= MOD_STORAGE;
return sym;
}
static struct symbol *lookup_or_create_symbol(enum namespace ns, enum type type, struct token *token)
{
struct symbol *sym = lookup_symbol(token->ident, ns);
if (!sym) {
sym = alloc_symbol(token->pos, type);
bind_symbol(sym, token->ident, ns);
if (type == SYM_LABEL)
fn_local_symbol(sym);
}
return sym;
}
/*
* NOTE! NS_LABEL is not just a different namespace,
* it also ends up using function scope instead of the
* regular symbol scope.
*/
struct symbol *label_symbol(struct token *token)
{
return lookup_or_create_symbol(NS_LABEL, SYM_LABEL, token);
}
static struct token *struct_union_enum_specifier(enum type type,
struct token *token, struct ctype *ctype,
struct token *(*parse)(struct token *, struct symbol *))
{
struct symbol *sym;
struct position *repos;
ctype->modifiers = 0;
token = handle_attributes(token, ctype, KW_ATTRIBUTE | KW_ASM);
if (token_type(token) == TOKEN_IDENT) {
sym = lookup_symbol(token->ident, NS_STRUCT);
if (!sym ||
(is_outer_scope(sym->scope) &&
(match_op(token->next,';') || match_op(token->next,'{')))) {
// Either a new symbol, or else an out-of-scope
// symbol being redefined.
sym = alloc_symbol(token->pos, type);
bind_symbol(sym, token->ident, NS_STRUCT);
}
if (sym->type != type)
error_die(token->pos, "invalid tag applied to %s", show_typename (sym));
ctype->base_type = sym;
repos = &token->pos;
token = token->next;
if (match_op(token, '{')) {
// The following test is actually wrong for empty
// structs, but (1) they are not C99, (2) gcc does
// the same thing, and (3) it's easier.
if (sym->symbol_list)
error_die(token->pos, "redefinition of %s", show_typename (sym));
sym->pos = *repos;
token = parse(token->next, sym);
token = expect(token, '}', "at end of struct-union-enum-specifier");
// Mark the structure as needing re-examination
sym->examined = 0;
sym->endpos = token->pos;
}
return token;
}
// private struct/union/enum type
if (!match_op(token, '{')) {
sparse_error(token->pos, "expected declaration");
ctype->base_type = &bad_ctype;
return token;
}
sym = alloc_symbol(token->pos, type);
token = parse(token->next, sym);
ctype->base_type = sym;
token = expect(token, '}', "at end of specifier");
sym->endpos = token->pos;
return token;
}
static struct token *parse_struct_declaration(struct token *token, struct symbol *sym)
{
struct symbol *field, *last = NULL;
struct token *res;
res = struct_declaration_list(token, &sym->symbol_list);
FOR_EACH_PTR(sym->symbol_list, field) {
if (!field->ident) {
struct symbol *base = field->ctype.base_type;
if (base && base->type == SYM_BITFIELD)
continue;
}
if (last)
last->next_subobject = field;
last = field;
} END_FOR_EACH_PTR(field);
return res;
}
static struct token *parse_union_declaration(struct token *token, struct symbol *sym)
{
return struct_declaration_list(token, &sym->symbol_list);
}
static struct token *struct_specifier(struct token *token, struct ctype *ctype)
{
return struct_union_enum_specifier(SYM_STRUCT, token, ctype, parse_struct_declaration);
}
static struct token *union_specifier(struct token *token, struct ctype *ctype)
{
return struct_union_enum_specifier(SYM_UNION, token, ctype, parse_union_declaration);
}
typedef struct {
int x;
unsigned long long y;
} Num;
static void upper_boundary(Num *n, Num *v)
{
if (n->x > v->x)
return;
if (n->x < v->x) {
*n = *v;
return;
}
if (n->y < v->y)
n->y = v->y;
}
static void lower_boundary(Num *n, Num *v)
{
if (n->x < v->x)
return;
if (n->x > v->x) {
*n = *v;
return;
}
if (n->y > v->y)
n->y = v->y;
}
static int type_is_ok(struct symbol *type, Num *upper, Num *lower)
{
int shift = type->bit_size;
int is_unsigned = type->ctype.modifiers & MOD_UNSIGNED;
if (!is_unsigned)
shift--;
if (upper->x == 0 && upper->y >> shift)
return 0;
if (lower->x == 0 || (!is_unsigned && (~lower->y >> shift) == 0))
return 1;
return 0;
}
static struct symbol *bigger_enum_type(struct symbol *s1, struct symbol *s2)
{
if (s1->bit_size < s2->bit_size) {
s1 = s2;
} else if (s1->bit_size == s2->bit_size) {
if (s2->ctype.modifiers & MOD_UNSIGNED)
s1 = s2;
}
if (s1->bit_size < bits_in_int)
return &int_ctype;
return s1;
}
static void cast_enum_list(struct symbol_list *list, struct symbol *base_type)
{
struct symbol *sym;
FOR_EACH_PTR(list, sym) {
struct expression *expr = sym->initializer;
struct symbol *ctype;
if (expr->type != EXPR_VALUE)
continue;
ctype = expr->ctype;
if (ctype->bit_size == base_type->bit_size)
continue;
cast_value(expr, base_type, expr, ctype);
} END_FOR_EACH_PTR(sym);
}
static struct token *parse_enum_declaration(struct token *token, struct symbol *parent)
{
unsigned long long lastval = 0;
struct symbol *ctype = NULL, *base_type = NULL;
Num upper = {-1, 0}, lower = {1, 0};
struct symbol_list *entries = NULL;
parent->examined = 1;
parent->ctype.base_type = &int_ctype;
while (token_type(token) == TOKEN_IDENT) {
struct expression *expr = NULL;
struct token *next = token->next;
struct symbol *sym;
sym = alloc_symbol(token->pos, SYM_NODE);
bind_symbol(sym, token->ident, NS_SYMBOL);
sym->ctype.modifiers &= ~MOD_ADDRESSABLE;
if (match_op(next, '=')) {
next = constant_expression(next->next, &expr);
lastval = get_expression_value(expr);
ctype = &void_ctype;
if (expr && expr->ctype)
ctype = expr->ctype;
} else if (!ctype) {
ctype = &int_ctype;
} else if (is_int_type(ctype)) {
lastval++;
} else {
error_die(token->pos, "can't increment the last enum member");
}
if (!expr) {
expr = alloc_expression(token->pos, EXPR_VALUE);
expr->value = lastval;
expr->ctype = ctype;
}
sym->initializer = expr;
sym->enum_member = 1;
sym->ctype.base_type = parent;
add_ptr_list(&entries, sym);
if (base_type != &bad_ctype) {
if (ctype->type == SYM_NODE)
ctype = ctype->ctype.base_type;
if (ctype->type == SYM_ENUM) {
if (ctype == parent)
ctype = base_type;
else
ctype = ctype->ctype.base_type;
}
/*
* base_type rules:
* - if all enums are of the same type, then
* the base_type is that type (two first
* cases)
* - if enums are of different types, they
* all have to be integer types, and the
* base type is at least "int_ctype".
* - otherwise the base_type is "bad_ctype".
*/
if (!base_type) {
base_type = ctype;
} else if (ctype == base_type) {
/* nothing */
} else if (is_int_type(base_type) && is_int_type(ctype)) {
base_type = bigger_enum_type(base_type, ctype);
} else
base_type = &bad_ctype;
parent->ctype.base_type = base_type;
}
if (is_int_type(base_type)) {
Num v = {.y = lastval};
if (ctype->ctype.modifiers & MOD_UNSIGNED)
v.x = 0;
else if ((long long)lastval >= 0)
v.x = 0;
else
v.x = -1;
upper_boundary(&upper, &v);
lower_boundary(&lower, &v);
}
token = next;
sym->endpos = token->pos;
if (!match_op(token, ','))
break;
token = token->next;
}
if (!base_type) {
sparse_error(token->pos, "bad enum definition");
base_type = &bad_ctype;
}
else if (!is_int_type(base_type))
base_type = base_type;
else if (type_is_ok(base_type, &upper, &lower))
base_type = base_type;
else if (type_is_ok(&int_ctype, &upper, &lower))
base_type = &int_ctype;
else if (type_is_ok(&uint_ctype, &upper, &lower))
base_type = &uint_ctype;
else if (type_is_ok(&long_ctype, &upper, &lower))
base_type = &long_ctype;
else if (type_is_ok(&ulong_ctype, &upper, &lower))
base_type = &ulong_ctype;
else if (type_is_ok(&llong_ctype, &upper, &lower))
base_type = &llong_ctype;
else if (type_is_ok(&ullong_ctype, &upper, &lower))
base_type = &ullong_ctype;
else
base_type = &bad_ctype;
parent->ctype.base_type = base_type;
parent->ctype.modifiers |= (base_type->ctype.modifiers & MOD_UNSIGNED);
parent->examined = 0;
cast_enum_list(entries, base_type);
free_ptr_list(&entries);
return token;
}
static struct token *enum_specifier(struct token *token, struct ctype *ctype)
{
struct token *ret = struct_union_enum_specifier(SYM_ENUM, token, ctype, parse_enum_declaration);
ctype = &ctype->base_type->ctype;
if (!ctype->base_type)
ctype->base_type = &incomplete_ctype;
return ret;
}
static struct token *typeof_specifier(struct token *token, struct ctype *ctype)
{
struct symbol *sym;
if (!match_op(token, '(')) {
sparse_error(token->pos, "expected '(' after typeof");
return token;
}
if (lookup_type(token->next)) {
token = typename(token->next, &sym, 0);
*ctype = sym->ctype;
} else {
struct symbol *typeof_sym = alloc_symbol(token->pos, SYM_TYPEOF);
token = parse_expression(token->next, &typeof_sym->initializer);
ctype->modifiers = 0;
typeof_sym->endpos = token->pos;
ctype->base_type = typeof_sym;
}
return expect(token, ')', "after typeof");
}
static struct token *ignore_attribute(struct token *token, struct symbol *attr, struct ctype *ctype)
{
struct expression *expr = NULL;
if (match_op(token, '('))
token = parens_expression(token, &expr, "in attribute");
return token;
}
static struct token *attribute_packed(struct token *token, struct symbol *attr, struct ctype *ctype)
{
ctype->alignment = 1;
return token;
}
static struct token *attribute_aligned(struct token *token, struct symbol *attr, struct ctype *ctype)
{
int alignment = max_alignment;
struct expression *expr = NULL;
if (match_op(token, '(')) {
token = parens_expression(token, &expr, "in attribute");
if (expr)
alignment = const_expression_value(expr);
}
ctype->alignment = alignment;
return token;
}
static struct token *attribute_modifier(struct token *token, struct symbol *attr, struct ctype *ctype)
{
ctype->modifiers |= attr->ctype.modifiers;
return token;
}
static struct token *attribute_address_space(struct token *token, struct symbol *attr, struct ctype *ctype)
{
struct expression *expr = NULL;
token = expect(token, '(', "after address_space attribute");
token = conditional_expression(token, &expr);
if (expr)
ctype->as = const_expression_value(expr);
token = expect(token, ')', "after address_space attribute");
return token;
}
static struct token *attribute_mode(struct token *token, struct symbol *attr, struct ctype *ctype)
{
token = expect(token, '(', "after mode attribute");
if (token_type(token) == TOKEN_IDENT) {
struct symbol *mode = lookup_keyword(token->ident, NS_KEYWORD);
if (mode && mode->op->type == KW_MODE)
ctype->modifiers |= mode->ctype.modifiers;
else
sparse_error(token->pos, "unknown mode attribute %s\n", show_ident(token->ident));
token = token->next;
} else
sparse_error(token->pos, "expect attribute mode symbol\n");
token = expect(token, ')', "after mode attribute");
return token;
}
static struct token *attribute_context(struct token *token, struct symbol *attr, struct ctype *ctype)
{
struct context *context = alloc_context();
struct expression *args[3];
int argc = 0;
token = expect(token, '(', "after context attribute");
while (!match_op(token, ')')) {
struct expression *expr = NULL;
token = conditional_expression(token, &expr);
if (!expr)
break;
if (argc < 3)
args[argc++] = expr;
if (!match_op(token, ','))
break;
token = token->next;
}
switch(argc) {
case 0:
sparse_error(token->pos, "expected context input/output values");
break;
case 1:
context->in = get_expression_value(args[0]);
break;
case 2:
context->in = get_expression_value(args[0]);
context->out = get_expression_value(args[1]);
break;
case 3:
context->context = args[0];
context->in = get_expression_value(args[1]);
context->out = get_expression_value(args[2]);
break;
}
if (argc)
add_ptr_list(&ctype->contexts, context);
token = expect(token, ')', "after context attribute");
return token;
}
static struct token *attribute_transparent_union(struct token *token, struct symbol *attr, struct ctype *ctype)
{
if (Wtransparent_union)
sparse_error(token->pos, "ignoring attribute __transparent_union__");
return token;
}
static struct token *recover_unknown_attribute(struct token *token)
{
struct expression *expr = NULL;
sparse_error(token->pos, "attribute '%s': unknown attribute", show_ident(token->ident));
token = token->next;
if (match_op(token, '('))
token = parens_expression(token, &expr, "in attribute");
return token;
}
static struct token *attribute_specifier(struct token *token, struct ctype *ctype)
{
ctype->modifiers = 0;
token = expect(token, '(', "after attribute");
token = expect(token, '(', "after attribute");
for (;;) {
struct ident *attribute_name;
struct symbol *attr;
if (eof_token(token))
break;
if (match_op(token, ';'))
break;
if (token_type(token) != TOKEN_IDENT)
break;
attribute_name = token->ident;
attr = lookup_keyword(attribute_name, NS_KEYWORD);
if (attr && attr->op->attribute)
token = attr->op->attribute(token->next, attr, ctype);
else
token = recover_unknown_attribute(token);
if (!match_op(token, ','))
break;
token = token->next;
}
token = expect(token, ')', "after attribute");
token = expect(token, ')', "after attribute");
return token;
}
struct symbol * ctype_integer(unsigned long spec)
{
static struct symbol *const integer_ctypes[][3] = {
{ &llong_ctype, &sllong_ctype, &ullong_ctype },
{ &long_ctype, &slong_ctype, &ulong_ctype },
{ &short_ctype, &sshort_ctype, &ushort_ctype },
{ &char_ctype, &schar_ctype, &uchar_ctype },
{ &int_ctype, &sint_ctype, &uint_ctype },
};
struct symbol *const (*ctype)[3];
int sub;
ctype = integer_ctypes;
if (!(spec & MOD_LONGLONG)) {
ctype++;
if (!(spec & MOD_LONG)) {
ctype++;
if (!(spec & MOD_SHORT)) {
ctype++;
if (!(spec & MOD_CHAR))
ctype++;
}
}
}
sub = ((spec & MOD_UNSIGNED)
? 2
: ((spec & MOD_EXPLICITLY_SIGNED)
? 1
: 0));
return ctype[0][sub];
}
struct symbol * ctype_fp(unsigned long spec)
{
if (spec & MOD_LONGLONG)
return &ldouble_ctype;
if (spec & MOD_LONG)
return &double_ctype;
return &float_ctype;
}
static void apply_ctype(struct position pos, struct ctype *thistype, struct ctype *ctype)
{
unsigned long mod = thistype->modifiers;
if (mod) {
unsigned long old = ctype->modifiers;
unsigned long extra = 0, dup, conflict;
if (mod & old & MOD_LONG) {
extra = MOD_LONGLONG | MOD_LONG;
mod &= ~MOD_LONG;
old &= ~MOD_LONG;
}
dup = (mod & old) | (extra & old) | (extra & mod);
if (dup)
sparse_error(pos, "Just how %sdo you want this type to be?",
modifier_string(dup));
conflict = !(~mod & ~old & (MOD_LONG | MOD_SHORT));
if (conflict)
sparse_error(pos, "You cannot have both long and short modifiers.");
conflict = !(~mod & ~old & (MOD_SIGNED | MOD_UNSIGNED));
if (conflict)
sparse_error(pos, "You cannot have both signed and unsigned modifiers.");
// Only one storage modifier allowed, except that "inline" doesn't count.
conflict = (mod | old) & (MOD_STORAGE & ~MOD_INLINE);
conflict &= (conflict - 1);
if (conflict)
sparse_error(pos, "multiple storage classes");
ctype->modifiers = old | mod | extra;
}
/* Context */
concat_ptr_list((struct ptr_list *)thistype->contexts,
(struct ptr_list **)&ctype->contexts);
/* Alignment */
if (thistype->alignment & (thistype->alignment-1)) {
warning(pos, "I don't like non-power-of-2 alignments");
thistype->alignment = 0;
}
if (thistype->alignment > ctype->alignment)
ctype->alignment = thistype->alignment;
/* Address space */
if (thistype->as)
ctype->as = thistype->as;
}
static void check_modifiers(struct position *pos, struct symbol *s, unsigned long mod)
{
unsigned long banned, wrong;
const unsigned long BANNED_SIZE = MOD_LONG | MOD_LONGLONG | MOD_SHORT;
const unsigned long BANNED_SIGN = MOD_SIGNED | MOD_UNSIGNED;
if (s->type == SYM_KEYWORD)
banned = s->op->type == KW_SPECIFIER ? (BANNED_SIZE | BANNED_SIGN) : 0;
else if (s->ctype.base_type == &fp_type)
banned = BANNED_SIGN;
else if (s->ctype.base_type == &int_type || !s->ctype.base_type || is_int_type (s))
banned = 0;
else {
// label_type
// void_type
// bad_type
// vector_type <-- whatever that is
banned = BANNED_SIZE | BANNED_SIGN;
}
wrong = mod & banned;
if (wrong)
sparse_error(*pos, "modifier %sis invalid in this context",
modifier_string (wrong));
}
static struct token *declaration_specifiers(struct token *next, struct ctype *ctype, int qual)
{
struct token *token;
while ( (token = next) != NULL ) {
struct ctype thistype;
struct ident *ident;
struct symbol *s, *type;
unsigned long mod;
next = token->next;
if (token_type(token) != TOKEN_IDENT)
break;
ident = token->ident;
s = lookup_symbol(ident, NS_TYPEDEF);
if (!s)
break;
thistype = s->ctype;
mod = thistype.modifiers;
if (qual) {
if (s->type != SYM_KEYWORD)
break;
if (!(s->op->type & (KW_ATTRIBUTE | KW_QUALIFIER)))
break;
}
if (s->type == SYM_KEYWORD && s->op->declarator) {
next = s->op->declarator(next, &thistype);
mod = thistype.modifiers;
}
type = thistype.base_type;
if (type) {
if (qual)
break;
if (ctype->base_type)
break;
/* User types only mix with qualifiers */
if (mod & MOD_USERTYPE) {
if (ctype->modifiers & MOD_SPECIFIER)
break;
}
ctype->base_type = type;
}
check_modifiers(&token->pos, s, ctype->modifiers);
apply_ctype(token->pos, &thistype, ctype);
}
if (!ctype->base_type) {
struct symbol *base = &incomplete_ctype;
/*
* If we have modifiers, we'll default to an integer
* type, and "ctype_integer()" will turn this into
* a specific one.
*/
if (ctype->modifiers & MOD_SPECIFIER)
base = &int_type;
ctype->base_type = base;
}
return token;
}
static struct token *abstract_array_declarator(struct token *token, struct symbol *sym)
{
struct expression *expr = NULL;
token = parse_expression(token, &expr);
sym->array_size = expr;
return token;
}
static struct token *parameter_type_list(struct token *, struct symbol *, struct ident **p);
static struct token *declarator(struct token *token, struct symbol *sym, struct ident **p);
static struct token *handle_attributes(struct token *token, struct ctype *ctype, unsigned int keywords)
{
struct symbol *keyword;
for (;;) {
struct ctype thistype = { 0, };
if (token_type(token) != TOKEN_IDENT)
break;
keyword = lookup_keyword(token->ident, NS_KEYWORD | NS_TYPEDEF);
if (!keyword || keyword->type != SYM_KEYWORD)
break;
if (!(keyword->op->type & keywords))
break;
token = keyword->op->declarator(token->next, &thistype);
apply_ctype(token->pos, &thistype, ctype);
}
return token;
}
static struct token *direct_declarator(struct token *token, struct symbol *decl, struct ident **p)
{
struct ctype *ctype = &decl->ctype;
if (p && token_type(token) == TOKEN_IDENT) {
*p = token->ident;
token = token->next;
}
for (;;) {
token = handle_attributes(token, ctype, KW_ATTRIBUTE | KW_ASM);
if (token_type(token) != TOKEN_SPECIAL)
return token;
/*
* This can be either a parameter list or a grouping.
* For the direct (non-abstract) case, we know if must be
* a parameter list if we already saw the identifier.
* For the abstract case, we know if must be a parameter
* list if it is empty or starts with a type.
*/
if (token->special == '(') {
struct symbol *sym;
struct token *next = token->next;
int fn;
next = handle_attributes(next, ctype, KW_ATTRIBUTE);
fn = (p && *p) || match_op(next, ')') || lookup_type(next);
if (!fn) {
struct symbol *base_type = ctype->base_type;
token = declarator(next, decl, p);
token = expect(token, ')', "in nested declarator");
while (ctype->base_type != base_type)
ctype = &ctype->base_type->ctype;
p = NULL;
continue;
}
sym = alloc_indirect_symbol(token->pos, ctype, SYM_FN);
token = parameter_type_list(next, sym, p);
token = expect(token, ')', "in function declarator");
sym->endpos = token->pos;
continue;
}
if (token->special == '[') {
struct symbol *array = alloc_indirect_symbol(token->pos, ctype, SYM_ARRAY);
token = abstract_array_declarator(token->next, array);
token = expect(token, ']', "in abstract_array_declarator");
array->endpos = token->pos;
ctype = &array->ctype;
continue;
}
break;
}
return token;
}
static struct token *pointer(struct token *token, struct ctype *ctype)
{
unsigned long modifiers;
struct symbol *base_type;
modifiers = ctype->modifiers & ~MOD_TYPEDEF;
base_type = ctype->base_type;
ctype->modifiers = modifiers;
while (match_op(token,'*')) {
struct symbol *ptr = alloc_symbol(token->pos, SYM_PTR);
ptr->ctype.modifiers = modifiers & ~MOD_STORAGE;
ptr->ctype.as = ctype->as;
concat_ptr_list((struct ptr_list *)ctype->contexts,
(struct ptr_list **)&ptr->ctype.contexts);
ptr->ctype.base_type = base_type;
base_type = ptr;
ctype->modifiers = modifiers & MOD_STORAGE;
ctype->base_type = base_type;
ctype->as = 0;
free_ptr_list(&ctype->contexts);
token = declaration_specifiers(token->next, ctype, 1);
modifiers = ctype->modifiers;
ctype->base_type->endpos = token->pos;
}
return token;
}
static struct token *declarator(struct token *token, struct symbol *sym, struct ident **p)
{
token = pointer(token, &sym->ctype);
return direct_declarator(token, sym, p);
}
static struct token *handle_bitfield(struct token *token, struct symbol *decl)
{
struct ctype *ctype = &decl->ctype;
struct expression *expr;
struct symbol *bitfield;
long long width;
if (ctype->base_type != &int_type && !is_int_type(ctype->base_type)) {
sparse_error(token->pos, "invalid bitfield specifier for type %s.",
show_typename(ctype->base_type));
// Parse this to recover gracefully.
return conditional_expression(token->next, &expr);
}
bitfield = alloc_indirect_symbol(token->pos, ctype, SYM_BITFIELD);
token = conditional_expression(token->next, &expr);
width = const_expression_value(expr);
bitfield->bit_size = width;
if (width < 0 || width > INT_MAX) {
sparse_error(token->pos, "invalid bitfield width, %lld.", width);
width = -1;
} else if (decl->ident && width == 0) {
sparse_error(token->pos, "invalid named zero-width bitfield `%s'",
show_ident(decl->ident));
width = -1;
} else if (decl->ident) {
struct symbol *base_type = bitfield->ctype.base_type;
struct symbol *bitfield_type = base_type == &int_type ? bitfield : base_type;
int is_signed = !(bitfield_type->ctype.modifiers & MOD_UNSIGNED);
if (Wone_bit_signed_bitfield && width == 1 && is_signed) {
// Valid values are either {-1;0} or {0}, depending on integer
// representation. The latter makes for very efficient code...
sparse_error(token->pos, "dubious one-bit signed bitfield");
}
if (Wdefault_bitfield_sign &&
bitfield_type->type != SYM_ENUM &&
!(bitfield_type->ctype.modifiers & MOD_EXPLICITLY_SIGNED) &&
is_signed) {
// The sign of bitfields is unspecified by default.
warning(token->pos, "dubious bitfield without explicit `signed' or `unsigned'");
}
}
bitfield->bit_size = width;
bitfield->endpos = token->pos;
return token;
}
static struct token *declaration_list(struct token *token, struct symbol_list **list)
{
struct ctype ctype = {0, };
token = declaration_specifiers(token, &ctype, 0);
for (;;) {
struct ident *ident = NULL;
struct symbol *decl = alloc_symbol(token->pos, SYM_NODE);
decl->ctype = ctype;
token = declarator(token, decl, &ident);
decl->ident = ident;
if (match_op(token, ':')) {
token = handle_bitfield(token, decl);
token = handle_attributes(token, &decl->ctype, KW_ATTRIBUTE | KW_ASM);
}
apply_modifiers(token->pos, &decl->ctype);
add_symbol(list, decl);
decl->endpos = token->pos;
if (!match_op(token, ','))
break;
token = token->next;
}
return token;
}
static struct token *struct_declaration_list(struct token *token, struct symbol_list **list)
{
while (!match_op(token, '}')) {
if (!match_op(token, ';'))
token = declaration_list(token, list);
if (!match_op(token, ';')) {
sparse_error(token->pos, "expected ; at end of declaration");
break;
}
token = token->next;
}
return token;
}
static struct token *parameter_declaration(struct token *token, struct symbol **tree)
{
struct ident *ident = NULL;
struct symbol *sym;
struct ctype ctype = { 0, };
token = declaration_specifiers(token, &ctype, 0);
sym = alloc_symbol(token->pos, SYM_NODE);
sym->ctype = ctype;
*tree = sym;
token = declarator(token, sym, &ident);
sym->ident = ident;
apply_modifiers(token->pos, &sym->ctype);
sym->endpos = token->pos;
return token;
}
struct token *typename(struct token *token, struct symbol **p, int mod)
{
struct symbol *sym = alloc_symbol(token->pos, SYM_NODE);
*p = sym;
token = declaration_specifiers(token, &sym->ctype, 0);
token = declarator(token, sym, NULL);
apply_modifiers(token->pos, &sym->ctype);
if (sym->ctype.modifiers & MOD_STORAGE & ~mod)
warning(sym->pos, "storage class in typename (%s)",
show_typename(sym));
sym->endpos = token->pos;
return token;
}
static struct token *expression_statement(struct token *token, struct expression **tree)
{
token = parse_expression(token, tree);
return expect(token, ';', "at end of statement");
}
static struct token *parse_asm_operands(struct token *token, struct statement *stmt,
struct expression_list **inout)
{
struct expression *expr;
/* Allow empty operands */
if (match_op(token->next, ':') || match_op(token->next, ')'))
return token->next;
do {
struct ident *ident = NULL;
if (match_op(token->next, '[') &&
token_type(token->next->next) == TOKEN_IDENT &&
match_op(token->next->next->next, ']')) {
ident = token->next->next->ident;
token = token->next->next->next;
}
add_expression(inout, (struct expression *)ident); /* UGGLEE!!! */
token = primary_expression(token->next, &expr);
add_expression(inout, expr);
token = parens_expression(token, &expr, "in asm parameter");
add_expression(inout, expr);
} while (match_op(token, ','));
return token;
}
static struct token *parse_asm_clobbers(struct token *token, struct statement *stmt,
struct expression_list **clobbers)
{
struct expression *expr;
do {
token = primary_expression(token->next, &expr);
add_expression(clobbers, expr);
} while (match_op(token, ','));
return token;
}
static struct token *parse_asm_statement(struct token *token, struct statement *stmt)
{
token = token->next;
stmt->type = STMT_ASM;
if (match_idents(token, &__volatile___ident, &__volatile_ident, &volatile_ident, NULL)) {
token = token->next;
}
token = expect(token, '(', "after asm");
token = parse_expression(token, &stmt->asm_string);
if (match_op(token, ':'))
token = parse_asm_operands(token, stmt, &stmt->asm_outputs);
if (match_op(token, ':'))
token = parse_asm_operands(token, stmt, &stmt->asm_inputs);
if (match_op(token, ':'))
token = parse_asm_clobbers(token, stmt, &stmt->asm_clobbers);
token = expect(token, ')', "after asm");
return expect(token, ';', "at end of asm-statement");
}
static struct token *parse_asm_declarator(struct token *token, struct ctype *ctype)
{
struct expression *expr;
token = expect(token, '(', "after asm");
token = parse_expression(token->next, &expr);
token = expect(token, ')', "after asm");
return token;
}
/* Make a statement out of an expression */
static struct statement *make_statement(struct expression *expr)
{
struct statement *stmt;
if (!expr)
return NULL;
stmt = alloc_statement(expr->pos, STMT_EXPRESSION);
stmt->expression = expr;
return stmt;
}
/*
* All iterators have two symbols associated with them:
* the "continue" and "break" symbols, which are targets
* for continue and break statements respectively.
*
* They are in a special name-space, but they follow
* all the normal visibility rules, so nested iterators
* automatically work right.
*/
static void start_iterator(struct statement *stmt)
{
struct symbol *cont, *brk;
start_symbol_scope();
cont = alloc_symbol(stmt->pos, SYM_NODE);
bind_symbol(cont, &continue_ident, NS_ITERATOR);
brk = alloc_symbol(stmt->pos, SYM_NODE);
bind_symbol(brk, &break_ident, NS_ITERATOR);
stmt->type = STMT_ITERATOR;
stmt->iterator_break = brk;
stmt->iterator_continue = cont;
fn_local_symbol(brk);
fn_local_symbol(cont);
}
static void end_iterator(struct statement *stmt)
{
end_symbol_scope();
}
static struct statement *start_function(struct symbol *sym)
{
struct symbol *ret;
struct statement *stmt = alloc_statement(sym->pos, STMT_COMPOUND);
start_function_scope();
ret = alloc_symbol(sym->pos, SYM_NODE);
ret->ctype = sym->ctype.base_type->ctype;
ret->ctype.modifiers &= ~(MOD_STORAGE | MOD_CONST | MOD_VOLATILE | MOD_INLINE | MOD_ADDRESSABLE | MOD_NOCAST | MOD_NODEREF | MOD_ACCESSED | MOD_TOPLEVEL);
ret->ctype.modifiers |= (MOD_AUTO | MOD_REGISTER);
bind_symbol(ret, &return_ident, NS_ITERATOR);
stmt->ret = ret;
fn_local_symbol(ret);
// Currently parsed symbol for __func__/__FUNCTION__/__PRETTY_FUNCTION__
current_fn = sym;
return stmt;
}
static void end_function(struct symbol *sym)
{
current_fn = NULL;
end_function_scope();
}
/*
* A "switch()" statement, like an iterator, has a
* the "break" symbol associated with it. It works
* exactly like the iterator break - it's the target
* for any break-statements in scope, and means that
* "break" handling doesn't even need to know whether
* it's breaking out of an iterator or a switch.
*
* In addition, the "case" symbol is a marker for the
* case/default statements to find the switch statement
* that they are associated with.
*/
static void start_switch(struct statement *stmt)
{
struct symbol *brk, *switch_case;
start_symbol_scope();
brk = alloc_symbol(stmt->pos, SYM_NODE);
bind_symbol(brk, &break_ident, NS_ITERATOR);
switch_case = alloc_symbol(stmt->pos, SYM_NODE);
bind_symbol(switch_case, &case_ident, NS_ITERATOR);
switch_case->stmt = stmt;
stmt->type = STMT_SWITCH;
stmt->switch_break = brk;
stmt->switch_case = switch_case;
fn_local_symbol(brk);
fn_local_symbol(switch_case);
}
static void end_switch(struct statement *stmt)
{
if (!stmt->switch_case->symbol_list)
warning(stmt->pos, "switch with no cases");
end_symbol_scope();
}
static void add_case_statement(struct statement *stmt)
{
struct symbol *target = lookup_symbol(&case_ident, NS_ITERATOR);
struct symbol *sym;
if (!target) {
sparse_error(stmt->pos, "not in switch scope");
stmt->type = STMT_NONE;
return;
}
sym = alloc_symbol(stmt->pos, SYM_NODE);
add_symbol(&target->symbol_list, sym);
sym->stmt = stmt;
stmt->case_label = sym;
fn_local_symbol(sym);
}
static struct token *parse_return_statement(struct token *token, struct statement *stmt)
{
struct symbol *target = lookup_symbol(&return_ident, NS_ITERATOR);
if (!target)
error_die(token->pos, "internal error: return without a function target");
stmt->type = STMT_RETURN;
stmt->ret_target = target;
return expression_statement(token->next, &stmt->ret_value);
}
static struct token *parse_for_statement(struct token *token, struct statement *stmt)
{
struct symbol_list *syms;
struct expression *e1, *e2, *e3;
struct statement *iterator;
start_iterator(stmt);
token = expect(token->next, '(', "after 'for'");
syms = NULL;
e1 = NULL;
/* C99 variable declaration? */
if (lookup_type(token)) {
token = external_declaration(token, &syms);
} else {
token = parse_expression(token, &e1);
token = expect(token, ';', "in 'for'");
}
token = parse_expression(token, &e2);
token = expect(token, ';', "in 'for'");
token = parse_expression(token, &e3);
token = expect(token, ')', "in 'for'");
token = statement(token, &iterator);
stmt->iterator_syms = syms;
stmt->iterator_pre_statement = make_statement(e1);
stmt->iterator_pre_condition = e2;
stmt->iterator_post_statement = make_statement(e3);
stmt->iterator_post_condition = NULL;
stmt->iterator_statement = iterator;
end_iterator(stmt);
return token;
}
static struct token *parse_while_statement(struct token *token, struct statement *stmt)
{
struct expression *expr;
struct statement *iterator;
start_iterator(stmt);
token = parens_expression(token->next, &expr, "after 'while'");
token = statement(token, &iterator);
stmt->iterator_pre_condition = expr;
stmt->iterator_post_condition = NULL;
stmt->iterator_statement = iterator;
end_iterator(stmt);
return token;
}
static struct token *parse_do_statement(struct token *token, struct statement *stmt)
{
struct expression *expr;
struct statement *iterator;
start_iterator(stmt);
token = statement(token->next, &iterator);
if (token_type(token) == TOKEN_IDENT && token->ident == &while_ident)
token = token->next;
else
sparse_error(token->pos, "expected 'while' after 'do'");
token = parens_expression(token, &expr, "after 'do-while'");
stmt->iterator_post_condition = expr;
stmt->iterator_statement = iterator;
end_iterator(stmt);
if (iterator && iterator->type != STMT_COMPOUND && Wdo_while)
warning(iterator->pos, "do-while statement is not a compound statement");
return expect(token, ';', "after statement");
}
static struct token *parse_if_statement(struct token *token, struct statement *stmt)
{
stmt->type = STMT_IF;
token = parens_expression(token->next, &stmt->if_conditional, "after if");
token = statement(token, &stmt->if_true);
if (token_type(token) != TOKEN_IDENT)
return token;
if (token->ident != &else_ident)
return token;
return statement(token->next, &stmt->if_false);
}
static inline struct token *case_statement(struct token *token, struct statement *stmt)
{
stmt->type = STMT_CASE;
token = expect(token, ':', "after default/case");
add_case_statement(stmt);
return statement(token, &stmt->case_statement);
}
static struct token *parse_case_statement(struct token *token, struct statement *stmt)
{
token = parse_expression(token->next, &stmt->case_expression);
if (match_op(token, SPECIAL_ELLIPSIS))
token = parse_expression(token->next, &stmt->case_to);
return case_statement(token, stmt);
}
static struct token *parse_default_statement(struct token *token, struct statement *stmt)
{
return case_statement(token->next, stmt);
}
static struct token *parse_loop_iterator(struct token *token, struct statement *stmt)
{
struct symbol *target = lookup_symbol(token->ident, NS_ITERATOR);
stmt->type = STMT_GOTO;
stmt->goto_label = target;
if (!target)
sparse_error(stmt->pos, "break/continue not in iterator scope");
return expect(token->next, ';', "at end of statement");
}
static struct token *parse_switch_statement(struct token *token, struct statement *stmt)
{
stmt->type = STMT_SWITCH;
start_switch(stmt);
token = parens_expression(token->next, &stmt->switch_expression, "after 'switch'");
token = statement(token, &stmt->switch_statement);
end_switch(stmt);
return token;
}
static struct token *parse_goto_statement(struct token *token, struct statement *stmt)
{
stmt->type = STMT_GOTO;
token = token->next;
if (match_op(token, '*')) {
token = parse_expression(token->next, &stmt->goto_expression);
add_statement(&function_computed_goto_list, stmt);
} else if (token_type(token) == TOKEN_IDENT) {
stmt->goto_label = label_symbol(token);
token = token->next;
} else {
sparse_error(token->pos, "Expected identifier or goto expression");
}
return expect(token, ';', "at end of statement");
}
static struct token *parse_context_statement(struct token *token, struct statement *stmt)
{
stmt->type = STMT_CONTEXT;
token = parse_expression(token->next, &stmt->expression);
if(stmt->expression->type == EXPR_PREOP
&& stmt->expression->op == '('
&& stmt->expression->unop->type == EXPR_COMMA) {
struct expression *expr;
expr = stmt->expression->unop;
stmt->context = expr->left;
stmt->expression = expr->right;
}
return expect(token, ';', "at end of statement");
}
static struct token *parse_range_statement(struct token *token, struct statement *stmt)
{
stmt->type = STMT_RANGE;
token = assignment_expression(token->next, &stmt->range_expression);
token = expect(token, ',', "after range expression");
token = assignment_expression(token, &stmt->range_low);
token = expect(token, ',', "after low range");
token = assignment_expression(token, &stmt->range_high);
return expect(token, ';', "after range statement");
}
static struct token *statement(struct token *token, struct statement **tree)
{
struct statement *stmt = alloc_statement(token->pos, STMT_NONE);
*tree = stmt;
if (token_type(token) == TOKEN_IDENT) {
struct symbol *s = lookup_keyword(token->ident, NS_KEYWORD);
if (s && s->op->statement)
return s->op->statement(token, stmt);
if (match_op(token->next, ':')) {
stmt->type = STMT_LABEL;
stmt->label_identifier = label_symbol(token);
token = handle_attributes(token->next->next, &stmt->label_identifier->ctype, KW_ATTRIBUTE);
return statement(token, &stmt->label_statement);
}
}
if (match_op(token, '{')) {
stmt->type = STMT_COMPOUND;
start_symbol_scope();
token = compound_statement(token->next, stmt);
end_symbol_scope();
return expect(token, '}', "at end of compound statement");
}
stmt->type = STMT_EXPRESSION;
return expression_statement(token, &stmt->expression);
}
static struct token * statement_list(struct token *token, struct statement_list **list)
{
int seen_statement = 0;
for (;;) {
struct statement * stmt;
if (eof_token(token))
break;
if (match_op(token, '}'))
break;
if (lookup_type(token)) {
if (seen_statement) {
warning(token->pos, "mixing declarations and code");
seen_statement = 0;
}
stmt = alloc_statement(token->pos, STMT_DECLARATION);
token = external_declaration(token, &stmt->declaration);
} else {
seen_statement = warn_on_mixed;
token = statement(token, &stmt);
}
add_statement(list, stmt);
}
return token;
}
static struct token *parameter_type_list(struct token *token, struct symbol *fn, struct ident **p)
{
struct symbol_list **list = &fn->arguments;
if (match_op(token, ')')) {
// No warning for "void oink ();"
// Bug or feature: warns for "void oink () __attribute__ ((noreturn));"
if (p && !match_op(token->next, ';'))
warning(token->pos, "non-ANSI function declaration of function '%s'", show_ident(*p));
return token;
}
for (;;) {
struct symbol *sym;
if (match_op(token, SPECIAL_ELLIPSIS)) {
if (!*list)
warning(token->pos, "variadic functions must have one named argument");
fn->variadic = 1;
token = token->next;
break;
}
sym = alloc_symbol(token->pos, SYM_NODE);
token = parameter_declaration(token, &sym);
if (sym->ctype.base_type == &void_ctype) {
/* Special case: (void) */
if (!*list && !sym->ident)
break;
warning(token->pos, "void parameter");
}
add_symbol(list, sym);
sym->endpos = token->pos;
if (!match_op(token, ','))
break;
token = token->next;
}
return token;
}
struct token *compound_statement(struct token *token, struct statement *stmt)
{
token = statement_list(token, &stmt->stmts);
return token;
}
static struct expression *identifier_expression(struct token *token)
{
struct expression *expr = alloc_expression(token->pos, EXPR_IDENTIFIER);
expr->expr_ident = token->ident;
return expr;
}
static struct expression *index_expression(struct expression *from, struct expression *to)
{
int idx_from, idx_to;
struct expression *expr = alloc_expression(from->pos, EXPR_INDEX);
idx_from = const_expression_value(from);
idx_to = idx_from;
if (to) {
idx_to = const_expression_value(to);
if (idx_to < idx_from || idx_from < 0)
warning(from->pos, "nonsense array initializer index range");
}
expr->idx_from = idx_from;
expr->idx_to = idx_to;
return expr;
}
static struct token *single_initializer(struct expression **ep, struct token *token)
{
int expect_equal = 0;
struct token *next = token->next;
struct expression **tail = ep;
int nested;
*ep = NULL;
if ((token_type(token) == TOKEN_IDENT) && match_op(next, ':')) {
struct expression *expr = identifier_expression(token);
if (Wold_initializer)
warning(token->pos, "obsolete struct initializer, use C99 syntax");
token = initializer(&expr->ident_expression, next->next);
if (expr->ident_expression)
*ep = expr;
return token;
}
for (tail = ep, nested = 0; ; nested++, next = token->next) {
if (match_op(token, '.') && (token_type(next) == TOKEN_IDENT)) {
struct expression *expr = identifier_expression(next);
*tail = expr;
tail = &expr->ident_expression;
expect_equal = 1;
token = next->next;
} else if (match_op(token, '[')) {
struct expression *from = NULL, *to = NULL, *expr;
token = constant_expression(token->next, &from);
if (!from) {
sparse_error(token->pos, "Expected constant expression");
break;
}
if (match_op(token, SPECIAL_ELLIPSIS))
token = constant_expression(token->next, &to);
expr = index_expression(from, to);
*tail = expr;
tail = &expr->idx_expression;
token = expect(token, ']', "at end of initializer index");
if (nested)
expect_equal = 1;
} else {
break;
}
}
if (nested && !expect_equal) {
if (!match_op(token, '='))
warning(token->pos, "obsolete array initializer, use C99 syntax");
else
expect_equal = 1;
}
if (expect_equal)
token = expect(token, '=', "at end of initializer index");
token = initializer(tail, token);
if (!*tail)
*ep = NULL;
return token;
}
static struct token *initializer_list(struct expression_list **list, struct token *token)
{
struct expression *expr;
for (;;) {
token = single_initializer(&expr, token);
if (!expr)
break;
add_expression(list, expr);
if (!match_op(token, ','))
break;
token = token->next;
}
return token;
}
struct token *initializer(struct expression **tree, struct token *token)
{
if (match_op(token, '{')) {
struct expression *expr = alloc_expression(token->pos, EXPR_INITIALIZER);
*tree = expr;
token = initializer_list(&expr->expr_list, token->next);
return expect(token, '}', "at end of initializer");
}
return assignment_expression(token, tree);
}
static void declare_argument(struct symbol *sym, struct symbol *fn)
{
if (!sym->ident) {
sparse_error(sym->pos, "no identifier for function argument");
return;
}
bind_symbol(sym, sym->ident, NS_SYMBOL);
}
static struct token *parse_function_body(struct token *token, struct symbol *decl,
struct symbol_list **list)
{
struct symbol_list **old_symbol_list;
struct symbol *base_type = decl->ctype.base_type;
struct statement *stmt, **p;
struct symbol *arg;
old_symbol_list = function_symbol_list;
if (decl->ctype.modifiers & MOD_INLINE) {
function_symbol_list = &decl->inline_symbol_list;
p = &base_type->inline_stmt;
} else {
function_symbol_list = &decl->symbol_list;
p = &base_type->stmt;
}
function_computed_target_list = NULL;
function_computed_goto_list = NULL;
if (decl->ctype.modifiers & MOD_EXTERN) {
if (!(decl->ctype.modifiers & MOD_INLINE))
warning(decl->pos, "function '%s' with external linkage has definition", show_ident(decl->ident));
}
if (!(decl->ctype.modifiers & MOD_STATIC))
decl->ctype.modifiers |= MOD_EXTERN;
stmt = start_function(decl);
*p = stmt;
FOR_EACH_PTR (base_type->arguments, arg) {
declare_argument(arg, base_type);
} END_FOR_EACH_PTR(arg);
token = compound_statement(token->next, stmt);
end_function(decl);
if (!(decl->ctype.modifiers & MOD_INLINE))
add_symbol(list, decl);
check_declaration(decl);
function_symbol_list = old_symbol_list;
if (function_computed_goto_list) {
if (!function_computed_target_list)
warning(decl->pos, "function '%s' has computed goto but no targets?", show_ident(decl->ident));
else {
FOR_EACH_PTR(function_computed_goto_list, stmt) {
stmt->target_list = function_computed_target_list;
} END_FOR_EACH_PTR(stmt);
}
}
return expect(token, '}', "at end of function");
}
static void promote_k_r_types(struct symbol *arg)
{
struct symbol *base = arg->ctype.base_type;
if (base && base->ctype.base_type == &int_type && (base->ctype.modifiers & (MOD_CHAR | MOD_SHORT))) {
arg->ctype.base_type = &int_ctype;
}
}
static void apply_k_r_types(struct symbol_list *argtypes, struct symbol *fn)
{
struct symbol_list *real_args = fn->ctype.base_type->arguments;
struct symbol *arg;
FOR_EACH_PTR(real_args, arg) {
struct symbol *type;
/* This is quadratic in the number of arguments. We _really_ don't care */
FOR_EACH_PTR(argtypes, type) {
if (type->ident == arg->ident)
goto match;
} END_FOR_EACH_PTR(type);
sparse_error(arg->pos, "missing type declaration for parameter '%s'", show_ident(arg->ident));
continue;
match:
type->used = 1;
/* "char" and "short" promote to "int" */
promote_k_r_types(type);
arg->ctype = type->ctype;
} END_FOR_EACH_PTR(arg);
FOR_EACH_PTR(argtypes, arg) {
if (!arg->used)
warning(arg->pos, "nonsensical parameter declaration '%s'", show_ident(arg->ident));
} END_FOR_EACH_PTR(arg);
}
static struct token *parse_k_r_arguments(struct token *token, struct symbol *decl,
struct symbol_list **list)
{
struct symbol_list *args = NULL;
warning(token->pos, "non-ANSI definition of function '%s'", show_ident(decl->ident));
do {
token = declaration_list(token, &args);
if (!match_op(token, ';')) {
sparse_error(token->pos, "expected ';' at end of parameter declaration");
break;
}
token = token->next;
} while (lookup_type(token));
apply_k_r_types(args, decl);
if (!match_op(token, '{')) {
sparse_error(token->pos, "expected function body");
return token;
}
return parse_function_body(token, decl, list);
}
static struct token *toplevel_asm_declaration(struct token *token, struct symbol_list **list)
{
struct symbol *anon = alloc_symbol(token->pos, SYM_NODE);
struct symbol *fn = alloc_symbol(token->pos, SYM_FN);
struct statement *stmt;
anon->ctype.base_type = fn;
stmt = alloc_statement(token->pos, STMT_NONE);
fn->stmt = stmt;
token = parse_asm_statement(token, stmt);
add_symbol(list, anon);
return token;
}
struct token *external_declaration(struct token *token, struct symbol_list **list)
{
struct ident *ident = NULL;
struct symbol *decl;
struct ctype ctype = { 0, };
struct symbol *base_type;
int is_typedef;
/* Top-level inline asm? */
if (token_type(token) == TOKEN_IDENT) {
struct symbol *s = lookup_keyword(token->ident, NS_KEYWORD);
if (s && s->op->toplevel)
return s->op->toplevel(token, list);
}
/* Parse declaration-specifiers, if any */
token = declaration_specifiers(token, &ctype, 0);
decl = alloc_symbol(token->pos, SYM_NODE);
decl->ctype = ctype;
token = declarator(token, decl, &ident);
apply_modifiers(token->pos, &decl->ctype);
decl->endpos = token->pos;
/* Just a type declaration? */
if (!ident)
return expect(token, ';', "end of type declaration");
/* type define declaration? */
is_typedef = (ctype.modifiers & MOD_TYPEDEF) != 0;
/* Typedefs don't have meaningful storage */
if (is_typedef) {
ctype.modifiers &= ~MOD_STORAGE;
decl->ctype.modifiers &= ~MOD_STORAGE;
decl->ctype.modifiers |= MOD_USERTYPE;
}
bind_symbol(decl, ident, is_typedef ? NS_TYPEDEF: NS_SYMBOL);
base_type = decl->ctype.base_type;
if (is_typedef) {
if (base_type && !base_type->ident)
base_type->ident = ident;
} else if (base_type && base_type->type == SYM_FN) {
/* K&R argument declaration? */
if (lookup_type(token))
return parse_k_r_arguments(token, decl, list);
if (match_op(token, '{'))
return parse_function_body(token, decl, list);
if (!(decl->ctype.modifiers & MOD_STATIC))
decl->ctype.modifiers |= MOD_EXTERN;
} else if (base_type == &void_ctype && !(decl->ctype.modifiers & MOD_EXTERN)) {
sparse_error(token->pos, "void declaration");
}
for (;;) {
if (!is_typedef && match_op(token, '=')) {
if (decl->ctype.modifiers & MOD_EXTERN) {
warning(decl->pos, "symbol with external linkage has initializer");
decl->ctype.modifiers &= ~MOD_EXTERN;
}
token = initializer(&decl->initializer, token->next);
}
if (!is_typedef) {
if (!(decl->ctype.modifiers & (MOD_EXTERN | MOD_INLINE))) {
add_symbol(list, decl);
fn_local_symbol(decl);
}
}
check_declaration(decl);
if (!match_op(token, ','))
break;
token = token->next;
ident = NULL;
decl = alloc_symbol(token->pos, SYM_NODE);
decl->ctype = ctype;
token = declaration_specifiers(token, &decl->ctype, 1);
token = declarator(token, decl, &ident);
apply_modifiers(token->pos, &decl->ctype);
decl->endpos = token->pos;
if (!ident) {
sparse_error(token->pos, "expected identifier name in type definition");
return token;
}
bind_symbol(decl, ident, is_typedef ? NS_TYPEDEF: NS_SYMBOL);
/* Function declarations are automatically extern unless specifically static */
base_type = decl->ctype.base_type;
if (!is_typedef && base_type && base_type->type == SYM_FN) {
if (!(decl->ctype.modifiers & MOD_STATIC))
decl->ctype.modifiers |= MOD_EXTERN;
}
}
return expect(token, ';', "at end of declaration");
}