blob: a5f0117a0733f45eb1ebb2e397a269c0420c658f [file] [log] [blame]
/*
* Unsquash a squashfs filesystem. This is a highly compressed read only
* filesystem.
*
* Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
* 2012, 2013, 2014
* Phillip Lougher <phillip@squashfs.org.uk>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2,
* or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* unsquashfs.c
*/
#include "unsquashfs.h"
#include "squashfs_swap.h"
#include "squashfs_compat.h"
#include "compressor.h"
#include "xattr.h"
#include "unsquashfs_info.h"
#include "stdarg.h"
#include <sys/sysinfo.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <limits.h>
#include <ctype.h>
struct cache *fragment_cache, *data_cache;
struct queue *to_reader, *to_inflate, *to_writer, *from_writer;
pthread_t *thread, *inflator_thread;
pthread_mutex_t fragment_mutex;
/* user options that control parallelisation */
int processors = -1;
struct super_block sBlk;
squashfs_operations s_ops;
struct compressor *comp;
int bytes = 0, swap, file_count = 0, dir_count = 0, sym_count = 0,
dev_count = 0, fifo_count = 0;
char *inode_table = NULL, *directory_table = NULL;
struct hash_table_entry *inode_table_hash[65536], *directory_table_hash[65536];
int fd;
unsigned int *uid_table, *guid_table;
unsigned int cached_frag = SQUASHFS_INVALID_FRAG;
char *fragment_data;
char *file_data;
char *data;
unsigned int block_size;
unsigned int block_log;
int lsonly = FALSE, info = FALSE, force = FALSE, short_ls = TRUE;
int use_regex = FALSE;
char **created_inode;
int root_process;
int columns;
int rotate = 0;
pthread_mutex_t screen_mutex;
int progress = TRUE, progress_enabled = FALSE;
unsigned int total_blocks = 0, total_files = 0, total_inodes = 0;
unsigned int cur_blocks = 0;
int inode_number = 1;
int no_xattrs = XATTR_DEF;
int user_xattrs = FALSE;
int lookup_type[] = {
0,
S_IFDIR,
S_IFREG,
S_IFLNK,
S_IFBLK,
S_IFCHR,
S_IFIFO,
S_IFSOCK,
S_IFDIR,
S_IFREG,
S_IFLNK,
S_IFBLK,
S_IFCHR,
S_IFIFO,
S_IFSOCK
};
struct test table[] = {
{ S_IFMT, S_IFSOCK, 0, 's' },
{ S_IFMT, S_IFLNK, 0, 'l' },
{ S_IFMT, S_IFBLK, 0, 'b' },
{ S_IFMT, S_IFDIR, 0, 'd' },
{ S_IFMT, S_IFCHR, 0, 'c' },
{ S_IFMT, S_IFIFO, 0, 'p' },
{ S_IRUSR, S_IRUSR, 1, 'r' },
{ S_IWUSR, S_IWUSR, 2, 'w' },
{ S_IRGRP, S_IRGRP, 4, 'r' },
{ S_IWGRP, S_IWGRP, 5, 'w' },
{ S_IROTH, S_IROTH, 7, 'r' },
{ S_IWOTH, S_IWOTH, 8, 'w' },
{ S_IXUSR | S_ISUID, S_IXUSR | S_ISUID, 3, 's' },
{ S_IXUSR | S_ISUID, S_ISUID, 3, 'S' },
{ S_IXUSR | S_ISUID, S_IXUSR, 3, 'x' },
{ S_IXGRP | S_ISGID, S_IXGRP | S_ISGID, 6, 's' },
{ S_IXGRP | S_ISGID, S_ISGID, 6, 'S' },
{ S_IXGRP | S_ISGID, S_IXGRP, 6, 'x' },
{ S_IXOTH | S_ISVTX, S_IXOTH | S_ISVTX, 9, 't' },
{ S_IXOTH | S_ISVTX, S_ISVTX, 9, 'T' },
{ S_IXOTH | S_ISVTX, S_IXOTH, 9, 'x' },
{ 0, 0, 0, 0}
};
void progress_bar(long long current, long long max, int columns);
#define MAX_LINE 16384
void prep_exit()
{
}
void sigwinch_handler()
{
struct winsize winsize;
if(ioctl(1, TIOCGWINSZ, &winsize) == -1) {
if(isatty(STDOUT_FILENO))
ERROR("TIOCGWINSZ ioctl failed, defaulting to 80 "
"columns\n");
columns = 80;
} else
columns = winsize.ws_col;
}
void sigalrm_handler()
{
rotate = (rotate + 1) % 4;
}
int add_overflow(int a, int b)
{
return (INT_MAX - a) < b;
}
int shift_overflow(int a, int shift)
{
return (INT_MAX >> shift) < a;
}
int multiply_overflow(int a, int multiplier)
{
return (INT_MAX / multiplier) < a;
}
struct queue *queue_init(int size)
{
struct queue *queue = malloc(sizeof(struct queue));
if(queue == NULL)
EXIT_UNSQUASH("Out of memory in queue_init\n");
if(add_overflow(size, 1) ||
multiply_overflow(size + 1, sizeof(void *)))
EXIT_UNSQUASH("Size too large in queue_init\n");
queue->data = malloc(sizeof(void *) * (size + 1));
if(queue->data == NULL)
EXIT_UNSQUASH("Out of memory in queue_init\n");
queue->size = size + 1;
queue->readp = queue->writep = 0;
pthread_mutex_init(&queue->mutex, NULL);
pthread_cond_init(&queue->empty, NULL);
pthread_cond_init(&queue->full, NULL);
return queue;
}
void queue_put(struct queue *queue, void *data)
{
int nextp;
pthread_mutex_lock(&queue->mutex);
while((nextp = (queue->writep + 1) % queue->size) == queue->readp)
pthread_cond_wait(&queue->full, &queue->mutex);
queue->data[queue->writep] = data;
queue->writep = nextp;
pthread_cond_signal(&queue->empty);
pthread_mutex_unlock(&queue->mutex);
}
void *queue_get(struct queue *queue)
{
void *data;
pthread_mutex_lock(&queue->mutex);
while(queue->readp == queue->writep)
pthread_cond_wait(&queue->empty, &queue->mutex);
data = queue->data[queue->readp];
queue->readp = (queue->readp + 1) % queue->size;
pthread_cond_signal(&queue->full);
pthread_mutex_unlock(&queue->mutex);
return data;
}
void dump_queue(struct queue *queue)
{
pthread_mutex_lock(&queue->mutex);
printf("Max size %d, size %d%s\n", queue->size - 1,
queue->readp <= queue->writep ? queue->writep - queue->readp :
queue->size - queue->readp + queue->writep,
queue->readp == queue->writep ? " (EMPTY)" :
((queue->writep + 1) % queue->size) == queue->readp ?
" (FULL)" : "");
pthread_mutex_unlock(&queue->mutex);
}
/* Called with the cache mutex held */
void insert_hash_table(struct cache *cache, struct cache_entry *entry)
{
int hash = CALCULATE_HASH(entry->block);
entry->hash_next = cache->hash_table[hash];
cache->hash_table[hash] = entry;
entry->hash_prev = NULL;
if(entry->hash_next)
entry->hash_next->hash_prev = entry;
}
/* Called with the cache mutex held */
void remove_hash_table(struct cache *cache, struct cache_entry *entry)
{
if(entry->hash_prev)
entry->hash_prev->hash_next = entry->hash_next;
else
cache->hash_table[CALCULATE_HASH(entry->block)] =
entry->hash_next;
if(entry->hash_next)
entry->hash_next->hash_prev = entry->hash_prev;
entry->hash_prev = entry->hash_next = NULL;
}
/* Called with the cache mutex held */
void insert_free_list(struct cache *cache, struct cache_entry *entry)
{
if(cache->free_list) {
entry->free_next = cache->free_list;
entry->free_prev = cache->free_list->free_prev;
cache->free_list->free_prev->free_next = entry;
cache->free_list->free_prev = entry;
} else {
cache->free_list = entry;
entry->free_prev = entry->free_next = entry;
}
}
/* Called with the cache mutex held */
void remove_free_list(struct cache *cache, struct cache_entry *entry)
{
if(entry->free_prev == NULL || entry->free_next == NULL)
/* not in free list */
return;
else if(entry->free_prev == entry && entry->free_next == entry) {
/* only this entry in the free list */
cache->free_list = NULL;
} else {
/* more than one entry in the free list */
entry->free_next->free_prev = entry->free_prev;
entry->free_prev->free_next = entry->free_next;
if(cache->free_list == entry)
cache->free_list = entry->free_next;
}
entry->free_prev = entry->free_next = NULL;
}
struct cache *cache_init(int buffer_size, int max_buffers)
{
struct cache *cache = malloc(sizeof(struct cache));
if(cache == NULL)
EXIT_UNSQUASH("Out of memory in cache_init\n");
cache->max_buffers = max_buffers;
cache->buffer_size = buffer_size;
cache->count = 0;
cache->used = 0;
cache->free_list = NULL;
memset(cache->hash_table, 0, sizeof(struct cache_entry *) * 65536);
cache->wait_free = FALSE;
cache->wait_pending = FALSE;
pthread_mutex_init(&cache->mutex, NULL);
pthread_cond_init(&cache->wait_for_free, NULL);
pthread_cond_init(&cache->wait_for_pending, NULL);
return cache;
}
struct cache_entry *cache_get(struct cache *cache, long long block, int size)
{
/*
* Get a block out of the cache. If the block isn't in the cache
* it is added and queued to the reader() and inflate() threads for
* reading off disk and decompression. The cache grows until max_blocks
* is reached, once this occurs existing discarded blocks on the free
* list are reused
*/
int hash = CALCULATE_HASH(block);
struct cache_entry *entry;
pthread_mutex_lock(&cache->mutex);
for(entry = cache->hash_table[hash]; entry; entry = entry->hash_next)
if(entry->block == block)
break;
if(entry) {
/*
* found the block in the cache. If the block is currently unused
* remove it from the free list and increment cache used count.
*/
if(entry->used == 0) {
cache->used ++;
remove_free_list(cache, entry);
}
entry->used ++;
pthread_mutex_unlock(&cache->mutex);
} else {
/*
* not in the cache
*
* first try to allocate new block
*/
if(cache->count < cache->max_buffers) {
entry = malloc(sizeof(struct cache_entry));
if(entry == NULL)
EXIT_UNSQUASH("Out of memory in cache_get\n");
entry->data = malloc(cache->buffer_size);
if(entry->data == NULL)
EXIT_UNSQUASH("Out of memory in cache_get\n");
entry->cache = cache;
entry->free_prev = entry->free_next = NULL;
cache->count ++;
} else {
/*
* try to get from free list
*/
while(cache->free_list == NULL) {
cache->wait_free = TRUE;
pthread_cond_wait(&cache->wait_for_free,
&cache->mutex);
}
entry = cache->free_list;
remove_free_list(cache, entry);
remove_hash_table(cache, entry);
}
/*
* Initialise block and insert into the hash table.
* Increment used which tracks how many buffers in the
* cache are actively in use (the other blocks, count - used,
* are in the cache and available for lookup, but can also be
* re-used).
*/
entry->block = block;
entry->size = size;
entry->used = 1;
entry->error = FALSE;
entry->pending = TRUE;
insert_hash_table(cache, entry);
cache->used ++;
/*
* queue to read thread to read and ultimately (via the
* decompress threads) decompress the buffer
*/
pthread_mutex_unlock(&cache->mutex);
queue_put(to_reader, entry);
}
return entry;
}
void cache_block_ready(struct cache_entry *entry, int error)
{
/*
* mark cache entry as being complete, reading and (if necessary)
* decompression has taken place, and the buffer is valid for use.
* If an error occurs reading or decompressing, the buffer also
* becomes ready but with an error...
*/
pthread_mutex_lock(&entry->cache->mutex);
entry->pending = FALSE;
entry->error = error;
/*
* if the wait_pending flag is set, one or more threads may be waiting
* on this buffer
*/
if(entry->cache->wait_pending) {
entry->cache->wait_pending = FALSE;
pthread_cond_broadcast(&entry->cache->wait_for_pending);
}
pthread_mutex_unlock(&entry->cache->mutex);
}
void cache_block_wait(struct cache_entry *entry)
{
/*
* wait for this cache entry to become ready, when reading and (if
* necessary) decompression has taken place
*/
pthread_mutex_lock(&entry->cache->mutex);
while(entry->pending) {
entry->cache->wait_pending = TRUE;
pthread_cond_wait(&entry->cache->wait_for_pending,
&entry->cache->mutex);
}
pthread_mutex_unlock(&entry->cache->mutex);
}
void cache_block_put(struct cache_entry *entry)
{
/*
* finished with this cache entry, once the usage count reaches zero it
* can be reused and is put onto the free list. As it remains
* accessible via the hash table it can be found getting a new lease of
* life before it is reused.
*/
pthread_mutex_lock(&entry->cache->mutex);
entry->used --;
if(entry->used == 0) {
insert_free_list(entry->cache, entry);
entry->cache->used --;
/*
* if the wait_free flag is set, one or more threads may be
* waiting on this buffer
*/
if(entry->cache->wait_free) {
entry->cache->wait_free = FALSE;
pthread_cond_broadcast(&entry->cache->wait_for_free);
}
}
pthread_mutex_unlock(&entry->cache->mutex);
}
void dump_cache(struct cache *cache)
{
pthread_mutex_lock(&cache->mutex);
printf("Max buffers %d, Current size %d, Used %d, %s\n",
cache->max_buffers, cache->count, cache->used,
cache->free_list ? "Free buffers" : "No free buffers");
pthread_mutex_unlock(&cache->mutex);
}
char *modestr(char *str, int mode)
{
int i;
strcpy(str, "----------");
for(i = 0; table[i].mask != 0; i++) {
if((mode & table[i].mask) == table[i].value)
str[table[i].position] = table[i].mode;
}
return str;
}
#define TOTALCHARS 25
int print_filename(char *pathname, struct inode *inode)
{
char str[11], dummy[12], dummy2[12]; /* overflow safe */
char *userstr, *groupstr;
int padchars;
struct passwd *user;
struct group *group;
struct tm *t;
if(short_ls) {
printf("%s\n", pathname);
return 1;
}
user = getpwuid(inode->uid);
if(user == NULL) {
int res = snprintf(dummy, 12, "%d", inode->uid);
if(res < 0)
EXIT_UNSQUASH("snprintf failed in print_filename()\n");
else if(res >= 12)
/* unsigned int shouldn't ever need more than 11 bytes
* (including terminating '\0') to print in base 10 */
userstr = "*";
else
userstr = dummy;
} else
userstr = user->pw_name;
group = getgrgid(inode->gid);
if(group == NULL) {
int res = snprintf(dummy2, 12, "%d", inode->gid);
if(res < 0)
EXIT_UNSQUASH("snprintf failed in print_filename()\n");
else if(res >= 12)
/* unsigned int shouldn't ever need more than 11 bytes
* (including terminating '\0') to print in base 10 */
groupstr = "*";
else
groupstr = dummy2;
} else
groupstr = group->gr_name;
printf("%s %s/%s ", modestr(str, inode->mode), userstr, groupstr);
switch(inode->mode & S_IFMT) {
case S_IFREG:
case S_IFDIR:
case S_IFSOCK:
case S_IFIFO:
case S_IFLNK:
padchars = TOTALCHARS - strlen(userstr) -
strlen(groupstr);
printf("%*lld ", padchars > 0 ? padchars : 0,
inode->data);
break;
case S_IFCHR:
case S_IFBLK:
padchars = TOTALCHARS - strlen(userstr) -
strlen(groupstr) - 7;
printf("%*s%3d,%3d ", padchars > 0 ? padchars : 0, " ",
(int) inode->data >> 8, (int) inode->data &
0xff);
break;
}
t = localtime(&inode->time);
printf("%d-%02d-%02d %02d:%02d %s", t->tm_year + 1900, t->tm_mon + 1,
t->tm_mday, t->tm_hour, t->tm_min, pathname);
if((inode->mode & S_IFMT) == S_IFLNK)
printf(" -> %s", inode->symlink);
printf("\n");
return 1;
}
void add_entry(struct hash_table_entry *hash_table[], long long start,
int bytes)
{
int hash = CALCULATE_HASH(start);
struct hash_table_entry *hash_table_entry;
hash_table_entry = malloc(sizeof(struct hash_table_entry));
if(hash_table_entry == NULL)
EXIT_UNSQUASH("Out of memory in add_entry\n");
hash_table_entry->start = start;
hash_table_entry->bytes = bytes;
hash_table_entry->next = hash_table[hash];
hash_table[hash] = hash_table_entry;
}
int lookup_entry(struct hash_table_entry *hash_table[], long long start)
{
int hash = CALCULATE_HASH(start);
struct hash_table_entry *hash_table_entry;
for(hash_table_entry = hash_table[hash]; hash_table_entry;
hash_table_entry = hash_table_entry->next)
if(hash_table_entry->start == start)
return hash_table_entry->bytes;
return -1;
}
int read_fs_bytes(int fd, long long byte, int bytes, void *buff)
{
off_t off = byte;
int res, count;
TRACE("read_bytes: reading from position 0x%llx, bytes %d\n", byte,
bytes);
if(lseek(fd, off, SEEK_SET) == -1) {
ERROR("Lseek failed because %s\n", strerror(errno));
return FALSE;
}
for(count = 0; count < bytes; count += res) {
res = read(fd, buff + count, bytes - count);
if(res < 1) {
if(res == 0) {
ERROR("Read on filesystem failed because "
"EOF\n");
return FALSE;
} else if(errno != EINTR) {
ERROR("Read on filesystem failed because %s\n",
strerror(errno));
return FALSE;
} else
res = 0;
}
}
return TRUE;
}
int read_block(int fd, long long start, long long *next, int expected,
void *block)
{
unsigned short c_byte;
int offset = 2, res, compressed;
int outlen = expected ? expected : SQUASHFS_METADATA_SIZE;
if(swap) {
if(read_fs_bytes(fd, start, 2, &c_byte) == FALSE)
goto failed;
c_byte = (c_byte >> 8) | ((c_byte & 0xff) << 8);
} else
if(read_fs_bytes(fd, start, 2, &c_byte) == FALSE)
goto failed;
TRACE("read_block: block @0x%llx, %d %s bytes\n", start,
SQUASHFS_COMPRESSED_SIZE(c_byte), SQUASHFS_COMPRESSED(c_byte) ?
"compressed" : "uncompressed");
if(SQUASHFS_CHECK_DATA(sBlk.s.flags))
offset = 3;
compressed = SQUASHFS_COMPRESSED(c_byte);
c_byte = SQUASHFS_COMPRESSED_SIZE(c_byte);
/*
* The block size should not be larger than
* the uncompressed size (or max uncompressed size if
* expected is 0)
*/
if(c_byte > outlen)
return 0;
if(compressed) {
char buffer[c_byte];
int error;
res = read_fs_bytes(fd, start + offset, c_byte, buffer);
if(res == FALSE)
goto failed;
res = compressor_uncompress(comp, block, buffer, c_byte,
outlen, &error);
if(res == -1) {
ERROR("%s uncompress failed with error code %d\n",
comp->name, error);
goto failed;
}
} else {
res = read_fs_bytes(fd, start + offset, c_byte, block);
if(res == FALSE)
goto failed;
res = c_byte;
}
if(next)
*next = start + offset + c_byte;
/*
* if expected, then check the (uncompressed) return data
* is of the expected size
*/
if(expected && expected != res)
return 0;
else
return res;
failed:
ERROR("read_block: failed to read block @0x%llx\n", start);
return FALSE;
}
int read_data_block(long long start, unsigned int size, char *block)
{
int error, res;
int c_byte = SQUASHFS_COMPRESSED_SIZE_BLOCK(size);
TRACE("read_data_block: block @0x%llx, %d %s bytes\n", start,
c_byte, SQUASHFS_COMPRESSED_BLOCK(size) ? "compressed" :
"uncompressed");
if(SQUASHFS_COMPRESSED_BLOCK(size)) {
if(read_fs_bytes(fd, start, c_byte, data) == FALSE)
goto failed;
res = compressor_uncompress(comp, block, data, c_byte,
block_size, &error);
if(res == -1) {
ERROR("%s uncompress failed with error code %d\n",
comp->name, error);
goto failed;
}
return res;
} else {
if(read_fs_bytes(fd, start, c_byte, block) == FALSE)
goto failed;
return c_byte;
}
failed:
ERROR("read_data_block: failed to read block @0x%llx, size %d\n", start,
c_byte);
return FALSE;
}
int read_inode_table(long long start, long long end)
{
int size = 0, bytes = 0, res;
TRACE("read_inode_table: start %lld, end %lld\n", start, end);
while(start < end) {
if(size - bytes < SQUASHFS_METADATA_SIZE) {
inode_table = realloc(inode_table, size +=
SQUASHFS_METADATA_SIZE);
if(inode_table == NULL) {
ERROR("Out of memory in read_inode_table");
goto failed;
}
}
add_entry(inode_table_hash, start, bytes);
res = read_block(fd, start, &start, 0, inode_table + bytes);
if(res == 0) {
ERROR("read_inode_table: failed to read block\n");
goto failed;
}
bytes += res;
/*
* If this is not the last metadata block in the inode table
* then it should be SQUASHFS_METADATA_SIZE in size.
* Note, we can't use expected in read_block() above for this
* because we don't know if this is the last block until
* after reading.
*/
if(start != end && res != SQUASHFS_METADATA_SIZE) {
ERROR("read_inode_table: metadata block should be %d "
"bytes in length, it is %d bytes\n",
SQUASHFS_METADATA_SIZE, res);
goto failed;
}
}
return TRUE;
failed:
free(inode_table);
return FALSE;
}
int set_attributes(char *pathname, int mode, uid_t uid, gid_t guid, time_t time,
unsigned int xattr, unsigned int set_mode)
{
struct utimbuf times = { time, time };
if(utime(pathname, &times) == -1) {
ERROR("set_attributes: failed to set time on %s, because %s\n",
pathname, strerror(errno));
return FALSE;
}
if(root_process) {
if(chown(pathname, uid, guid) == -1) {
ERROR("set_attributes: failed to change uid and gids "
"on %s, because %s\n", pathname,
strerror(errno));
return FALSE;
}
} else
mode &= ~07000;
if((set_mode || (mode & 07000)) && chmod(pathname, (mode_t) mode) == -1) {
ERROR("set_attributes: failed to change mode %s, because %s\n",
pathname, strerror(errno));
return FALSE;
}
write_xattr(pathname, xattr);
return TRUE;
}
int write_bytes(int fd, char *buff, int bytes)
{
int res, count;
for(count = 0; count < bytes; count += res) {
res = write(fd, buff + count, bytes - count);
if(res == -1) {
if(errno != EINTR) {
ERROR("Write on output file failed because "
"%s\n", strerror(errno));
return -1;
}
res = 0;
}
}
return 0;
}
int lseek_broken = FALSE;
char *zero_data = NULL;
int write_block(int file_fd, char *buffer, int size, long long hole, int sparse)
{
off_t off = hole;
if(hole) {
if(sparse && lseek_broken == FALSE) {
int error = lseek(file_fd, off, SEEK_CUR);
if(error == -1)
/* failed to seek beyond end of file */
lseek_broken = TRUE;
}
if((sparse == FALSE || lseek_broken) && zero_data == NULL) {
if((zero_data = malloc(block_size)) == NULL)
EXIT_UNSQUASH("write_block: failed to alloc "
"zero data block\n");
memset(zero_data, 0, block_size);
}
if(sparse == FALSE || lseek_broken) {
int blocks = (hole + block_size -1) / block_size;
int avail_bytes, i;
for(i = 0; i < blocks; i++, hole -= avail_bytes) {
avail_bytes = hole > block_size ? block_size :
hole;
if(write_bytes(file_fd, zero_data, avail_bytes)
== -1)
goto failure;
}
}
}
if(write_bytes(file_fd, buffer, size) == -1)
goto failure;
return TRUE;
failure:
return FALSE;
}
pthread_mutex_t open_mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t open_empty = PTHREAD_COND_INITIALIZER;
int open_unlimited, open_count;
#define OPEN_FILE_MARGIN 10
void open_init(int count)
{
open_count = count;
open_unlimited = count == -1;
}
int open_wait(char *pathname, int flags, mode_t mode)
{
if (!open_unlimited) {
pthread_mutex_lock(&open_mutex);
while (open_count == 0)
pthread_cond_wait(&open_empty, &open_mutex);
open_count --;
pthread_mutex_unlock(&open_mutex);
}
return open(pathname, flags, mode);
}
void close_wake(int fd)
{
close(fd);
if (!open_unlimited) {
pthread_mutex_lock(&open_mutex);
open_count ++;
pthread_cond_signal(&open_empty);
pthread_mutex_unlock(&open_mutex);
}
}
void queue_file(char *pathname, int file_fd, struct inode *inode)
{
struct squashfs_file *file = malloc(sizeof(struct squashfs_file));
if(file == NULL)
EXIT_UNSQUASH("queue_file: unable to malloc file\n");
file->fd = file_fd;
file->file_size = inode->data;
file->mode = inode->mode;
file->gid = inode->gid;
file->uid = inode->uid;
file->time = inode->time;
file->pathname = strdup(pathname);
file->blocks = inode->blocks + (inode->frag_bytes > 0);
file->sparse = inode->sparse;
file->xattr = inode->xattr;
queue_put(to_writer, file);
}
void queue_dir(char *pathname, struct dir *dir)
{
struct squashfs_file *file = malloc(sizeof(struct squashfs_file));
if(file == NULL)
EXIT_UNSQUASH("queue_dir: unable to malloc file\n");
file->fd = -1;
file->mode = dir->mode;
file->gid = dir->guid;
file->uid = dir->uid;
file->time = dir->mtime;
file->pathname = strdup(pathname);
file->xattr = dir->xattr;
queue_put(to_writer, file);
}
int write_file(struct inode *inode, char *pathname)
{
unsigned int file_fd, i;
unsigned int *block_list;
int file_end = inode->data / block_size;
long long start = inode->start;
TRACE("write_file: regular file, blocks %d\n", inode->blocks);
file_fd = open_wait(pathname, O_CREAT | O_WRONLY |
(force ? O_TRUNC : 0), (mode_t) inode->mode & 0777);
if(file_fd == -1) {
ERROR("write_file: failed to create file %s, because %s\n",
pathname, strerror(errno));
return FALSE;
}
block_list = malloc(inode->blocks * sizeof(unsigned int));
if(block_list == NULL)
EXIT_UNSQUASH("write_file: unable to malloc block list\n");
s_ops.read_block_list(block_list, inode->block_ptr, inode->blocks);
/*
* the writer thread is queued a squashfs_file structure describing the
* file. If the file has one or more blocks or a fragment they are
* queued separately (references to blocks in the cache).
*/
queue_file(pathname, file_fd, inode);
for(i = 0; i < inode->blocks; i++) {
int c_byte = SQUASHFS_COMPRESSED_SIZE_BLOCK(block_list[i]);
struct file_entry *block = malloc(sizeof(struct file_entry));
if(block == NULL)
EXIT_UNSQUASH("write_file: unable to malloc file\n");
block->offset = 0;
block->size = i == file_end ? inode->data & (block_size - 1) :
block_size;
if(block_list[i] == 0) /* sparse block */
block->buffer = NULL;
else {
block->buffer = cache_get(data_cache, start,
block_list[i]);
start += c_byte;
}
queue_put(to_writer, block);
}
if(inode->frag_bytes) {
int size;
long long start;
struct file_entry *block = malloc(sizeof(struct file_entry));
if(block == NULL)
EXIT_UNSQUASH("write_file: unable to malloc file\n");
s_ops.read_fragment(inode->fragment, &start, &size);
block->buffer = cache_get(fragment_cache, start, size);
block->offset = inode->offset;
block->size = inode->frag_bytes;
queue_put(to_writer, block);
}
free(block_list);
return TRUE;
}
int create_inode(char *pathname, struct inode *i)
{
TRACE("create_inode: pathname %s\n", pathname);
if(created_inode[i->inode_number - 1]) {
TRACE("create_inode: hard link\n");
if(force)
unlink(pathname);
if(link(created_inode[i->inode_number - 1], pathname) == -1) {
ERROR("create_inode: failed to create hardlink, "
"because %s\n", strerror(errno));
return FALSE;
}
return TRUE;
}
switch(i->type) {
case SQUASHFS_FILE_TYPE:
case SQUASHFS_LREG_TYPE:
TRACE("create_inode: regular file, file_size %lld, "
"blocks %d\n", i->data, i->blocks);
if(write_file(i, pathname))
file_count ++;
break;
case SQUASHFS_SYMLINK_TYPE:
case SQUASHFS_LSYMLINK_TYPE:
TRACE("create_inode: symlink, symlink_size %lld\n",
i->data);
if(force)
unlink(pathname);
if(symlink(i->symlink, pathname) == -1) {
ERROR("create_inode: failed to create symlink "
"%s, because %s\n", pathname,
strerror(errno));
break;
}
write_xattr(pathname, i->xattr);
if(root_process) {
if(lchown(pathname, i->uid, i->gid) == -1)
ERROR("create_inode: failed to change "
"uid and gids on %s, because "
"%s\n", pathname,
strerror(errno));
}
sym_count ++;
break;
case SQUASHFS_BLKDEV_TYPE:
case SQUASHFS_CHRDEV_TYPE:
case SQUASHFS_LBLKDEV_TYPE:
case SQUASHFS_LCHRDEV_TYPE: {
int chrdev = i->type == SQUASHFS_CHRDEV_TYPE;
TRACE("create_inode: dev, rdev 0x%llx\n", i->data);
if(root_process) {
if(force)
unlink(pathname);
if(mknod(pathname, chrdev ? S_IFCHR : S_IFBLK,
makedev((i->data >> 8) & 0xff,
i->data & 0xff)) == -1) {
ERROR("create_inode: failed to create "
"%s device %s, because %s\n",
chrdev ? "character" : "block",
pathname, strerror(errno));
break;
}
set_attributes(pathname, i->mode, i->uid,
i->gid, i->time, i->xattr, TRUE);
dev_count ++;
} else
ERROR("create_inode: could not create %s "
"device %s, because you're not "
"superuser!\n", chrdev ? "character" :
"block", pathname);
break;
}
case SQUASHFS_FIFO_TYPE:
case SQUASHFS_LFIFO_TYPE:
TRACE("create_inode: fifo\n");
if(force)
unlink(pathname);
if(mknod(pathname, S_IFIFO, 0) == -1) {
ERROR("create_inode: failed to create fifo %s, "
"because %s\n", pathname,
strerror(errno));
break;
}
set_attributes(pathname, i->mode, i->uid, i->gid,
i->time, i->xattr, TRUE);
fifo_count ++;
break;
case SQUASHFS_SOCKET_TYPE:
case SQUASHFS_LSOCKET_TYPE:
TRACE("create_inode: socket\n");
ERROR("create_inode: socket %s ignored\n", pathname);
break;
default:
ERROR("Unknown inode type %d in create_inode_table!\n",
i->type);
return FALSE;
}
created_inode[i->inode_number - 1] = strdup(pathname);
return TRUE;
}
int read_directory_table(long long start, long long end)
{
int bytes = 0, size = 0, res;
TRACE("read_directory_table: start %lld, end %lld\n", start, end);
while(start < end) {
if(size - bytes < SQUASHFS_METADATA_SIZE) {
directory_table = realloc(directory_table, size +=
SQUASHFS_METADATA_SIZE);
if(directory_table == NULL) {
ERROR("Out of memory in "
"read_directory_table\n");
goto failed;
}
}
add_entry(directory_table_hash, start, bytes);
res = read_block(fd, start, &start, 0, directory_table + bytes);
if(res == 0) {
ERROR("read_directory_table: failed to read block\n");
goto failed;
}
bytes += res;
/*
* If this is not the last metadata block in the directory table
* then it should be SQUASHFS_METADATA_SIZE in size.
* Note, we can't use expected in read_block() above for this
* because we don't know if this is the last block until
* after reading.
*/
if(start != end && res != SQUASHFS_METADATA_SIZE) {
ERROR("read_directory_table: metadata block "
"should be %d bytes in length, it is %d "
"bytes\n", SQUASHFS_METADATA_SIZE, res);
goto failed;
}
}
return TRUE;
failed:
free(directory_table);
return FALSE;
}
int squashfs_readdir(struct dir *dir, char **name, unsigned int *start_block,
unsigned int *offset, unsigned int *type)
{
if(dir->cur_entry == dir->dir_count)
return FALSE;
*name = dir->dirs[dir->cur_entry].name;
*start_block = dir->dirs[dir->cur_entry].start_block;
*offset = dir->dirs[dir->cur_entry].offset;
*type = dir->dirs[dir->cur_entry].type;
dir->cur_entry ++;
return TRUE;
}
void squashfs_closedir(struct dir *dir)
{
free(dir->dirs);
free(dir);
}
char *get_component(char *target, char **targname)
{
char *start;
while(*target == '/')
target ++;
start = target;
while(*target != '/' && *target != '\0')
target ++;
*targname = strndup(start, target - start);
while(*target == '/')
target ++;
return target;
}
void free_path(struct pathname *paths)
{
int i;
for(i = 0; i < paths->names; i++) {
if(paths->name[i].paths)
free_path(paths->name[i].paths);
free(paths->name[i].name);
if(paths->name[i].preg) {
regfree(paths->name[i].preg);
free(paths->name[i].preg);
}
}
free(paths);
}
struct pathname *add_path(struct pathname *paths, char *target, char *alltarget)
{
char *targname;
int i, error;
TRACE("add_path: adding \"%s\" extract file\n", target);
target = get_component(target, &targname);
if(paths == NULL) {
paths = malloc(sizeof(struct pathname));
if(paths == NULL)
EXIT_UNSQUASH("failed to allocate paths\n");
paths->names = 0;
paths->name = NULL;
}
for(i = 0; i < paths->names; i++)
if(strcmp(paths->name[i].name, targname) == 0)
break;
if(i == paths->names) {
/*
* allocate new name entry
*/
paths->names ++;
paths->name = realloc(paths->name, (i + 1) *
sizeof(struct path_entry));
if(paths->name == NULL)
EXIT_UNSQUASH("Out of memory in add_path\n");
paths->name[i].name = targname;
paths->name[i].paths = NULL;
if(use_regex) {
paths->name[i].preg = malloc(sizeof(regex_t));
if(paths->name[i].preg == NULL)
EXIT_UNSQUASH("Out of memory in add_path\n");
error = regcomp(paths->name[i].preg, targname,
REG_EXTENDED|REG_NOSUB);
if(error) {
char str[1024]; /* overflow safe */
regerror(error, paths->name[i].preg, str, 1024);
EXIT_UNSQUASH("invalid regex %s in export %s, "
"because %s\n", targname, alltarget,
str);
}
} else
paths->name[i].preg = NULL;
if(target[0] == '\0')
/*
* at leaf pathname component
*/
paths->name[i].paths = NULL;
else
/*
* recurse adding child components
*/
paths->name[i].paths = add_path(NULL, target, alltarget);
} else {
/*
* existing matching entry
*/
free(targname);
if(paths->name[i].paths == NULL) {
/*
* No sub-directory which means this is the leaf
* component of a pre-existing extract which subsumes
* the extract currently being added, in which case stop
* adding components
*/
} else if(target[0] == '\0') {
/*
* at leaf pathname component and child components exist
* from more specific extracts, delete as they're
* subsumed by this extract
*/
free_path(paths->name[i].paths);
paths->name[i].paths = NULL;
} else
/*
* recurse adding child components
*/
add_path(paths->name[i].paths, target, alltarget);
}
return paths;
}
struct pathnames *init_subdir()
{
struct pathnames *new = malloc(sizeof(struct pathnames));
if(new == NULL)
EXIT_UNSQUASH("Out of memory in init_subdir\n");
new->count = 0;
return new;
}
struct pathnames *add_subdir(struct pathnames *paths, struct pathname *path)
{
if(paths->count % PATHS_ALLOC_SIZE == 0) {
paths = realloc(paths, sizeof(struct pathnames *) +
(paths->count + PATHS_ALLOC_SIZE) *
sizeof(struct pathname *));
if(paths == NULL)
EXIT_UNSQUASH("Out of memory in add_subdir\n");
}
paths->path[paths->count++] = path;
return paths;
}
void free_subdir(struct pathnames *paths)
{
free(paths);
}
int matches(struct pathnames *paths, char *name, struct pathnames **new)
{
int i, n;
if(paths == NULL) {
*new = NULL;
return TRUE;
}
*new = init_subdir();
for(n = 0; n < paths->count; n++) {
struct pathname *path = paths->path[n];
for(i = 0; i < path->names; i++) {
int match = use_regex ?
regexec(path->name[i].preg, name, (size_t) 0,
NULL, 0) == 0 : fnmatch(path->name[i].name,
name, FNM_PATHNAME|FNM_PERIOD|FNM_EXTMATCH) ==
0;
if(match && path->name[i].paths == NULL)
/*
* match on a leaf component, any subdirectories
* will implicitly match, therefore return an
* empty new search set
*/
goto empty_set;
if(match)
/*
* match on a non-leaf component, add any
* subdirectories to the new set of
* subdirectories to scan for this name
*/
*new = add_subdir(*new, path->name[i].paths);
}
}
if((*new)->count == 0) {
/*
* no matching names found, delete empty search set, and return
* FALSE
*/
free_subdir(*new);
*new = NULL;
return FALSE;
}
/*
* one or more matches with sub-directories found (no leaf matches),
* return new search set and return TRUE
*/
return TRUE;
empty_set:
/*
* found matching leaf exclude, return empty search set and return TRUE
*/
free_subdir(*new);
*new = NULL;
return TRUE;
}
void pre_scan(char *parent_name, unsigned int start_block, unsigned int offset,
struct pathnames *paths)
{
unsigned int type;
char *name;
struct pathnames *new;
struct inode *i;
struct dir *dir = s_ops.squashfs_opendir(start_block, offset, &i);
if(dir == NULL)
return;
while(squashfs_readdir(dir, &name, &start_block, &offset, &type)) {
struct inode *i;
char *pathname;
int res;
TRACE("pre_scan: name %s, start_block %d, offset %d, type %d\n",
name, start_block, offset, type);
if(!matches(paths, name, &new))
continue;
res = asprintf(&pathname, "%s/%s", parent_name, name);
if(res == -1)
EXIT_UNSQUASH("asprintf failed in dir_scan\n");
if(type == SQUASHFS_DIR_TYPE)
pre_scan(parent_name, start_block, offset, new);
else if(new == NULL) {
if(type == SQUASHFS_FILE_TYPE ||
type == SQUASHFS_LREG_TYPE) {
i = s_ops.read_inode(start_block, offset);
if(created_inode[i->inode_number - 1] == NULL) {
created_inode[i->inode_number - 1] =
(char *) i;
total_blocks += (i->data +
(block_size - 1)) >> block_log;
}
total_files ++;
}
total_inodes ++;
}
free_subdir(new);
free(pathname);
}
squashfs_closedir(dir);
}
void dir_scan(char *parent_name, unsigned int start_block, unsigned int offset,
struct pathnames *paths)
{
unsigned int type;
char *name;
struct pathnames *new;
struct inode *i;
struct dir *dir = s_ops.squashfs_opendir(start_block, offset, &i);
if(dir == NULL) {
ERROR("dir_scan: failed to read directory %s, skipping\n",
parent_name);
return;
}
if(lsonly || info)
print_filename(parent_name, i);
if(!lsonly) {
/*
* Make directory with default User rwx permissions rather than
* the permissions from the filesystem, as these may not have
* write/execute permission. These are fixed up later in
* set_attributes().
*/
int res = mkdir(parent_name, S_IRUSR|S_IWUSR|S_IXUSR);
if(res == -1) {
/*
* Skip directory if mkdir fails, unless we're
* forcing and the error is -EEXIST
*/
if(!force || errno != EEXIST) {
ERROR("dir_scan: failed to make directory %s, "
"because %s\n", parent_name,
strerror(errno));
squashfs_closedir(dir);
return;
}
/*
* Try to change permissions of existing directory so
* that we can write to it
*/
res = chmod(parent_name, S_IRUSR|S_IWUSR|S_IXUSR);
if (res == -1)
ERROR("dir_scan: failed to change permissions "
"for directory %s, because %s\n",
parent_name, strerror(errno));
}
}
while(squashfs_readdir(dir, &name, &start_block, &offset, &type)) {
char *pathname;
int res;
TRACE("dir_scan: name %s, start_block %d, offset %d, type %d\n",
name, start_block, offset, type);
if(!matches(paths, name, &new))
continue;
res = asprintf(&pathname, "%s/%s", parent_name, name);
if(res == -1)
EXIT_UNSQUASH("asprintf failed in dir_scan\n");
if(type == SQUASHFS_DIR_TYPE) {
dir_scan(pathname, start_block, offset, new);
free(pathname);
} else if(new == NULL) {
update_info(pathname);
i = s_ops.read_inode(start_block, offset);
if(lsonly || info)
print_filename(pathname, i);
if(!lsonly)
create_inode(pathname, i);
if(i->type == SQUASHFS_SYMLINK_TYPE ||
i->type == SQUASHFS_LSYMLINK_TYPE)
free(i->symlink);
} else
free(pathname);
free_subdir(new);
}
if(!lsonly)
queue_dir(parent_name, dir);
squashfs_closedir(dir);
dir_count ++;
}
void squashfs_stat(char *source)
{
time_t mkfs_time = (time_t) sBlk.s.mkfs_time;
char *mkfs_str = ctime(&mkfs_time);
#if __BYTE_ORDER == __BIG_ENDIAN
printf("Found a valid %sSQUASHFS %d:%d superblock on %s.\n",
sBlk.s.s_major == 4 ? "" : swap ? "little endian " :
"big endian ", sBlk.s.s_major, sBlk.s.s_minor, source);
#else
printf("Found a valid %sSQUASHFS %d:%d superblock on %s.\n",
sBlk.s.s_major == 4 ? "" : swap ? "big endian " :
"little endian ", sBlk.s.s_major, sBlk.s.s_minor, source);
#endif
printf("Creation or last append time %s", mkfs_str ? mkfs_str :
"failed to get time\n");
printf("Filesystem size %.2f Kbytes (%.2f Mbytes)\n",
sBlk.s.bytes_used / 1024.0, sBlk.s.bytes_used /
(1024.0 * 1024.0));
if(sBlk.s.s_major == 4) {
printf("Compression %s\n", comp->name);
if(SQUASHFS_COMP_OPTS(sBlk.s.flags)) {
char buffer[SQUASHFS_METADATA_SIZE] __attribute__ ((aligned));
int bytes;
bytes = read_block(fd, sizeof(sBlk.s), NULL, 0, buffer);
if(bytes == 0) {
ERROR("Failed to read compressor options\n");
return;
}
compressor_display_options(comp, buffer, bytes);
}
}
printf("Block size %d\n", sBlk.s.block_size);
printf("Filesystem is %sexportable via NFS\n",
SQUASHFS_EXPORTABLE(sBlk.s.flags) ? "" : "not ");
printf("Inodes are %scompressed\n",
SQUASHFS_UNCOMPRESSED_INODES(sBlk.s.flags) ? "un" : "");
printf("Data is %scompressed\n",
SQUASHFS_UNCOMPRESSED_DATA(sBlk.s.flags) ? "un" : "");
if(sBlk.s.s_major > 1) {
if(SQUASHFS_NO_FRAGMENTS(sBlk.s.flags))
printf("Fragments are not stored\n");
else {
printf("Fragments are %scompressed\n",
SQUASHFS_UNCOMPRESSED_FRAGMENTS(sBlk.s.flags) ?
"un" : "");
printf("Always-use-fragments option is %sspecified\n",
SQUASHFS_ALWAYS_FRAGMENTS(sBlk.s.flags) ? "" :
"not ");
}
}
if(sBlk.s.s_major == 4) {
if(SQUASHFS_NO_XATTRS(sBlk.s.flags))
printf("Xattrs are not stored\n");
else
printf("Xattrs are %scompressed\n",
SQUASHFS_UNCOMPRESSED_XATTRS(sBlk.s.flags) ?
"un" : "");
}
if(sBlk.s.s_major < 4)
printf("Check data is %spresent in the filesystem\n",
SQUASHFS_CHECK_DATA(sBlk.s.flags) ? "" :
"not ");
if(sBlk.s.s_major > 1)
printf("Duplicates are %sremoved\n",
SQUASHFS_DUPLICATES(sBlk.s.flags) ? "" : "not ");
else
printf("Duplicates are removed\n");
if(sBlk.s.s_major > 1)
printf("Number of fragments %d\n", sBlk.s.fragments);
printf("Number of inodes %d\n", sBlk.s.inodes);
if(sBlk.s.s_major == 4)
printf("Number of ids %d\n", sBlk.s.no_ids);
else {
printf("Number of uids %d\n", sBlk.no_uids);
printf("Number of gids %d\n", sBlk.no_guids);
}
TRACE("sBlk.s.inode_table_start 0x%llx\n", sBlk.s.inode_table_start);
TRACE("sBlk.s.directory_table_start 0x%llx\n",
sBlk.s.directory_table_start);
if(sBlk.s.s_major > 1)
TRACE("sBlk.s.fragment_table_start 0x%llx\n\n",
sBlk.s.fragment_table_start);
if(sBlk.s.s_major > 2)
TRACE("sBlk.s.lookup_table_start 0x%llx\n\n",
sBlk.s.lookup_table_start);
if(sBlk.s.s_major == 4) {
TRACE("sBlk.s.id_table_start 0x%llx\n", sBlk.s.id_table_start);
TRACE("sBlk.s.xattr_id_table_start 0x%llx\n",
sBlk.s.xattr_id_table_start);
} else {
TRACE("sBlk.uid_start 0x%llx\n", sBlk.uid_start);
TRACE("sBlk.guid_start 0x%llx\n", sBlk.guid_start);
}
}
int check_compression(struct compressor *comp)
{
int res, bytes = 0;
char buffer[SQUASHFS_METADATA_SIZE] __attribute__ ((aligned));
if(!comp->supported) {
ERROR("Filesystem uses %s compression, this is "
"unsupported by this version\n", comp->name);
ERROR("Decompressors available:\n");
display_compressors("", "");
return 0;
}
/*
* Read compression options from disk if present, and pass to
* the compressor to ensure we know how to decompress a filesystem
* compressed with these compression options.
*
* Note, even if there is no compression options we still call the
* compressor because some compression options may be mandatory
* for some compressors.
*/
if(SQUASHFS_COMP_OPTS(sBlk.s.flags)) {
bytes = read_block(fd, sizeof(sBlk.s), NULL, 0, buffer);
if(bytes == 0) {
ERROR("Failed to read compressor options\n");
return 0;
}
}
res = compressor_check_options(comp, sBlk.s.block_size, buffer, bytes);
return res != -1;
}
int read_super(char *source)
{
squashfs_super_block_3 sBlk_3;
struct squashfs_super_block sBlk_4;
/*
* Try to read a Squashfs 4 superblock
*/
read_fs_bytes(fd, SQUASHFS_START, sizeof(struct squashfs_super_block),
&sBlk_4);
swap = sBlk_4.s_magic != SQUASHFS_MAGIC;
SQUASHFS_INSWAP_SUPER_BLOCK(&sBlk_4);
if(sBlk_4.s_magic == SQUASHFS_MAGIC && sBlk_4.s_major == 4 &&
sBlk_4.s_minor == 0) {
s_ops.squashfs_opendir = squashfs_opendir_4;
s_ops.read_fragment = read_fragment_4;
s_ops.read_fragment_table = read_fragment_table_4;
s_ops.read_block_list = read_block_list_2;
s_ops.read_inode = read_inode_4;
s_ops.read_uids_guids = read_uids_guids_4;
memcpy(&sBlk, &sBlk_4, sizeof(sBlk_4));
/*
* Check the compression type
*/
comp = lookup_compressor_id(sBlk.s.compression);
return TRUE;
}
/*
* Not a Squashfs 4 superblock, try to read a squashfs 3 superblock
* (compatible with 1 and 2 filesystems)
*/
read_fs_bytes(fd, SQUASHFS_START, sizeof(squashfs_super_block_3),
&sBlk_3);
/*
* Check it is a SQUASHFS superblock
*/
swap = 0;
if(sBlk_3.s_magic != SQUASHFS_MAGIC) {
if(sBlk_3.s_magic == SQUASHFS_MAGIC_SWAP) {
squashfs_super_block_3 sblk;
ERROR("Reading a different endian SQUASHFS filesystem "
"on %s\n", source);
SQUASHFS_SWAP_SUPER_BLOCK_3(&sblk, &sBlk_3);
memcpy(&sBlk_3, &sblk, sizeof(squashfs_super_block_3));
swap = 1;
} else {
ERROR("Can't find a SQUASHFS superblock on %s\n",
source);
goto failed_mount;
}
}
sBlk.s.s_magic = sBlk_3.s_magic;
sBlk.s.inodes = sBlk_3.inodes;
sBlk.s.mkfs_time = sBlk_3.mkfs_time;
sBlk.s.block_size = sBlk_3.block_size;
sBlk.s.fragments = sBlk_3.fragments;
sBlk.s.block_log = sBlk_3.block_log;
sBlk.s.flags = sBlk_3.flags;
sBlk.s.s_major = sBlk_3.s_major;
sBlk.s.s_minor = sBlk_3.s_minor;
sBlk.s.root_inode = sBlk_3.root_inode;
sBlk.s.bytes_used = sBlk_3.bytes_used;
sBlk.s.inode_table_start = sBlk_3.inode_table_start;
sBlk.s.directory_table_start = sBlk_3.directory_table_start;
sBlk.s.fragment_table_start = sBlk_3.fragment_table_start;
sBlk.s.lookup_table_start = sBlk_3.lookup_table_start;
sBlk.no_uids = sBlk_3.no_uids;
sBlk.no_guids = sBlk_3.no_guids;
sBlk.uid_start = sBlk_3.uid_start;
sBlk.guid_start = sBlk_3.guid_start;
sBlk.s.xattr_id_table_start = SQUASHFS_INVALID_BLK;
/* Check the MAJOR & MINOR versions */
if(sBlk.s.s_major == 1 || sBlk.s.s_major == 2) {
sBlk.s.bytes_used = sBlk_3.bytes_used_2;
sBlk.uid_start = sBlk_3.uid_start_2;
sBlk.guid_start = sBlk_3.guid_start_2;
sBlk.s.inode_table_start = sBlk_3.inode_table_start_2;
sBlk.s.directory_table_start = sBlk_3.directory_table_start_2;
if(sBlk.s.s_major == 1) {
sBlk.s.block_size = sBlk_3.block_size_1;
sBlk.s.fragment_table_start = sBlk.uid_start;
s_ops.squashfs_opendir = squashfs_opendir_1;
s_ops.read_fragment_table = read_fragment_table_1;
s_ops.read_block_list = read_block_list_1;
s_ops.read_inode = read_inode_1;
s_ops.read_uids_guids = read_uids_guids_1;
} else {
sBlk.s.fragment_table_start =
sBlk_3.fragment_table_start_2;
s_ops.squashfs_opendir = squashfs_opendir_1;
s_ops.read_fragment = read_fragment_2;
s_ops.read_fragment_table = read_fragment_table_2;
s_ops.read_block_list = read_block_list_2;
s_ops.read_inode = read_inode_2;
s_ops.read_uids_guids = read_uids_guids_1;
}
} else if(sBlk.s.s_major == 3) {
s_ops.squashfs_opendir = squashfs_opendir_3;
s_ops.read_fragment = read_fragment_3;
s_ops.read_fragment_table = read_fragment_table_3;
s_ops.read_block_list = read_block_list_2;
s_ops.read_inode = read_inode_3;
s_ops.read_uids_guids = read_uids_guids_1;
} else {
ERROR("Filesystem on %s is (%d:%d), ", source, sBlk.s.s_major,
sBlk.s.s_minor);
ERROR("which is a later filesystem version than I support!\n");
goto failed_mount;
}
/*
* 1.x, 2.x and 3.x filesystems use gzip compression.
*/
comp = lookup_compressor("gzip");
return TRUE;
failed_mount:
return FALSE;
}
struct pathname *process_extract_files(struct pathname *path, char *filename)
{
FILE *fd;
char buffer[MAX_LINE + 1]; /* overflow safe */
char *name;
fd = fopen(filename, "r");
if(fd == NULL)
EXIT_UNSQUASH("Failed to open extract file \"%s\" because %s\n",
filename, strerror(errno));
while(fgets(name = buffer, MAX_LINE + 1, fd) != NULL) {
int len = strlen(name);
if(len == MAX_LINE && name[len - 1] != '\n')
/* line too large */
EXIT_UNSQUASH("Line too long when reading "
"extract file \"%s\", larger than %d "
"bytes\n", filename, MAX_LINE);
/*
* Remove '\n' terminator if it exists (the last line
* in the file may not be '\n' terminated)
*/
if(len && name[len - 1] == '\n')
name[len - 1] = '\0';
/* Skip any leading whitespace */
while(isspace(*name))
name ++;
/* if comment line, skip */
if(*name == '#')
continue;
/* check for initial backslash, to accommodate
* filenames with leading space or leading # character
*/
if(*name == '\\')
name ++;
/* if line is now empty after skipping characters, skip it */
if(*name == '\0')
continue;
path = add_path(path, name, name);
}
if(ferror(fd))
EXIT_UNSQUASH("Reading extract file \"%s\" failed because %s\n",
filename, strerror(errno));
fclose(fd);
return path;
}
/*
* reader thread. This thread processes read requests queued by the
* cache_get() routine.
*/
void *reader(void *arg)
{
while(1) {
struct cache_entry *entry = queue_get(to_reader);
int res = read_fs_bytes(fd, entry->block,
SQUASHFS_COMPRESSED_SIZE_BLOCK(entry->size),
entry->data);
if(res && SQUASHFS_COMPRESSED_BLOCK(entry->size))
/*
* queue successfully read block to the inflate
* thread(s) for further processing
*/
queue_put(to_inflate, entry);
else
/*
* block has either been successfully read and is
* uncompressed, or an error has occurred, clear pending
* flag, set error appropriately, and wake up any
* threads waiting on this buffer
*/
cache_block_ready(entry, !res);
}
}
/*
* writer thread. This processes file write requests queued by the
* write_file() routine.
*/
void *writer(void *arg)
{
int i;
while(1) {
struct squashfs_file *file = queue_get(to_writer);
int file_fd;
long long hole = 0;
int failed = FALSE;
int error;
if(file == NULL) {
queue_put(from_writer, NULL);
continue;
} else if(file->fd == -1) {
/* write attributes for directory file->pathname */
set_attributes(file->pathname, file->mode, file->uid,
file->gid, file->time, file->xattr, TRUE);
free(file->pathname);
free(file);
continue;
}
TRACE("writer: regular file, blocks %d\n", file->blocks);
file_fd = file->fd;
for(i = 0; i < file->blocks; i++, cur_blocks ++) {
struct file_entry *block = queue_get(to_writer);
if(block->buffer == 0) { /* sparse file */
hole += block->size;
free(block);
continue;
}
cache_block_wait(block->buffer);
if(block->buffer->error)
failed = TRUE;
if(failed)
continue;
error = write_block(file_fd, block->buffer->data +
block->offset, block->size, hole, file->sparse);
if(error == FALSE) {
ERROR("writer: failed to write data block %d\n",
i);
failed = TRUE;
}
hole = 0;
cache_block_put(block->buffer);
free(block);
}
if(hole && failed == FALSE) {
/*
* corner case for hole extending to end of file
*/
if(file->sparse == FALSE ||
lseek(file_fd, hole, SEEK_CUR) == -1) {
/*
* for files which we don't want to write
* sparsely, or for broken lseeks which cannot
* seek beyond end of file, write_block will do
* the right thing
*/
hole --;
if(write_block(file_fd, "\0", 1, hole,
file->sparse) == FALSE) {
ERROR("writer: failed to write sparse "
"data block\n");
failed = TRUE;
}
} else if(ftruncate(file_fd, file->file_size) == -1) {
ERROR("writer: failed to write sparse data "
"block\n");
failed = TRUE;
}
}
close_wake(file_fd);
if(failed == FALSE)
set_attributes(file->pathname, file->mode, file->uid,
file->gid, file->time, file->xattr, force);
else {
ERROR("Failed to write %s, skipping\n", file->pathname);
unlink(file->pathname);
}
free(file->pathname);
free(file);
}
}
/*
* decompress thread. This decompresses buffers queued by the read thread
*/
void *inflator(void *arg)
{
char tmp[block_size];
while(1) {
struct cache_entry *entry = queue_get(to_inflate);
int error, res;
res = compressor_uncompress(comp, tmp, entry->data,
SQUASHFS_COMPRESSED_SIZE_BLOCK(entry->size), block_size,
&error);
if(res == -1)
ERROR("%s uncompress failed with error code %d\n",
comp->name, error);
else
memcpy(entry->data, tmp, res);
/*
* block has been either successfully decompressed, or an error
* occurred, clear pending flag, set error appropriately and
* wake up any threads waiting on this block
*/
cache_block_ready(entry, res == -1);
}
}
void *progress_thread(void *arg)
{
struct timespec requested_time, remaining;
struct itimerval itimerval;
struct winsize winsize;
if(ioctl(1, TIOCGWINSZ, &winsize) == -1) {
if(isatty(STDOUT_FILENO))
ERROR("TIOCGWINSZ ioctl failed, defaulting to 80 "
"columns\n");
columns = 80;
} else
columns = winsize.ws_col;
signal(SIGWINCH, sigwinch_handler);
signal(SIGALRM, sigalrm_handler);
itimerval.it_value.tv_sec = 0;
itimerval.it_value.tv_usec = 250000;
itimerval.it_interval.tv_sec = 0;
itimerval.it_interval.tv_usec = 250000;
setitimer(ITIMER_REAL, &itimerval, NULL);
requested_time.tv_sec = 0;
requested_time.tv_nsec = 250000000;
while(1) {
int res = nanosleep(&requested_time, &remaining);
if(res == -1 && errno != EINTR)
EXIT_UNSQUASH("nanosleep failed in progress thread\n");
if(progress_enabled) {
pthread_mutex_lock(&screen_mutex);
progress_bar(sym_count + dev_count +
fifo_count + cur_blocks, total_inodes -
total_files + total_blocks, columns);
pthread_mutex_unlock(&screen_mutex);
}
}
}
void initialise_threads(int fragment_buffer_size, int data_buffer_size)
{
struct rlimit rlim;
int i, max_files, res;
sigset_t sigmask, old_mask;
/* block SIGQUIT and SIGHUP, these are handled by the info thread */
sigemptyset(&sigmask);
sigaddset(&sigmask, SIGQUIT);
sigaddset(&sigmask, SIGHUP);
if(pthread_sigmask(SIG_BLOCK, &sigmask, NULL) == -1)
EXIT_UNSQUASH("Failed to set signal mask in initialise_threads"
"\n");
/*
* temporarily block these signals so the created sub-threads will
* ignore them, ensuring the main thread handles them
*/
sigemptyset(&sigmask);
sigaddset(&sigmask, SIGINT);
sigaddset(&sigmask, SIGTERM);
if(pthread_sigmask(SIG_BLOCK, &sigmask, &old_mask) == -1)
EXIT_UNSQUASH("Failed to set signal mask in initialise_threads"
"\n");
if(processors == -1) {
#ifndef linux
int mib[2];
size_t len = sizeof(processors);
mib[0] = CTL_HW;
#ifdef HW_AVAILCPU
mib[1] = HW_AVAILCPU;
#else
mib[1] = HW_NCPU;
#endif
if(sysctl(mib, 2, &processors, &len, NULL, 0) == -1) {
ERROR("Failed to get number of available processors. "
"Defaulting to 1\n");
processors = 1;
}
#else
processors = sysconf(_SC_NPROCESSORS_ONLN);
#endif
}
if(add_overflow(processors, 3) ||
multiply_overflow(processors + 3, sizeof(pthread_t)))
EXIT_UNSQUASH("Processors too large\n");
thread = malloc((3 + processors) * sizeof(pthread_t));
if(thread == NULL)
EXIT_UNSQUASH("Out of memory allocating thread descriptors\n");
inflator_thread = &thread[3];
/*
* dimensioning the to_reader and to_inflate queues. The size of
* these queues is directly related to the amount of block
* read-ahead possible. To_reader queues block read requests to
* the reader thread and to_inflate queues block decompression
* requests to the inflate thread(s) (once the block has been read by
* the reader thread). The amount of read-ahead is determined by
* the combined size of the data_block and fragment caches which
* determine the total number of blocks which can be "in flight"
* at any one time (either being read or being decompressed)
*
* The maximum file open limit, however, affects the read-ahead
* possible, in that for normal sizes of the fragment and data block
* caches, where the incoming files have few data blocks or one fragment
* only, the file open limit is likely to be reached before the
* caches are full. This means the worst case sizing of the combined
* sizes of the caches is unlikely to ever be necessary. However, is is
* obvious read-ahead up to the data block cache size is always possible
* irrespective of the file open limit, because a single file could
* contain that number of blocks.
*
* Choosing the size as "file open limit + data block cache size" seems
* to be a reasonable estimate. We can reasonably assume the maximum
* likely read-ahead possible is data block cache size + one fragment
* per open file.
*
* dimensioning the to_writer queue. The size of this queue is
* directly related to the amount of block read-ahead possible.
* However, unlike the to_reader and to_inflate queues, this is
* complicated by the fact the to_writer queue not only contains
* entries for fragments and data_blocks but it also contains
* file entries, one per open file in the read-ahead.
*
* Choosing the size as "2 * (file open limit) +
* data block cache size" seems to be a reasonable estimate.
* We can reasonably assume the maximum likely read-ahead possible
* is data block cache size + one fragment per open file, and then
* we will have a file_entry for each open file.
*/
res = getrlimit(RLIMIT_NOFILE, &rlim);
if (res == -1) {
ERROR("failed to get open file limit! Defaulting to 1\n");
rlim.rlim_cur = 1;
}
if (rlim.rlim_cur != RLIM_INFINITY) {
/*
* leave OPEN_FILE_MARGIN free (rlim_cur includes fds used by
* stdin, stdout, stderr and filesystem fd
*/
if (rlim.rlim_cur <= OPEN_FILE_MARGIN)
/* no margin, use minimum possible */
max_files = 1;
else
max_files = rlim.rlim_cur - OPEN_FILE_MARGIN;
} else
max_files = -1;
/* set amount of available files for use by open_wait and close_wake */
open_init(max_files);
/*
* allocate to_reader, to_inflate and to_writer queues. Set based on
* open file limit and cache size, unless open file limit is unlimited,
* in which case set purely based on cache limits
*
* In doing so, check that the user supplied values do not overflow
* a signed int
*/
if (max_files != -1) {
if(add_overflow(data_buffer_size, max_files) ||
add_overflow(data_buffer_size, max_files * 2))
EXIT_UNSQUASH("Data queue size is too large\n");
to_reader = queue_init(max_files + data_buffer_size);
to_inflate = queue_init(max_files + data_buffer_size);
to_writer = queue_init(max_files * 2 + data_buffer_size);
} else {
int all_buffers_size;
if(add_overflow(fragment_buffer_size, data_buffer_size))
EXIT_UNSQUASH("Data and fragment queues combined are"
" too large\n");
all_buffers_size = fragment_buffer_size + data_buffer_size;
if(add_overflow(all_buffers_size, all_buffers_size))
EXIT_UNSQUASH("Data and fragment queues combined are"
" too large\n");
to_reader = queue_init(all_buffers_size);
to_inflate = queue_init(all_buffers_size);
to_writer = queue_init(all_buffers_size * 2);
}
from_writer = queue_init(1);
fragment_cache = cache_init(block_size, fragment_buffer_size);
data_cache = cache_init(block_size, data_buffer_size);
pthread_create(&thread[0], NULL, reader, NULL);
pthread_create(&thread[1], NULL, writer, NULL);
pthread_create(&thread[2], NULL, progress_thread, NULL);
init_info();
pthread_mutex_init(&fragment_mutex, NULL);
for(i = 0; i < processors; i++) {
if(pthread_create(&inflator_thread[i], NULL, inflator, NULL) !=
0)
EXIT_UNSQUASH("Failed to create thread\n");
}
printf("Parallel unsquashfs: Using %d processor%s\n", processors,
processors == 1 ? "" : "s");
if(pthread_sigmask(SIG_SETMASK, &old_mask, NULL) == -1)
EXIT_UNSQUASH("Failed to set signal mask in initialise_threads"
"\n");
}
void enable_progress_bar()
{
pthread_mutex_lock(&screen_mutex);
progress_enabled = progress;
pthread_mutex_unlock(&screen_mutex);
}
void disable_progress_bar()
{
pthread_mutex_lock(&screen_mutex);
if(progress_enabled) {
progress_bar(sym_count + dev_count + fifo_count + cur_blocks,
total_inodes - total_files + total_blocks, columns);
printf("\n");
}
progress_enabled = FALSE;
pthread_mutex_unlock(&screen_mutex);
}
void progressbar_error(char *fmt, ...)
{
va_list ap;
pthread_mutex_lock(&screen_mutex);
if(progress_enabled)
fprintf(stderr, "\n");
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
pthread_mutex_unlock(&screen_mutex);
}
void progressbar_info(char *fmt, ...)
{
va_list ap;
pthread_mutex_lock(&screen_mutex);
if(progress_enabled)
printf("\n");
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
pthread_mutex_unlock(&screen_mutex);
}
void progress_bar(long long current, long long max, int columns)
{
char rotate_list[] = { '|', '/', '-', '\\' };
int max_digits, used, hashes, spaces;
static int tty = -1;
if(max == 0)
return;
max_digits = floor(log10(max)) + 1;
used = max_digits * 2 + 11;
hashes = (current * (columns - used)) / max;
spaces = columns - used - hashes;
if((current > max) || (columns - used < 0))
return;
if(tty == -1)
tty = isatty(STDOUT_FILENO);
if(!tty) {
static long long previous = -1;
/*
* Updating much more frequently than this results in huge
* log files.
*/
if((current % 100) != 0 && current != max)
return;
/* Don't update just to rotate the spinner. */
if(current == previous)
return;
previous = current;
}
printf("\r[");
while (hashes --)
putchar('=');
putchar(rotate_list[rotate]);
while(spaces --)
putchar(' ');
printf("] %*lld/%*lld", max_digits, current, max_digits, max);
printf(" %3lld%%", current * 100 / max);
fflush(stdout);
}
int parse_number(char *arg, int *res)
{
char *b;
long number = strtol(arg, &b, 10);
/* check for trailing junk after number */
if(*b != '\0')
return 0;
/*
* check for strtol underflow or overflow in conversion.
* Note: strtol can validly return LONG_MIN and LONG_MAX
* if the user entered these values, but, additional code
* to distinguish this scenario is unnecessary, because for
* our purposes LONG_MIN and LONG_MAX are too large anyway
*/
if(number == LONG_MIN || number == LONG_MAX)
return 0;
/* reject negative numbers as invalid */
if(number < 0)
return 0;
/* check if long result will overflow signed int */
if(number > INT_MAX)
return 0;
*res = number;
return 1;
}
#define VERSION() \
printf("unsquashfs version 4.3 (2014/05/12)\n");\
printf("copyright (C) 2014 Phillip Lougher "\
"<phillip@squashfs.org.uk>\n\n");\
printf("This program is free software; you can redistribute it and/or"\
"\n");\
printf("modify it under the terms of the GNU General Public License"\
"\n");\
printf("as published by the Free Software Foundation; either version "\
"2,\n");\
printf("or (at your option) any later version.\n\n");\
printf("This program is distributed in the hope that it will be "\
"useful,\n");\
printf("but WITHOUT ANY WARRANTY; without even the implied warranty of"\
"\n");\
printf("MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the"\
"\n");\
printf("GNU General Public License for more details.\n");
int main(int argc, char *argv[])
{
char *dest = "squashfs-root";
int i, stat_sys = FALSE, version = FALSE;
int n;
struct pathnames *paths = NULL;
struct pathname *path = NULL;
long long directory_table_end;
int fragment_buffer_size = FRAGMENT_BUFFER_DEFAULT;
int data_buffer_size = DATA_BUFFER_DEFAULT;
pthread_mutex_init(&screen_mutex, NULL);
root_process = geteuid() == 0;
if(root_process)
umask(0);
for(i = 1; i < argc; i++) {
if(*argv[i] != '-')
break;
if(strcmp(argv[i], "-version") == 0 ||
strcmp(argv[i], "-v") == 0) {
VERSION();
version = TRUE;
} else if(strcmp(argv[i], "-info") == 0 ||
strcmp(argv[i], "-i") == 0)
info = TRUE;
else if(strcmp(argv[i], "-ls") == 0 ||
strcmp(argv[i], "-l") == 0)
lsonly = TRUE;
else if(strcmp(argv[i], "-no-progress") == 0 ||
strcmp(argv[i], "-n") == 0)
progress = FALSE;
else if(strcmp(argv[i], "-no-xattrs") == 0 ||
strcmp(argv[i], "-no") == 0)
no_xattrs = TRUE;
else if(strcmp(argv[i], "-xattrs") == 0 ||
strcmp(argv[i], "-x") == 0)
no_xattrs = FALSE;
else if(strcmp(argv[i], "-user-xattrs") == 0 ||
strcmp(argv[i], "-u") == 0) {
user_xattrs = TRUE;
no_xattrs = FALSE;
} else if(strcmp(argv[i], "-dest") == 0 ||
strcmp(argv[i], "-d") == 0) {
if(++i == argc) {
fprintf(stderr, "%s: -dest missing filename\n",
argv[0]);
exit(1);
}
dest = argv[i];
} else if(strcmp(argv[i], "-processors") == 0 ||
strcmp(argv[i], "-p") == 0) {
if((++i == argc) ||
!parse_number(argv[i],
&processors)) {
ERROR("%s: -processors missing or invalid "
"processor number\n", argv[0]);
exit(1);
}
if(processors < 1) {
ERROR("%s: -processors should be 1 or larger\n",
argv[0]);
exit(1);
}
} else if(strcmp(argv[i], "-data-queue") == 0 ||
strcmp(argv[i], "-da") == 0) {
if((++i == argc) ||
!parse_number(argv[i],
&data_buffer_size)) {
ERROR("%s: -data-queue missing or invalid "
"queue size\n", argv[0]);
exit(1);
}
if(data_buffer_size < 1) {
ERROR("%s: -data-queue should be 1 Mbyte or "
"larger\n", argv[0]);
exit(1);
}
} else if(strcmp(argv[i], "-frag-queue") == 0 ||
strcmp(argv[i], "-fr") == 0) {
if((++i == argc) ||
!parse_number(argv[i],
&fragment_buffer_size)) {
ERROR("%s: -frag-queue missing or invalid "
"queue size\n", argv[0]);
exit(1);
}
if(fragment_buffer_size < 1) {
ERROR("%s: -frag-queue should be 1 Mbyte or "
"larger\n", argv[0]);
exit(1);
}
} else if(strcmp(argv[i], "-force") == 0 ||
strcmp(argv[i], "-f") == 0)
force = TRUE;
else if(strcmp(argv[i], "-stat") == 0 ||
strcmp(argv[i], "-s") == 0)
stat_sys = TRUE;
else if(strcmp(argv[i], "-lls") == 0 ||
strcmp(argv[i], "-ll") == 0) {
lsonly = TRUE;
short_ls = FALSE;
} else if(strcmp(argv[i], "-linfo") == 0 ||
strcmp(argv[i], "-li") == 0) {
info = TRUE;
short_ls = FALSE;
} else if(strcmp(argv[i], "-ef") == 0 ||
strcmp(argv[i], "-e") == 0) {
if(++i == argc) {
fprintf(stderr, "%s: -ef missing filename\n",
argv[0]);
exit(1);
}
path = process_extract_files(path, argv[i]);
} else if(strcmp(argv[i], "-regex") == 0 ||
strcmp(argv[i], "-r") == 0)
use_regex = TRUE;
else
goto options;
}
if(lsonly || info)
progress = FALSE;
#ifdef SQUASHFS_TRACE
/*
* Disable progress bar if full debug tracing is enabled.
* The progress bar in this case just gets in the way of the
* debug trace output
*/
progress = FALSE;
#endif
if(i == argc) {
if(!version) {
options:
ERROR("SYNTAX: %s [options] filesystem [directories or "
"files to extract]\n", argv[0]);
ERROR("\t-v[ersion]\t\tprint version, licence and "
"copyright information\n");
ERROR("\t-d[est] <pathname>\tunsquash to <pathname>, "
"default \"squashfs-root\"\n");
ERROR("\t-n[o-progress]\t\tdon't display the progress "
"bar\n");
ERROR("\t-no[-xattrs]\t\tdon't extract xattrs in file system"
NOXOPT_STR"\n");
ERROR("\t-x[attrs]\t\textract xattrs in file system"
XOPT_STR "\n");
ERROR("\t-u[ser-xattrs]\t\tonly extract user xattrs in "
"file system.\n\t\t\t\tEnables extracting "
"xattrs\n");
ERROR("\t-p[rocessors] <number>\tuse <number> "
"processors. By default will use\n");
ERROR("\t\t\t\tnumber of processors available\n");
ERROR("\t-i[nfo]\t\t\tprint files as they are "
"unsquashed\n");
ERROR("\t-li[nfo]\t\tprint files as they are "
"unsquashed with file\n");
ERROR("\t\t\t\tattributes (like ls -l output)\n");
ERROR("\t-l[s]\t\t\tlist filesystem, but don't unsquash"
"\n");
ERROR("\t-ll[s]\t\t\tlist filesystem with file "
"attributes (like\n");
ERROR("\t\t\t\tls -l output), but don't unsquash\n");
ERROR("\t-f[orce]\t\tif file already exists then "
"overwrite\n");
ERROR("\t-s[tat]\t\t\tdisplay filesystem superblock "
"information\n");
ERROR("\t-e[f] <extract file>\tlist of directories or "
"files to extract.\n\t\t\t\tOne per line\n");
ERROR("\t-da[ta-queue] <size>\tSet data queue to "
"<size> Mbytes. Default %d\n\t\t\t\tMbytes\n",
DATA_BUFFER_DEFAULT);
ERROR("\t-fr[ag-queue] <size>\tSet fragment queue to "
"<size> Mbytes. Default\n\t\t\t\t%d Mbytes\n",
FRAGMENT_BUFFER_DEFAULT);
ERROR("\t-r[egex]\t\ttreat extract names as POSIX "
"regular expressions\n");
ERROR("\t\t\t\trather than use the default shell "
"wildcard\n\t\t\t\texpansion (globbing)\n");
ERROR("\nDecompressors available:\n");
display_compressors("", "");
}
exit(1);
}
for(n = i + 1; n < argc; n++)
path = add_path(path, argv[n], argv[n]);
if((fd = open(argv[i], O_RDONLY)) == -1) {
ERROR("Could not open %s, because %s\n", argv[i],
strerror(errno));
exit(1);
}
if(read_super(argv[i]) == FALSE)
exit(1);
if(stat_sys) {
squashfs_stat(argv[i]);
exit(0);
}
if(!check_compression(comp))
exit(1);
block_size = sBlk.s.block_size;
block_log = sBlk.s.block_log;
/*
* Sanity check block size and block log.
*
* Check they're within correct limits
*/
if(block_size > SQUASHFS_FILE_MAX_SIZE ||
block_log > SQUASHFS_FILE_MAX_LOG)
EXIT_UNSQUASH("Block size or block_log too large."
" File system is corrupt.\n");
/*
* Check block_size and block_log match
*/
if(block_size != (1 << block_log))
EXIT_UNSQUASH("Block size and block_log do not match."
" File system is corrupt.\n");
/*
* convert from queue size in Mbytes to queue size in
* blocks.
*
* In doing so, check that the user supplied values do not
* overflow a signed int
*/
if(shift_overflow(fragment_buffer_size, 20 - block_log))
EXIT_UNSQUASH("Fragment queue size is too large\n");
else
fragment_buffer_size <<= 20 - block_log;
if(shift_overflow(data_buffer_size, 20 - block_log))
EXIT_UNSQUASH("Data queue size is too large\n");
else
data_buffer_size <<= 20 - block_log;
initialise_threads(fragment_buffer_size, data_buffer_size);
fragment_data = malloc(block_size);
if(fragment_data == NULL)
EXIT_UNSQUASH("failed to allocate fragment_data\n");
file_data = malloc(block_size);
if(file_data == NULL)
EXIT_UNSQUASH("failed to allocate file_data");
data = malloc(block_size);
if(data == NULL)
EXIT_UNSQUASH("failed to allocate data\n");
created_inode = malloc(sBlk.s.inodes * sizeof(char *));
if(created_inode == NULL)
EXIT_UNSQUASH("failed to allocate created_inode\n");
memset(created_inode, 0, sBlk.s.inodes * sizeof(char *));
if(s_ops.read_uids_guids() == FALSE)
EXIT_UNSQUASH("failed to uid/gid table\n");
if(s_ops.read_fragment_table(&directory_table_end) == FALSE)
EXIT_UNSQUASH("failed to read fragment table\n");
if(read_inode_table(sBlk.s.inode_table_start,
sBlk.s.directory_table_start) == FALSE)
EXIT_UNSQUASH("failed to read inode table\n");
if(read_directory_table(sBlk.s.directory_table_start,
directory_table_end) == FALSE)
EXIT_UNSQUASH("failed to read directory table\n");
if(no_xattrs)
sBlk.s.xattr_id_table_start = SQUASHFS_INVALID_BLK;
if(read_xattrs_from_disk(fd, &sBlk.s) == 0)
EXIT_UNSQUASH("failed to read the xattr table\n");
if(path) {
paths = init_subdir();
paths = add_subdir(paths, path);
}
pre_scan(dest, SQUASHFS_INODE_BLK(sBlk.s.root_inode),
SQUASHFS_INODE_OFFSET(sBlk.s.root_inode), paths);
memset(created_inode, 0, sBlk.s.inodes * sizeof(char *));
inode_number = 1;
printf("%d inodes (%d blocks) to write\n\n", total_inodes,
total_inodes - total_files + total_blocks);
enable_progress_bar();
dir_scan(dest, SQUASHFS_INODE_BLK(sBlk.s.root_inode),
SQUASHFS_INODE_OFFSET(sBlk.s.root_inode), paths);
queue_put(to_writer, NULL);
queue_get(from_writer);
disable_progress_bar();
if(!lsonly) {
printf("\n");
printf("created %d files\n", file_count);
printf("created %d directories\n", dir_count);
printf("created %d symlinks\n", sym_count);
printf("created %d devices\n", dev_count);
printf("created %d fifos\n", fifo_count);
}
return 0;
}