blob: 03cc3c4a12997734195a455c1bfd2ba249525c5c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* fscrypt-crypt-util.c - utility for verifying fscrypt-encrypted data
*
* Copyright 2019 Google LLC
*/
/*
* This program implements all crypto algorithms supported by fscrypt (a.k.a.
* ext4, f2fs, and ubifs encryption), for the purpose of verifying the
* correctness of the ciphertext stored on-disk. See usage() below.
*
* All algorithms are implemented in portable C code to avoid depending on
* libcrypto (OpenSSL), and because some fscrypt-supported algorithms aren't
* available in libcrypto anyway (e.g. Adiantum), or are only supported in
* recent versions (e.g. HKDF-SHA512). For simplicity, all crypto code here
* tries to follow the mathematical definitions directly, without optimizing for
* performance or worrying about following security best practices such as
* mitigating side-channel attacks. So, only use this program for testing!
*/
#include <asm/byteorder.h>
#include <errno.h>
#include <getopt.h>
#include <limits.h>
#include <linux/types.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define PROGRAM_NAME "fscrypt-crypt-util"
/*
* Define to enable the tests of the crypto code in this file. If enabled, you
* must link this program with OpenSSL (-lcrypto) v1.1.0 or later, and your
* kernel needs CONFIG_CRYPTO_USER_API_SKCIPHER=y and CONFIG_CRYPTO_ADIANTUM=y.
*/
#undef ENABLE_ALG_TESTS
#define NUM_ALG_TEST_ITERATIONS 10000
static void usage(FILE *fp)
{
fputs(
"Usage: " PROGRAM_NAME " [OPTION]... CIPHER MASTER_KEY\n"
"\n"
"Utility for verifying fscrypt-encrypted data. This program encrypts\n"
"(or decrypts) the data on stdin using the given CIPHER with the given\n"
"MASTER_KEY (or a key derived from it, if a KDF is specified), and writes the\n"
"resulting ciphertext (or plaintext) to stdout.\n"
"\n"
"CIPHER can be AES-256-XTS, AES-256-CTS-CBC, AES-128-CBC-ESSIV, AES-128-CTS-CBC,\n"
"or Adiantum. MASTER_KEY must be a hex string long enough for the cipher.\n"
"\n"
"WARNING: this program is only meant for testing, not for \"real\" use!\n"
"\n"
"Options:\n"
" --block-number=BNUM Starting block number for IV generation.\n"
" Default: 0\n"
" --block-size=BLOCK_SIZE Encrypt each BLOCK_SIZE bytes independently.\n"
" Default: 4096 bytes\n"
" --decrypt Decrypt instead of encrypt\n"
" --file-nonce=NONCE File's nonce as a 32-character hex string\n"
" --fs-uuid=UUID The filesystem UUID as a 32-character hex string.\n"
" Required for --iv-ino-lblk-32 and\n"
" --iv-ino-lblk-64; otherwise is unused.\n"
" --help Show this help\n"
" --inode-number=INUM The file's inode number. Required for\n"
" --iv-ino-lblk-32 and --iv-ino-lblk-64;\n"
" otherwise is unused.\n"
" --iv-ino-lblk-32 Similar to --iv-ino-lblk-64, but selects the\n"
" 32-bit variant.\n"
" --iv-ino-lblk-64 Use the format where the IVs include the inode\n"
" number and the same key is shared across files.\n"
" Requires --kdf=HKDF-SHA512, --fs-uuid,\n"
" --inode-number, and --mode-num.\n"
" --kdf=KDF Key derivation function to use: AES-128-ECB,\n"
" HKDF-SHA512, or none. Default: none\n"
" --mode-num=NUM Derive per-mode key using mode number NUM\n"
" --padding=PADDING If last block is partial, zero-pad it to next\n"
" PADDING-byte boundary. Default: BLOCK_SIZE\n"
, fp);
}
/*----------------------------------------------------------------------------*
* Utilities *
*----------------------------------------------------------------------------*/
#define ARRAY_SIZE(A) (sizeof(A) / sizeof((A)[0]))
#define MIN(x, y) ((x) < (y) ? (x) : (y))
#define MAX(x, y) ((x) > (y) ? (x) : (y))
#define ROUND_DOWN(x, y) ((x) & ~((y) - 1))
#define ROUND_UP(x, y) (((x) + (y) - 1) & ~((y) - 1))
#define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
#define STATIC_ASSERT(e) ((void)sizeof(char[1 - 2*!(e)]))
typedef __u8 u8;
typedef __u16 u16;
typedef __u32 u32;
typedef __u64 u64;
#define cpu_to_le32 __cpu_to_le32
#define cpu_to_be32 __cpu_to_be32
#define cpu_to_le64 __cpu_to_le64
#define cpu_to_be64 __cpu_to_be64
#define le32_to_cpu __le32_to_cpu
#define be32_to_cpu __be32_to_cpu
#define le64_to_cpu __le64_to_cpu
#define be64_to_cpu __be64_to_cpu
#define DEFINE_UNALIGNED_ACCESS_HELPERS(type, native_type) \
static inline native_type __attribute__((unused)) \
get_unaligned_##type(const void *p) \
{ \
__##type x; \
\
memcpy(&x, p, sizeof(x)); \
return type##_to_cpu(x); \
} \
\
static inline void __attribute__((unused)) \
put_unaligned_##type(native_type v, void *p) \
{ \
__##type x = cpu_to_##type(v); \
\
memcpy(p, &x, sizeof(x)); \
}
DEFINE_UNALIGNED_ACCESS_HELPERS(le32, u32)
DEFINE_UNALIGNED_ACCESS_HELPERS(be32, u32)
DEFINE_UNALIGNED_ACCESS_HELPERS(le64, u64)
DEFINE_UNALIGNED_ACCESS_HELPERS(be64, u64)
static inline bool is_power_of_2(unsigned long v)
{
return v != 0 && (v & (v - 1)) == 0;
}
static inline u32 rol32(u32 v, int n)
{
return (v << n) | (v >> (32 - n));
}
static inline u32 ror32(u32 v, int n)
{
return (v >> n) | (v << (32 - n));
}
static inline u64 rol64(u64 v, int n)
{
return (v << n) | (v >> (64 - n));
}
static inline u64 ror64(u64 v, int n)
{
return (v >> n) | (v << (64 - n));
}
static inline void xor(u8 *res, const u8 *a, const u8 *b, size_t count)
{
while (count--)
*res++ = *a++ ^ *b++;
}
static void __attribute__((noreturn, format(printf, 2, 3)))
do_die(int err, const char *format, ...)
{
va_list va;
va_start(va, format);
fputs("[" PROGRAM_NAME "] ERROR: ", stderr);
vfprintf(stderr, format, va);
if (err)
fprintf(stderr, ": %s", strerror(errno));
putc('\n', stderr);
va_end(va);
exit(1);
}
#define die(format, ...) do_die(0, (format), ##__VA_ARGS__)
#define die_errno(format, ...) do_die(errno, (format), ##__VA_ARGS__)
static __attribute__((noreturn)) void
assertion_failed(const char *expr, const char *file, int line)
{
die("Assertion failed: %s at %s:%d", expr, file, line);
}
#define ASSERT(e) ({ if (!(e)) assertion_failed(#e, __FILE__, __LINE__); })
static void *xmalloc(size_t size)
{
void *p = malloc(size);
ASSERT(p != NULL);
return p;
}
static int hexchar2bin(char c)
{
if (c >= 'a' && c <= 'f')
return 10 + c - 'a';
if (c >= 'A' && c <= 'F')
return 10 + c - 'A';
if (c >= '0' && c <= '9')
return c - '0';
return -1;
}
static int hex2bin(const char *hex, u8 *bin, int max_bin_size)
{
size_t len = strlen(hex);
size_t i;
if (len & 1)
return -1;
len /= 2;
if (len > max_bin_size)
return -1;
for (i = 0; i < len; i++) {
int high = hexchar2bin(hex[2 * i]);
int low = hexchar2bin(hex[2 * i + 1]);
if (high < 0 || low < 0)
return -1;
bin[i] = (high << 4) | low;
}
return len;
}
static size_t xread(int fd, void *buf, size_t count)
{
const size_t orig_count = count;
while (count) {
ssize_t res = read(fd, buf, count);
if (res < 0)
die_errno("read error");
if (res == 0)
break;
buf += res;
count -= res;
}
return orig_count - count;
}
static void full_write(int fd, const void *buf, size_t count)
{
while (count) {
ssize_t res = write(fd, buf, count);
if (res < 0)
die_errno("write error");
buf += res;
count -= res;
}
}
#ifdef ENABLE_ALG_TESTS
static void rand_bytes(u8 *buf, size_t count)
{
while (count--)
*buf++ = rand();
}
#endif
/*----------------------------------------------------------------------------*
* Finite field arithmetic *
*----------------------------------------------------------------------------*/
/* Multiply a GF(2^8) element by the polynomial 'x' */
static inline u8 gf2_8_mul_x(u8 b)
{
return (b << 1) ^ ((b & 0x80) ? 0x1B : 0);
}
/* Multiply four packed GF(2^8) elements by the polynomial 'x' */
static inline u32 gf2_8_mul_x_4way(u32 w)
{
return ((w & 0x7F7F7F7F) << 1) ^ (((w & 0x80808080) >> 7) * 0x1B);
}
/* Element of GF(2^128) */
typedef struct {
__le64 lo;
__le64 hi;
} ble128;
/* Multiply a GF(2^128) element by the polynomial 'x' */
static inline void gf2_128_mul_x(ble128 *t)
{
u64 lo = le64_to_cpu(t->lo);
u64 hi = le64_to_cpu(t->hi);
t->hi = cpu_to_le64((hi << 1) | (lo >> 63));
t->lo = cpu_to_le64((lo << 1) ^ ((hi & (1ULL << 63)) ? 0x87 : 0));
}
/*----------------------------------------------------------------------------*
* Group arithmetic *
*----------------------------------------------------------------------------*/
/* Element of Z/(2^{128}Z) (a.k.a. the integers modulo 2^128) */
typedef struct {
__le64 lo;
__le64 hi;
} le128;
static inline void le128_add(le128 *res, const le128 *a, const le128 *b)
{
u64 a_lo = le64_to_cpu(a->lo);
u64 b_lo = le64_to_cpu(b->lo);
res->lo = cpu_to_le64(a_lo + b_lo);
res->hi = cpu_to_le64(le64_to_cpu(a->hi) + le64_to_cpu(b->hi) +
(a_lo + b_lo < a_lo));
}
static inline void le128_sub(le128 *res, const le128 *a, const le128 *b)
{
u64 a_lo = le64_to_cpu(a->lo);
u64 b_lo = le64_to_cpu(b->lo);
res->lo = cpu_to_le64(a_lo - b_lo);
res->hi = cpu_to_le64(le64_to_cpu(a->hi) - le64_to_cpu(b->hi) -
(a_lo - b_lo > a_lo));
}
/*----------------------------------------------------------------------------*
* AES block cipher *
*----------------------------------------------------------------------------*/
/*
* Reference: "FIPS 197, Advanced Encryption Standard"
* https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf
*/
#define AES_BLOCK_SIZE 16
#define AES_128_KEY_SIZE 16
#define AES_192_KEY_SIZE 24
#define AES_256_KEY_SIZE 32
static inline void AddRoundKey(u32 state[4], const u32 *rk)
{
int i;
for (i = 0; i < 4; i++)
state[i] ^= rk[i];
}
static const u8 aes_sbox[256] = {
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b,
0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26,
0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2,
0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed,
0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f,
0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14,
0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d,
0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f,
0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11,
0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f,
0xb0, 0x54, 0xbb, 0x16,
};
static u8 aes_inverse_sbox[256];
static void aes_init(void)
{
int i;
for (i = 0; i < 256; i++)
aes_inverse_sbox[aes_sbox[i]] = i;
}
static inline u32 DoSubWord(u32 w, const u8 sbox[256])
{
return ((u32)sbox[(u8)(w >> 24)] << 24) |
((u32)sbox[(u8)(w >> 16)] << 16) |
((u32)sbox[(u8)(w >> 8)] << 8) |
((u32)sbox[(u8)(w >> 0)] << 0);
}
static inline u32 SubWord(u32 w)
{
return DoSubWord(w, aes_sbox);
}
static inline u32 InvSubWord(u32 w)
{
return DoSubWord(w, aes_inverse_sbox);
}
static inline void SubBytes(u32 state[4])
{
int i;
for (i = 0; i < 4; i++)
state[i] = SubWord(state[i]);
}
static inline void InvSubBytes(u32 state[4])
{
int i;
for (i = 0; i < 4; i++)
state[i] = InvSubWord(state[i]);
}
static inline void DoShiftRows(u32 state[4], int direction)
{
u32 newstate[4];
int i;
for (i = 0; i < 4; i++)
newstate[i] = (state[(i + direction*0) & 3] & 0xff) |
(state[(i + direction*1) & 3] & 0xff00) |
(state[(i + direction*2) & 3] & 0xff0000) |
(state[(i + direction*3) & 3] & 0xff000000);
memcpy(state, newstate, 16);
}
static inline void ShiftRows(u32 state[4])
{
DoShiftRows(state, 1);
}
static inline void InvShiftRows(u32 state[4])
{
DoShiftRows(state, -1);
}
/*
* Mix one column by doing the following matrix multiplication in GF(2^8):
*
* | 2 3 1 1 | | w[0] |
* | 1 2 3 1 | | w[1] |
* | 1 1 2 3 | x | w[2] |
* | 3 1 1 2 | | w[3] |
*
* a.k.a. w[i] = 2*w[i] + 3*w[(i+1)%4] + w[(i+2)%4] + w[(i+3)%4]
*/
static inline u32 MixColumn(u32 w)
{
u32 _2w0_w2 = gf2_8_mul_x_4way(w) ^ ror32(w, 16);
u32 _3w1_w3 = ror32(_2w0_w2 ^ w, 8);
return _2w0_w2 ^ _3w1_w3;
}
/*
* ( | 5 0 4 0 | | w[0] | )
* ( | 0 5 0 4 | | w[1] | )
* MixColumn( | 4 0 5 0 | x | w[2] | )
* ( | 0 4 0 5 | | w[3] | )
*/
static inline u32 InvMixColumn(u32 w)
{
u32 _4w = gf2_8_mul_x_4way(gf2_8_mul_x_4way(w));
return MixColumn(_4w ^ w ^ ror32(_4w, 16));
}
static inline void MixColumns(u32 state[4])
{
int i;
for (i = 0; i < 4; i++)
state[i] = MixColumn(state[i]);
}
static inline void InvMixColumns(u32 state[4])
{
int i;
for (i = 0; i < 4; i++)
state[i] = InvMixColumn(state[i]);
}
struct aes_key {
u32 round_keys[15 * 4];
int nrounds;
};
/* Expand an AES key */
static void aes_setkey(struct aes_key *k, const u8 *key, int keysize)
{
const int N = keysize / 4;
u32 * const rk = k->round_keys;
u8 rcon = 1;
int i;
ASSERT(keysize == 16 || keysize == 24 || keysize == 32);
k->nrounds = 6 + N;
for (i = 0; i < 4 * (k->nrounds + 1); i++) {
if (i < N) {
rk[i] = get_unaligned_le32(&key[i * sizeof(__le32)]);
} else if (i % N == 0) {
rk[i] = rk[i - N] ^ SubWord(ror32(rk[i - 1], 8)) ^ rcon;
rcon = gf2_8_mul_x(rcon);
} else if (N > 6 && i % N == 4) {
rk[i] = rk[i - N] ^ SubWord(rk[i - 1]);
} else {
rk[i] = rk[i - N] ^ rk[i - 1];
}
}
}
/* Encrypt one 16-byte block with AES */
static void aes_encrypt(const struct aes_key *k, const u8 src[AES_BLOCK_SIZE],
u8 dst[AES_BLOCK_SIZE])
{
u32 state[4];
int i;
for (i = 0; i < 4; i++)
state[i] = get_unaligned_le32(&src[i * sizeof(__le32)]);
AddRoundKey(state, k->round_keys);
for (i = 1; i < k->nrounds; i++) {
SubBytes(state);
ShiftRows(state);
MixColumns(state);
AddRoundKey(state, &k->round_keys[4 * i]);
}
SubBytes(state);
ShiftRows(state);
AddRoundKey(state, &k->round_keys[4 * i]);
for (i = 0; i < 4; i++)
put_unaligned_le32(state[i], &dst[i * sizeof(__le32)]);
}
/* Decrypt one 16-byte block with AES */
static void aes_decrypt(const struct aes_key *k, const u8 src[AES_BLOCK_SIZE],
u8 dst[AES_BLOCK_SIZE])
{
u32 state[4];
int i;
for (i = 0; i < 4; i++)
state[i] = get_unaligned_le32(&src[i * sizeof(__le32)]);
AddRoundKey(state, &k->round_keys[4 * k->nrounds]);
InvShiftRows(state);
InvSubBytes(state);
for (i = k->nrounds - 1; i >= 1; i--) {
AddRoundKey(state, &k->round_keys[4 * i]);
InvMixColumns(state);
InvShiftRows(state);
InvSubBytes(state);
}
AddRoundKey(state, k->round_keys);
for (i = 0; i < 4; i++)
put_unaligned_le32(state[i], &dst[i * sizeof(__le32)]);
}
#ifdef ENABLE_ALG_TESTS
#include <openssl/aes.h>
static void test_aes_keysize(int keysize)
{
unsigned long num_tests = NUM_ALG_TEST_ITERATIONS;
while (num_tests--) {
struct aes_key k;
AES_KEY ref_k;
u8 key[AES_256_KEY_SIZE];
u8 ptext[AES_BLOCK_SIZE];
u8 ctext[AES_BLOCK_SIZE];
u8 ref_ctext[AES_BLOCK_SIZE];
u8 decrypted[AES_BLOCK_SIZE];
rand_bytes(key, keysize);
rand_bytes(ptext, AES_BLOCK_SIZE);
aes_setkey(&k, key, keysize);
aes_encrypt(&k, ptext, ctext);
ASSERT(AES_set_encrypt_key(key, keysize*8, &ref_k) == 0);
AES_encrypt(ptext, ref_ctext, &ref_k);
ASSERT(memcmp(ctext, ref_ctext, AES_BLOCK_SIZE) == 0);
aes_decrypt(&k, ctext, decrypted);
ASSERT(memcmp(ptext, decrypted, AES_BLOCK_SIZE) == 0);
}
}
static void test_aes(void)
{
test_aes_keysize(AES_128_KEY_SIZE);
test_aes_keysize(AES_192_KEY_SIZE);
test_aes_keysize(AES_256_KEY_SIZE);
}
#endif /* ENABLE_ALG_TESTS */
/*----------------------------------------------------------------------------*
* SHA-512 and SHA-256 *
*----------------------------------------------------------------------------*/
/*
* Reference: "FIPS 180-2, Secure Hash Standard"
* https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/fips180-2withchangenotice.pdf
*/
#define SHA512_DIGEST_SIZE 64
#define SHA512_BLOCK_SIZE 128
#define SHA256_DIGEST_SIZE 32
#define SHA256_BLOCK_SIZE 64
#define Ch(x, y, z) (((x) & (y)) ^ (~(x) & (z)))
#define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define Sigma512_0(x) (ror64((x), 28) ^ ror64((x), 34) ^ ror64((x), 39))
#define Sigma512_1(x) (ror64((x), 14) ^ ror64((x), 18) ^ ror64((x), 41))
#define sigma512_0(x) (ror64((x), 1) ^ ror64((x), 8) ^ ((x) >> 7))
#define sigma512_1(x) (ror64((x), 19) ^ ror64((x), 61) ^ ((x) >> 6))
#define Sigma256_0(x) (ror32((x), 2) ^ ror32((x), 13) ^ ror32((x), 22))
#define Sigma256_1(x) (ror32((x), 6) ^ ror32((x), 11) ^ ror32((x), 25))
#define sigma256_0(x) (ror32((x), 7) ^ ror32((x), 18) ^ ((x) >> 3))
#define sigma256_1(x) (ror32((x), 17) ^ ror32((x), 19) ^ ((x) >> 10))
static const u64 sha512_iv[8] = {
0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b,
0xa54ff53a5f1d36f1, 0x510e527fade682d1, 0x9b05688c2b3e6c1f,
0x1f83d9abfb41bd6b, 0x5be0cd19137e2179,
};
static const u64 sha512_round_constants[80] = {
0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f,
0xe9b5dba58189dbbc, 0x3956c25bf348b538, 0x59f111f1b605d019,
0x923f82a4af194f9b, 0xab1c5ed5da6d8118, 0xd807aa98a3030242,
0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2,
0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235,
0xc19bf174cf692694, 0xe49b69c19ef14ad2, 0xefbe4786384f25e3,
0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65, 0x2de92c6f592b0275,
0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5,
0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f,
0xbf597fc7beef0ee4, 0xc6e00bf33da88fc2, 0xd5a79147930aa725,
0x06ca6351e003826f, 0x142929670a0e6e70, 0x27b70a8546d22ffc,
0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df,
0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6,
0x92722c851482353b, 0xa2bfe8a14cf10364, 0xa81a664bbc423001,
0xc24b8b70d0f89791, 0xc76c51a30654be30, 0xd192e819d6ef5218,
0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8,
0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99,
0x34b0bcb5e19b48a8, 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb,
0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3, 0x748f82ee5defb2fc,
0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec,
0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915,
0xc67178f2e372532b, 0xca273eceea26619c, 0xd186b8c721c0c207,
0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178, 0x06f067aa72176fba,
0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b,
0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc,
0x431d67c49c100d4c, 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a,
0x5fcb6fab3ad6faec, 0x6c44198c4a475817,
};
/* Compute the SHA-512 digest of the given buffer */
static void sha512(const u8 *in, size_t inlen, u8 out[SHA512_DIGEST_SIZE])
{
const size_t msglen = ROUND_UP(inlen + 17, SHA512_BLOCK_SIZE);
u8 * const msg = xmalloc(msglen);
u64 H[8];
int i;
/* super naive way of handling the padding */
memcpy(msg, in, inlen);
memset(&msg[inlen], 0, msglen - inlen);
msg[inlen] = 0x80;
put_unaligned_be64((u64)inlen * 8, &msg[msglen - sizeof(__be64)]);
in = msg;
memcpy(H, sha512_iv, sizeof(H));
do {
u64 a = H[0], b = H[1], c = H[2], d = H[3],
e = H[4], f = H[5], g = H[6], h = H[7];
u64 W[80];
for (i = 0; i < 16; i++)
W[i] = get_unaligned_be64(&in[i * sizeof(__be64)]);
for (; i < ARRAY_SIZE(W); i++)
W[i] = sigma512_1(W[i - 2]) + W[i - 7] +
sigma512_0(W[i - 15]) + W[i - 16];
for (i = 0; i < ARRAY_SIZE(W); i++) {
u64 T1 = h + Sigma512_1(e) + Ch(e, f, g) +
sha512_round_constants[i] + W[i];
u64 T2 = Sigma512_0(a) + Maj(a, b, c);
h = g; g = f; f = e; e = d + T1;
d = c; c = b; b = a; a = T1 + T2;
}
H[0] += a; H[1] += b; H[2] += c; H[3] += d;
H[4] += e; H[5] += f; H[6] += g; H[7] += h;
} while ((in += SHA512_BLOCK_SIZE) != &msg[msglen]);
for (i = 0; i < ARRAY_SIZE(H); i++)
put_unaligned_be64(H[i], &out[i * sizeof(__be64)]);
free(msg);
}
/* Compute the SHA-256 digest of the given buffer */
static void sha256(const u8 *in, size_t inlen, u8 out[SHA256_DIGEST_SIZE])
{
const size_t msglen = ROUND_UP(inlen + 9, SHA256_BLOCK_SIZE);
u8 * const msg = xmalloc(msglen);
u32 H[8];
int i;
/* super naive way of handling the padding */
memcpy(msg, in, inlen);
memset(&msg[inlen], 0, msglen - inlen);
msg[inlen] = 0x80;
put_unaligned_be64((u64)inlen * 8, &msg[msglen - sizeof(__be64)]);
in = msg;
for (i = 0; i < ARRAY_SIZE(H); i++)
H[i] = (u32)(sha512_iv[i] >> 32);
do {
u32 a = H[0], b = H[1], c = H[2], d = H[3],
e = H[4], f = H[5], g = H[6], h = H[7];
u32 W[64];
for (i = 0; i < 16; i++)
W[i] = get_unaligned_be32(&in[i * sizeof(__be32)]);
for (; i < ARRAY_SIZE(W); i++)
W[i] = sigma256_1(W[i - 2]) + W[i - 7] +
sigma256_0(W[i - 15]) + W[i - 16];
for (i = 0; i < ARRAY_SIZE(W); i++) {
u32 T1 = h + Sigma256_1(e) + Ch(e, f, g) +
(u32)(sha512_round_constants[i] >> 32) + W[i];
u32 T2 = Sigma256_0(a) + Maj(a, b, c);
h = g; g = f; f = e; e = d + T1;
d = c; c = b; b = a; a = T1 + T2;
}
H[0] += a; H[1] += b; H[2] += c; H[3] += d;
H[4] += e; H[5] += f; H[6] += g; H[7] += h;
} while ((in += SHA256_BLOCK_SIZE) != &msg[msglen]);
for (i = 0; i < ARRAY_SIZE(H); i++)
put_unaligned_be32(H[i], &out[i * sizeof(__be32)]);
free(msg);
}
#ifdef ENABLE_ALG_TESTS
#include <openssl/sha.h>
static void test_sha2(void)
{
unsigned long num_tests = NUM_ALG_TEST_ITERATIONS;
while (num_tests--) {
u8 in[4096];
u8 digest[SHA512_DIGEST_SIZE];
u8 ref_digest[SHA512_DIGEST_SIZE];
const size_t inlen = rand() % (1 + sizeof(in));
rand_bytes(in, inlen);
sha256(in, inlen, digest);
SHA256(in, inlen, ref_digest);
ASSERT(memcmp(digest, ref_digest, SHA256_DIGEST_SIZE) == 0);
sha512(in, inlen, digest);
SHA512(in, inlen, ref_digest);
ASSERT(memcmp(digest, ref_digest, SHA512_DIGEST_SIZE) == 0);
}
}
#endif /* ENABLE_ALG_TESTS */
/*----------------------------------------------------------------------------*
* HKDF implementation *
*----------------------------------------------------------------------------*/
static void hmac_sha512(const u8 *key, size_t keylen, const u8 *msg,
size_t msglen, u8 mac[SHA512_DIGEST_SIZE])
{
u8 *ibuf = xmalloc(SHA512_BLOCK_SIZE + msglen);
u8 obuf[SHA512_BLOCK_SIZE + SHA512_DIGEST_SIZE];
ASSERT(keylen <= SHA512_BLOCK_SIZE); /* keylen > bs not implemented */
memset(ibuf, 0x36, SHA512_BLOCK_SIZE);
xor(ibuf, ibuf, key, keylen);
memcpy(&ibuf[SHA512_BLOCK_SIZE], msg, msglen);
memset(obuf, 0x5c, SHA512_BLOCK_SIZE);
xor(obuf, obuf, key, keylen);
sha512(ibuf, SHA512_BLOCK_SIZE + msglen, &obuf[SHA512_BLOCK_SIZE]);
sha512(obuf, sizeof(obuf), mac);
free(ibuf);
}
static void hkdf_sha512(const u8 *ikm, size_t ikmlen,
const u8 *salt, size_t saltlen,
const u8 *info, size_t infolen,
u8 *output, size_t outlen)
{
static const u8 default_salt[SHA512_DIGEST_SIZE];
u8 prk[SHA512_DIGEST_SIZE]; /* pseudorandom key */
u8 *buf = xmalloc(1 + infolen + SHA512_DIGEST_SIZE);
u8 counter = 1;
size_t i;
if (saltlen == 0) {
salt = default_salt;
saltlen = sizeof(default_salt);
}
/* HKDF-Extract */
ASSERT(ikmlen > 0);
hmac_sha512(salt, saltlen, ikm, ikmlen, prk);
/* HKDF-Expand */
for (i = 0; i < outlen; i += SHA512_DIGEST_SIZE) {
u8 *p = buf;
u8 tmp[SHA512_DIGEST_SIZE];
ASSERT(counter != 0);
if (i > 0) {
memcpy(p, &output[i - SHA512_DIGEST_SIZE],
SHA512_DIGEST_SIZE);
p += SHA512_DIGEST_SIZE;
}
memcpy(p, info, infolen);
p += infolen;
*p++ = counter++;
hmac_sha512(prk, sizeof(prk), buf, p - buf, tmp);
memcpy(&output[i], tmp, MIN(sizeof(tmp), outlen - i));
}
free(buf);
}
#ifdef ENABLE_ALG_TESTS
#include <openssl/evp.h>
#include <openssl/kdf.h>
static void openssl_hkdf_sha512(const u8 *ikm, size_t ikmlen,
const u8 *salt, size_t saltlen,
const u8 *info, size_t infolen,
u8 *output, size_t outlen)
{
EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL);
size_t actual_outlen = outlen;
ASSERT(pctx != NULL);
ASSERT(EVP_PKEY_derive_init(pctx) > 0);
ASSERT(EVP_PKEY_CTX_set_hkdf_md(pctx, EVP_sha512()) > 0);
ASSERT(EVP_PKEY_CTX_set1_hkdf_key(pctx, ikm, ikmlen) > 0);
ASSERT(EVP_PKEY_CTX_set1_hkdf_salt(pctx, salt, saltlen) > 0);
ASSERT(EVP_PKEY_CTX_add1_hkdf_info(pctx, info, infolen) > 0);
ASSERT(EVP_PKEY_derive(pctx, output, &actual_outlen) > 0);
ASSERT(actual_outlen == outlen);
EVP_PKEY_CTX_free(pctx);
}
static void test_hkdf_sha512(void)
{
unsigned long num_tests = NUM_ALG_TEST_ITERATIONS;
while (num_tests--) {
u8 ikm[SHA512_DIGEST_SIZE];
u8 salt[SHA512_DIGEST_SIZE];
u8 info[128];
u8 actual_output[512];
u8 expected_output[sizeof(actual_output)];
size_t ikmlen = 1 + (rand() % sizeof(ikm));
size_t saltlen = rand() % (1 + sizeof(salt));
size_t infolen = rand() % (1 + sizeof(info));
size_t outlen = rand() % (1 + sizeof(actual_output));
rand_bytes(ikm, ikmlen);
rand_bytes(salt, saltlen);
rand_bytes(info, infolen);
hkdf_sha512(ikm, ikmlen, salt, saltlen, info, infolen,
actual_output, outlen);
openssl_hkdf_sha512(ikm, ikmlen, salt, saltlen, info, infolen,
expected_output, outlen);
ASSERT(memcmp(actual_output, expected_output, outlen) == 0);
}
}
#endif /* ENABLE_ALG_TESTS */
/*----------------------------------------------------------------------------*
* AES encryption modes *
*----------------------------------------------------------------------------*/
static void aes_256_xts_crypt(const u8 key[2 * AES_256_KEY_SIZE],
const u8 iv[AES_BLOCK_SIZE], const u8 *src,
u8 *dst, size_t nbytes, bool decrypting)
{
struct aes_key tweak_key, cipher_key;
ble128 t;
size_t i;
ASSERT(nbytes % AES_BLOCK_SIZE == 0);
aes_setkey(&cipher_key, key, AES_256_KEY_SIZE);
aes_setkey(&tweak_key, &key[AES_256_KEY_SIZE], AES_256_KEY_SIZE);
aes_encrypt(&tweak_key, iv, (u8 *)&t);
for (i = 0; i < nbytes; i += AES_BLOCK_SIZE) {
xor(&dst[i], &src[i], (const u8 *)&t, AES_BLOCK_SIZE);
if (decrypting)
aes_decrypt(&cipher_key, &dst[i], &dst[i]);
else
aes_encrypt(&cipher_key, &dst[i], &dst[i]);
xor(&dst[i], &dst[i], (const u8 *)&t, AES_BLOCK_SIZE);
gf2_128_mul_x(&t);
}
}
static void aes_256_xts_encrypt(const u8 key[2 * AES_256_KEY_SIZE],
const u8 iv[AES_BLOCK_SIZE], const u8 *src,
u8 *dst, size_t nbytes)
{
aes_256_xts_crypt(key, iv, src, dst, nbytes, false);
}
static void aes_256_xts_decrypt(const u8 key[2 * AES_256_KEY_SIZE],
const u8 iv[AES_BLOCK_SIZE], const u8 *src,
u8 *dst, size_t nbytes)
{
aes_256_xts_crypt(key, iv, src, dst, nbytes, true);
}
#ifdef ENABLE_ALG_TESTS
#include <openssl/evp.h>
static void test_aes_256_xts(void)
{
unsigned long num_tests = NUM_ALG_TEST_ITERATIONS;
EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
ASSERT(ctx != NULL);
while (num_tests--) {
u8 key[2 * AES_256_KEY_SIZE];
u8 iv[AES_BLOCK_SIZE];
u8 ptext[512];
u8 ctext[sizeof(ptext)];
u8 ref_ctext[sizeof(ptext)];
u8 decrypted[sizeof(ptext)];
const size_t datalen = ROUND_DOWN(rand() % (1 + sizeof(ptext)),
AES_BLOCK_SIZE);
int outl, res;
rand_bytes(key, sizeof(key));
rand_bytes(iv, sizeof(iv));
rand_bytes(ptext, datalen);
aes_256_xts_encrypt(key, iv, ptext, ctext, datalen);
res = EVP_EncryptInit_ex(ctx, EVP_aes_256_xts(), NULL, key, iv);
ASSERT(res > 0);
res = EVP_EncryptUpdate(ctx, ref_ctext, &outl, ptext, datalen);
ASSERT(res > 0);
ASSERT(outl == datalen);
ASSERT(memcmp(ctext, ref_ctext, datalen) == 0);
aes_256_xts_decrypt(key, iv, ctext, decrypted, datalen);
ASSERT(memcmp(ptext, decrypted, datalen) == 0);
}
EVP_CIPHER_CTX_free(ctx);
}
#endif /* ENABLE_ALG_TESTS */
static void aes_cbc_encrypt(const struct aes_key *k,
const u8 iv[AES_BLOCK_SIZE],
const u8 *src, u8 *dst, size_t nbytes)
{
size_t i;
ASSERT(nbytes % AES_BLOCK_SIZE == 0);
for (i = 0; i < nbytes; i += AES_BLOCK_SIZE) {
xor(&dst[i], &src[i], (i == 0 ? iv : &dst[i - AES_BLOCK_SIZE]),
AES_BLOCK_SIZE);
aes_encrypt(k, &dst[i], &dst[i]);
}
}
static void aes_cbc_decrypt(const struct aes_key *k,
const u8 iv[AES_BLOCK_SIZE],
const u8 *src, u8 *dst, size_t nbytes)
{
size_t i = nbytes;
ASSERT(i % AES_BLOCK_SIZE == 0);
while (i) {
i -= AES_BLOCK_SIZE;
aes_decrypt(k, &src[i], &dst[i]);
xor(&dst[i], &dst[i], (i == 0 ? iv : &src[i - AES_BLOCK_SIZE]),
AES_BLOCK_SIZE);
}
}
static void aes_cts_cbc_encrypt(const u8 *key, int keysize,
const u8 iv[AES_BLOCK_SIZE],
const u8 *src, u8 *dst, size_t nbytes)
{
const size_t offset = ROUND_DOWN(nbytes - 1, AES_BLOCK_SIZE);
const size_t final_bsize = nbytes - offset;
struct aes_key k;
u8 *pad;
u8 buf[AES_BLOCK_SIZE];
ASSERT(nbytes >= AES_BLOCK_SIZE);
aes_setkey(&k, key, keysize);
if (nbytes == AES_BLOCK_SIZE)
return aes_cbc_encrypt(&k, iv, src, dst, nbytes);
aes_cbc_encrypt(&k, iv, src, dst, offset);
pad = &dst[offset - AES_BLOCK_SIZE];
memcpy(buf, pad, AES_BLOCK_SIZE);
xor(buf, buf, &src[offset], final_bsize);
memcpy(&dst[offset], pad, final_bsize);
aes_encrypt(&k, buf, pad);
}
static void aes_cts_cbc_decrypt(const u8 *key, int keysize,
const u8 iv[AES_BLOCK_SIZE],
const u8 *src, u8 *dst, size_t nbytes)
{
const size_t offset = ROUND_DOWN(nbytes - 1, AES_BLOCK_SIZE);
const size_t final_bsize = nbytes - offset;
struct aes_key k;
u8 *pad;
ASSERT(nbytes >= AES_BLOCK_SIZE);
aes_setkey(&k, key, keysize);
if (nbytes == AES_BLOCK_SIZE)
return aes_cbc_decrypt(&k, iv, src, dst, nbytes);
pad = &dst[offset - AES_BLOCK_SIZE];
aes_decrypt(&k, &src[offset - AES_BLOCK_SIZE], pad);
xor(&dst[offset], &src[offset], pad, final_bsize);
xor(pad, pad, &dst[offset], final_bsize);
aes_cbc_decrypt(&k, (offset == AES_BLOCK_SIZE ?
iv : &src[offset - 2 * AES_BLOCK_SIZE]),
pad, pad, AES_BLOCK_SIZE);
aes_cbc_decrypt(&k, iv, src, dst, offset - AES_BLOCK_SIZE);
}
static void aes_256_cts_cbc_encrypt(const u8 key[AES_256_KEY_SIZE],
const u8 iv[AES_BLOCK_SIZE],
const u8 *src, u8 *dst, size_t nbytes)
{
aes_cts_cbc_encrypt(key, AES_256_KEY_SIZE, iv, src, dst, nbytes);
}
static void aes_256_cts_cbc_decrypt(const u8 key[AES_256_KEY_SIZE],
const u8 iv[AES_BLOCK_SIZE],
const u8 *src, u8 *dst, size_t nbytes)
{
aes_cts_cbc_decrypt(key, AES_256_KEY_SIZE, iv, src, dst, nbytes);
}
#ifdef ENABLE_ALG_TESTS
#include <openssl/modes.h>
static void aes_block128_f(const unsigned char in[16],
unsigned char out[16], const void *key)
{
aes_encrypt(key, in, out);
}
static void test_aes_256_cts_cbc(void)
{
unsigned long num_tests = NUM_ALG_TEST_ITERATIONS;
while (num_tests--) {
u8 key[AES_256_KEY_SIZE];
u8 iv[AES_BLOCK_SIZE];
u8 iv_copy[AES_BLOCK_SIZE];
u8 ptext[512];
u8 ctext[sizeof(ptext)];
u8 ref_ctext[sizeof(ptext)];
u8 decrypted[sizeof(ptext)];
const size_t datalen = 16 + (rand() % (sizeof(ptext) - 15));
struct aes_key k;
rand_bytes(key, sizeof(key));
rand_bytes(iv, sizeof(iv));
rand_bytes(ptext, datalen);
aes_256_cts_cbc_encrypt(key, iv, ptext, ctext, datalen);
/* OpenSSL doesn't allow datalen=AES_BLOCK_SIZE; Linux does */
if (datalen != AES_BLOCK_SIZE) {
aes_setkey(&k, key, sizeof(key));
memcpy(iv_copy, iv, sizeof(iv));
ASSERT(CRYPTO_cts128_encrypt_block(ptext, ref_ctext,
datalen, &k, iv_copy,
aes_block128_f)
== datalen);
ASSERT(memcmp(ctext, ref_ctext, datalen) == 0);
}
aes_256_cts_cbc_decrypt(key, iv, ctext, decrypted, datalen);
ASSERT(memcmp(ptext, decrypted, datalen) == 0);
}
}
#endif /* ENABLE_ALG_TESTS */
static void essiv_generate_iv(const u8 orig_key[AES_128_KEY_SIZE],
const u8 orig_iv[AES_BLOCK_SIZE],
u8 real_iv[AES_BLOCK_SIZE])
{
u8 essiv_key[SHA256_DIGEST_SIZE];
struct aes_key essiv;
/* AES encrypt the original IV using a hash of the original key */
STATIC_ASSERT(SHA256_DIGEST_SIZE == AES_256_KEY_SIZE);
sha256(orig_key, AES_128_KEY_SIZE, essiv_key);
aes_setkey(&essiv, essiv_key, AES_256_KEY_SIZE);
aes_encrypt(&essiv, orig_iv, real_iv);
}
static void aes_128_cbc_essiv_encrypt(const u8 key[AES_128_KEY_SIZE],
const u8 iv[AES_BLOCK_SIZE],
const u8 *src, u8 *dst, size_t nbytes)
{
struct aes_key k;
u8 real_iv[AES_BLOCK_SIZE];
aes_setkey(&k, key, AES_128_KEY_SIZE);
essiv_generate_iv(key, iv, real_iv);
aes_cbc_encrypt(&k, real_iv, src, dst, nbytes);
}
static void aes_128_cbc_essiv_decrypt(const u8 key[AES_128_KEY_SIZE],
const u8 iv[AES_BLOCK_SIZE],
const u8 *src, u8 *dst, size_t nbytes)
{
struct aes_key k;
u8 real_iv[AES_BLOCK_SIZE];
aes_setkey(&k, key, AES_128_KEY_SIZE);
essiv_generate_iv(key, iv, real_iv);
aes_cbc_decrypt(&k, real_iv, src, dst, nbytes);
}
static void aes_128_cts_cbc_encrypt(const u8 key[AES_128_KEY_SIZE],
const u8 iv[AES_BLOCK_SIZE],
const u8 *src, u8 *dst, size_t nbytes)
{
aes_cts_cbc_encrypt(key, AES_128_KEY_SIZE, iv, src, dst, nbytes);
}
static void aes_128_cts_cbc_decrypt(const u8 key[AES_128_KEY_SIZE],
const u8 iv[AES_BLOCK_SIZE],
const u8 *src, u8 *dst, size_t nbytes)
{
aes_cts_cbc_decrypt(key, AES_128_KEY_SIZE, iv, src, dst, nbytes);
}
/*----------------------------------------------------------------------------*
* XChaCha12 stream cipher *
*----------------------------------------------------------------------------*/
/*
* References:
* - "XChaCha: eXtended-nonce ChaCha and AEAD_XChaCha20_Poly1305"
* https://tools.ietf.org/html/draft-arciszewski-xchacha-03
*
* - "ChaCha, a variant of Salsa20"
* https://cr.yp.to/chacha/chacha-20080128.pdf
*
* - "Extending the Salsa20 nonce"
* https://cr.yp.to/snuffle/xsalsa-20081128.pdf
*/
#define CHACHA_KEY_SIZE 32
#define XCHACHA_KEY_SIZE CHACHA_KEY_SIZE
#define XCHACHA_NONCE_SIZE 24
static void chacha_init_state(u32 state[16], const u8 key[CHACHA_KEY_SIZE],
const u8 iv[16])
{
static const u8 consts[16] = "expand 32-byte k";
int i;
for (i = 0; i < 4; i++)
state[i] = get_unaligned_le32(&consts[i * sizeof(__le32)]);
for (i = 0; i < 8; i++)
state[4 + i] = get_unaligned_le32(&key[i * sizeof(__le32)]);
for (i = 0; i < 4; i++)
state[12 + i] = get_unaligned_le32(&iv[i * sizeof(__le32)]);
}
#define CHACHA_QUARTERROUND(a, b, c, d) \
do { \
a += b; d = rol32(d ^ a, 16); \
c += d; b = rol32(b ^ c, 12); \
a += b; d = rol32(d ^ a, 8); \
c += d; b = rol32(b ^ c, 7); \
} while (0)
static void chacha_permute(u32 x[16], int nrounds)
{
do {
/* column round */
CHACHA_QUARTERROUND(x[0], x[4], x[8], x[12]);
CHACHA_QUARTERROUND(x[1], x[5], x[9], x[13]);
CHACHA_QUARTERROUND(x[2], x[6], x[10], x[14]);
CHACHA_QUARTERROUND(x[3], x[7], x[11], x[15]);
/* diagonal round */
CHACHA_QUARTERROUND(x[0], x[5], x[10], x[15]);
CHACHA_QUARTERROUND(x[1], x[6], x[11], x[12]);
CHACHA_QUARTERROUND(x[2], x[7], x[8], x[13]);
CHACHA_QUARTERROUND(x[3], x[4], x[9], x[14]);
} while ((nrounds -= 2) != 0);
}
static void xchacha(const u8 key[XCHACHA_KEY_SIZE],
const u8 nonce[XCHACHA_NONCE_SIZE],
const u8 *src, u8 *dst, size_t nbytes, int nrounds)
{
u32 state[16];
u8 real_key[CHACHA_KEY_SIZE];
u8 real_iv[16] = { 0 };
size_t i, j;
/* Compute real key using original key and first 128 nonce bits */
chacha_init_state(state, key, nonce);
chacha_permute(state, nrounds);
for (i = 0; i < 8; i++) /* state words 0..3, 12..15 */
put_unaligned_le32(state[(i < 4 ? 0 : 8) + i],
&real_key[i * sizeof(__le32)]);
/* Now do regular ChaCha, using real key and remaining nonce bits */
memcpy(&real_iv[8], nonce + 16, 8);
chacha_init_state(state, real_key, real_iv);
for (i = 0; i < nbytes; i += 64) {
u32 x[16];
__le32 keystream[16];
memcpy(x, state, 64);
chacha_permute(x, nrounds);
for (j = 0; j < 16; j++)
keystream[j] = cpu_to_le32(x[j] + state[j]);
xor(&dst[i], &src[i], (u8 *)keystream, MIN(nbytes - i, 64));
if (++state[12] == 0)
state[13]++;
}
}
static void xchacha12(const u8 key[XCHACHA_KEY_SIZE],
const u8 nonce[XCHACHA_NONCE_SIZE],
const u8 *src, u8 *dst, size_t nbytes)
{
xchacha(key, nonce, src, dst, nbytes, 12);
}
/*----------------------------------------------------------------------------*
* Poly1305 *
*----------------------------------------------------------------------------*/
/*
* Note: this is only the Poly1305 ε-almost-∆-universal hash function, not the
* full Poly1305 MAC. I.e., it doesn't add anything at the end.
*/
#define POLY1305_KEY_SIZE 16
#define POLY1305_BLOCK_SIZE 16
static void poly1305(const u8 key[POLY1305_KEY_SIZE],
const u8 *msg, size_t msglen, le128 *out)
{
const u32 limb_mask = 0x3ffffff; /* limbs are base 2^26 */
const u64 r0 = (get_unaligned_le32(key + 0) >> 0) & 0x3ffffff;
const u64 r1 = (get_unaligned_le32(key + 3) >> 2) & 0x3ffff03;
const u64 r2 = (get_unaligned_le32(key + 6) >> 4) & 0x3ffc0ff;
const u64 r3 = (get_unaligned_le32(key + 9) >> 6) & 0x3f03fff;
const u64 r4 = (get_unaligned_le32(key + 12) >> 8) & 0x00fffff;
u32 h0 = 0, h1 = 0, h2 = 0, h3 = 0, h4 = 0;
u32 g0, g1, g2, g3, g4, ge_p_mask;
/* Partial block support is not necessary for Adiantum */
ASSERT(msglen % POLY1305_BLOCK_SIZE == 0);
while (msglen) {
u64 d0, d1, d2, d3, d4;
/* h += *msg */
h0 += (get_unaligned_le32(msg + 0) >> 0) & limb_mask;
h1 += (get_unaligned_le32(msg + 3) >> 2) & limb_mask;
h2 += (get_unaligned_le32(msg + 6) >> 4) & limb_mask;
h3 += (get_unaligned_le32(msg + 9) >> 6) & limb_mask;
h4 += (get_unaligned_le32(msg + 12) >> 8) | (1 << 24);
/* h *= r */
d0 = h0*r0 + h1*5*r4 + h2*5*r3 + h3*5*r2 + h4*5*r1;
d1 = h0*r1 + h1*r0 + h2*5*r4 + h3*5*r3 + h4*5*r2;
d2 = h0*r2 + h1*r1 + h2*r0 + h3*5*r4 + h4*5*r3;
d3 = h0*r3 + h1*r2 + h2*r1 + h3*r0 + h4*5*r4;
d4 = h0*r4 + h1*r3 + h2*r2 + h3*r1 + h4*r0;
/* (partial) h %= 2^130 - 5 */
d1 += d0 >> 26; h0 = d0 & limb_mask;
d2 += d1 >> 26; h1 = d1 & limb_mask;
d3 += d2 >> 26; h2 = d2 & limb_mask;
d4 += d3 >> 26; h3 = d3 & limb_mask;
h0 += (d4 >> 26) * 5; h4 = d4 & limb_mask;
h1 += h0 >> 26; h0 &= limb_mask;
msg += POLY1305_BLOCK_SIZE;
msglen -= POLY1305_BLOCK_SIZE;
}
/* fully carry h */
h2 += (h1 >> 26); h1 &= limb_mask;
h3 += (h2 >> 26); h2 &= limb_mask;
h4 += (h3 >> 26); h3 &= limb_mask;
h0 += (h4 >> 26) * 5; h4 &= limb_mask;
h1 += (h0 >> 26); h0 &= limb_mask;
/* if (h >= 2^130 - 5) h -= 2^130 - 5; */
g0 = h0 + 5;
g1 = h1 + (g0 >> 26); g0 &= limb_mask;
g2 = h2 + (g1 >> 26); g1 &= limb_mask;
g3 = h3 + (g2 >> 26); g2 &= limb_mask;
g4 = h4 + (g3 >> 26); g3 &= limb_mask;
ge_p_mask = ~((g4 >> 26) - 1); /* all 1's if h >= 2^130 - 5, else 0 */
h0 = (h0 & ~ge_p_mask) | (g0 & ge_p_mask);
h1 = (h1 & ~ge_p_mask) | (g1 & ge_p_mask);
h2 = (h2 & ~ge_p_mask) | (g2 & ge_p_mask);
h3 = (h3 & ~ge_p_mask) | (g3 & ge_p_mask);
h4 = (h4 & ~ge_p_mask) | (g4 & ge_p_mask & limb_mask);
/* h %= 2^128 */
out->lo = cpu_to_le64(((u64)h2 << 52) | ((u64)h1 << 26) | h0);
out->hi = cpu_to_le64(((u64)h4 << 40) | ((u64)h3 << 14) | (h2 >> 12));
}
/*----------------------------------------------------------------------------*
* Adiantum encryption mode *
*----------------------------------------------------------------------------*/
/*
* Reference: "Adiantum: length-preserving encryption for entry-level processors"
* https://tosc.iacr.org/index.php/ToSC/article/view/7360
*/
#define ADIANTUM_KEY_SIZE 32
#define ADIANTUM_IV_SIZE 32
#define ADIANTUM_HASH_KEY_SIZE ((2 * POLY1305_KEY_SIZE) + NH_KEY_SIZE)
#define NH_KEY_SIZE 1072
#define NH_KEY_WORDS (NH_KEY_SIZE / sizeof(u32))
#define NH_BLOCK_SIZE 1024
#define NH_HASH_SIZE 32
#define NH_MESSAGE_UNIT 16
static u64 nh_pass(const u32 *key, const u8 *msg, size_t msglen)
{
u64 sum = 0;
ASSERT(msglen % NH_MESSAGE_UNIT == 0);
while (msglen) {
sum += (u64)(u32)(get_unaligned_le32(msg + 0) + key[0]) *
(u32)(get_unaligned_le32(msg + 8) + key[2]);
sum += (u64)(u32)(get_unaligned_le32(msg + 4) + key[1]) *
(u32)(get_unaligned_le32(msg + 12) + key[3]);
key += NH_MESSAGE_UNIT / sizeof(key[0]);
msg += NH_MESSAGE_UNIT;
msglen -= NH_MESSAGE_UNIT;
}
return sum;
}
/* NH ε-almost-universal hash function */
static void nh(const u32 *key, const u8 *msg, size_t msglen,
u8 result[NH_HASH_SIZE])
{
size_t i;
for (i = 0; i < NH_HASH_SIZE; i += sizeof(__le64)) {
put_unaligned_le64(nh_pass(key, msg, msglen), &result[i]);
key += NH_MESSAGE_UNIT / sizeof(key[0]);
}
}
/* Adiantum's ε-almost-∆-universal hash function */
static void adiantum_hash(const u8 key[ADIANTUM_HASH_KEY_SIZE],
const u8 iv[ADIANTUM_IV_SIZE],
const u8 *msg, size_t msglen, le128 *result)
{
const u8 *header_poly_key = key;
const u8 *msg_poly_key = header_poly_key + POLY1305_KEY_SIZE;
const u8 *nh_key = msg_poly_key + POLY1305_KEY_SIZE;
u32 nh_key_words[NH_KEY_WORDS];
u8 header[POLY1305_BLOCK_SIZE + ADIANTUM_IV_SIZE];
const size_t num_nh_blocks = DIV_ROUND_UP(msglen, NH_BLOCK_SIZE);
u8 *nh_hashes = xmalloc(num_nh_blocks * NH_HASH_SIZE);
const size_t padded_msglen = ROUND_UP(msglen, NH_MESSAGE_UNIT);
u8 *padded_msg = xmalloc(padded_msglen);
le128 hash1, hash2;
size_t i;
for (i = 0; i < NH_KEY_WORDS; i++)
nh_key_words[i] = get_unaligned_le32(&nh_key[i * sizeof(u32)]);
/* Hash tweak and message length with first Poly1305 key */
put_unaligned_le64((u64)msglen * 8, header);
put_unaligned_le64(0, &header[sizeof(__le64)]);
memcpy(&header[POLY1305_BLOCK_SIZE], iv, ADIANTUM_IV_SIZE);
poly1305(header_poly_key, header, sizeof(header), &hash1);
/* Hash NH hashes of message blocks using second Poly1305 key */
/* (using a super naive way of handling the padding) */
memcpy(padded_msg, msg, msglen);
memset(&padded_msg[msglen], 0, padded_msglen - msglen);
for (i = 0; i < num_nh_blocks; i++) {
nh(nh_key_words, &padded_msg[i * NH_BLOCK_SIZE],
MIN(NH_BLOCK_SIZE, padded_msglen - (i * NH_BLOCK_SIZE)),
&nh_hashes[i * NH_HASH_SIZE]);
}
poly1305(msg_poly_key, nh_hashes, num_nh_blocks * NH_HASH_SIZE, &hash2);
/* Add the two hashes together to get the final hash */
le128_add(result, &hash1, &hash2);
free(nh_hashes);
free(padded_msg);
}
static void adiantum_crypt(const u8 key[ADIANTUM_KEY_SIZE],
const u8 iv[ADIANTUM_IV_SIZE], const u8 *src,
u8 *dst, size_t nbytes, bool decrypting)
{
u8 subkeys[AES_256_KEY_SIZE + ADIANTUM_HASH_KEY_SIZE] = { 0 };
struct aes_key aes_key;
union {
u8 nonce[XCHACHA_NONCE_SIZE];
le128 block;
} u = { .nonce = { 1 } };
const size_t bulk_len = nbytes - sizeof(u.block);
le128 hash;
ASSERT(nbytes >= sizeof(u.block));
/* Derive subkeys */
xchacha12(key, u.nonce, subkeys, subkeys, sizeof(subkeys));
aes_setkey(&aes_key, subkeys, AES_256_KEY_SIZE);
/* Hash left part and add to right part */
adiantum_hash(&subkeys[AES_256_KEY_SIZE], iv, src, bulk_len, &hash);
memcpy(&u.block, &src[bulk_len], sizeof(u.block));
le128_add(&u.block, &u.block, &hash);
if (!decrypting) /* Encrypt right part with block cipher */
aes_encrypt(&aes_key, u.nonce, u.nonce);
/* Encrypt left part with stream cipher, using the computed nonce */
u.nonce[sizeof(u.block)] = 1;
xchacha12(key, u.nonce, src, dst, bulk_len);
if (decrypting) /* Decrypt right part with block cipher */
aes_decrypt(&aes_key, u.nonce, u.nonce);
/* Finalize right part by subtracting hash of left part */
adiantum_hash(&subkeys[AES_256_KEY_SIZE], iv, dst, bulk_len, &hash);
le128_sub(&u.block, &u.block, &hash);
memcpy(&dst[bulk_len], &u.block, sizeof(u.block));
}
static void adiantum_encrypt(const u8 key[ADIANTUM_KEY_SIZE],
const u8 iv[ADIANTUM_IV_SIZE],
const u8 *src, u8 *dst, size_t nbytes)
{
adiantum_crypt(key, iv, src, dst, nbytes, false);
}
static void adiantum_decrypt(const u8 key[ADIANTUM_KEY_SIZE],
const u8 iv[ADIANTUM_IV_SIZE],
const u8 *src, u8 *dst, size_t nbytes)
{
adiantum_crypt(key, iv, src, dst, nbytes, true);
}
#ifdef ENABLE_ALG_TESTS
#include <linux/if_alg.h>
#include <sys/socket.h>
#define SOL_ALG 279
static void af_alg_crypt(int algfd, int op, const u8 *key, size_t keylen,
const u8 *iv, size_t ivlen,
const u8 *src, u8 *dst, size_t datalen)
{
size_t controllen = CMSG_SPACE(sizeof(int)) +
CMSG_SPACE(sizeof(struct af_alg_iv) + ivlen);
u8 *control = xmalloc(controllen);
struct iovec iov = { .iov_base = (u8 *)src, .iov_len = datalen };
struct msghdr msg = {
.msg_iov = &iov,
.msg_iovlen = 1,
.msg_control = control,
.msg_controllen = controllen,
};
struct cmsghdr *cmsg;
struct af_alg_iv *algiv;
int reqfd;
memset(control, 0, controllen);
cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_len = CMSG_LEN(sizeof(int));
cmsg->cmsg_level = SOL_ALG;
cmsg->cmsg_type = ALG_SET_OP;
*(int *)CMSG_DATA(cmsg) = op;
cmsg = CMSG_NXTHDR(&msg, cmsg);
cmsg->cmsg_len = CMSG_LEN(sizeof(struct af_alg_iv) + ivlen);
cmsg->cmsg_level = SOL_ALG;
cmsg->cmsg_type = ALG_SET_IV;
algiv = (struct af_alg_iv *)CMSG_DATA(cmsg);
algiv->ivlen = ivlen;
memcpy(algiv->iv, iv, ivlen);
if (setsockopt(algfd, SOL_ALG, ALG_SET_KEY, key, keylen) != 0)
die_errno("can't set key on AF_ALG socket");
reqfd = accept(algfd, NULL, NULL);
if (reqfd < 0)
die_errno("can't accept() AF_ALG socket");
if (sendmsg(reqfd, &msg, 0) != datalen)
die_errno("can't sendmsg() AF_ALG request socket");
if (xread(reqfd, dst, datalen) != datalen)
die("short read from AF_ALG request socket");
close(reqfd);
free(control);
}
static void test_adiantum(void)
{
int algfd = socket(AF_ALG, SOCK_SEQPACKET, 0);
struct sockaddr_alg addr = {
.salg_type = "skcipher",
.salg_name = "adiantum(xchacha12,aes)",
};
unsigned long num_tests = NUM_ALG_TEST_ITERATIONS;
if (algfd < 0)
die_errno("can't create AF_ALG socket");
if (bind(algfd, (struct sockaddr *)&addr, sizeof(addr)) != 0)
die_errno("can't bind AF_ALG socket to Adiantum algorithm");
while (num_tests--) {
u8 key[ADIANTUM_KEY_SIZE];
u8 iv[ADIANTUM_IV_SIZE];
u8 ptext[4096];
u8 ctext[sizeof(ptext)];
u8 ref_ctext[sizeof(ptext)];
u8 decrypted[sizeof(ptext)];
const size_t datalen = 16 + (rand() % (sizeof(ptext) - 15));
rand_bytes(key, sizeof(key));
rand_bytes(iv, sizeof(iv));
rand_bytes(ptext, datalen);
adiantum_encrypt(key, iv, ptext, ctext, datalen);
af_alg_crypt(algfd, ALG_OP_ENCRYPT, key, sizeof(key),
iv, sizeof(iv), ptext, ref_ctext, datalen);
ASSERT(memcmp(ctext, ref_ctext, datalen) == 0);
adiantum_decrypt(key, iv, ctext, decrypted, datalen);
ASSERT(memcmp(ptext, decrypted, datalen) == 0);
}
close(algfd);
}
#endif /* ENABLE_ALG_TESTS */
/*----------------------------------------------------------------------------*
* SipHash-2-4 *
*----------------------------------------------------------------------------*/
/*
* Reference: "SipHash: a fast short-input PRF"
* https://cr.yp.to/siphash/siphash-20120918.pdf
*/
#define SIPROUND \
do { \
v0 += v1; v2 += v3; \
v1 = rol64(v1, 13); v3 = rol64(v3, 16); \
v1 ^= v0; v3 ^= v2; \
v0 = rol64(v0, 32); \
v2 += v1; v0 += v3; \
v1 = rol64(v1, 17); v3 = rol64(v3, 21); \
v1 ^= v2; v3 ^= v0; \
v2 = rol64(v2, 32); \
} while (0)
/* Compute the SipHash-2-4 of a 64-bit number when formatted as little endian */
static u64 siphash_1u64(const u64 key[2], u64 data)
{
u64 v0 = key[0] ^ 0x736f6d6570736575ULL;
u64 v1 = key[1] ^ 0x646f72616e646f6dULL;
u64 v2 = key[0] ^ 0x6c7967656e657261ULL;
u64 v3 = key[1] ^ 0x7465646279746573ULL;
u64 m[2] = {data, (u64)sizeof(data) << 56};
size_t i;
for (i = 0; i < ARRAY_SIZE(m); i++) {
v3 ^= m[i];
SIPROUND;
SIPROUND;
v0 ^= m[i];
}
v2 ^= 0xff;
for (i = 0; i < 4; i++)
SIPROUND;
return v0 ^ v1 ^ v2 ^ v3;
}
/*----------------------------------------------------------------------------*
* Main program *
*----------------------------------------------------------------------------*/
#define FILE_NONCE_SIZE 16
#define UUID_SIZE 16
#define MAX_KEY_SIZE 64
#define MAX_IV_SIZE ADIANTUM_IV_SIZE
static const struct fscrypt_cipher {
const char *name;
void (*encrypt)(const u8 *key, const u8 *iv, const u8 *src,
u8 *dst, size_t nbytes);
void (*decrypt)(const u8 *key, const u8 *iv, const u8 *src,
u8 *dst, size_t nbytes);
int keysize;
int min_input_size;
} fscrypt_ciphers[] = {
{
.name = "AES-256-XTS",
.encrypt = aes_256_xts_encrypt,
.decrypt = aes_256_xts_decrypt,
.keysize = 2 * AES_256_KEY_SIZE,
}, {
.name = "AES-256-CTS-CBC",
.encrypt = aes_256_cts_cbc_encrypt,
.decrypt = aes_256_cts_cbc_decrypt,
.keysize = AES_256_KEY_SIZE,
.min_input_size = AES_BLOCK_SIZE,
}, {
.name = "AES-128-CBC-ESSIV",
.encrypt = aes_128_cbc_essiv_encrypt,
.decrypt = aes_128_cbc_essiv_decrypt,
.keysize = AES_128_KEY_SIZE,
}, {
.name = "AES-128-CTS-CBC",
.encrypt = aes_128_cts_cbc_encrypt,
.decrypt = aes_128_cts_cbc_decrypt,
.keysize = AES_128_KEY_SIZE,
.min_input_size = AES_BLOCK_SIZE,
}, {
.name = "Adiantum",
.encrypt = adiantum_encrypt,
.decrypt = adiantum_decrypt,
.keysize = ADIANTUM_KEY_SIZE,
.min_input_size = AES_BLOCK_SIZE,
}
};
static const struct fscrypt_cipher *find_fscrypt_cipher(const char *name)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(fscrypt_ciphers); i++) {
if (strcmp(fscrypt_ciphers[i].name, name) == 0)
return &fscrypt_ciphers[i];
}
return NULL;
}
union fscrypt_iv {
/* usual IV format */
struct {
/* logical block number within the file */
__le64 block_number;
/* per-file nonce; only set in DIRECT_KEY mode */
u8 nonce[FILE_NONCE_SIZE];
};
/* IV format for IV_INO_LBLK_* modes */
struct {
/*
* IV_INO_LBLK_64: logical block number within the file
* IV_INO_LBLK_32: hashed inode number + logical block number
* within the file, mod 2^32
*/
__le32 block_number32;
/* IV_INO_LBLK_64: inode number */
__le32 inode_number;
};
/* Any extra bytes up to the algorithm's IV size must be zeroed */
u8 bytes[MAX_IV_SIZE];
};
static void crypt_loop(const struct fscrypt_cipher *cipher, const u8 *key,
union fscrypt_iv *iv, bool decrypting,
size_t block_size, size_t padding, bool is_bnum_32bit)
{
u8 *buf = xmalloc(block_size);
size_t res;
while ((res = xread(STDIN_FILENO, buf, block_size)) > 0) {
size_t crypt_len = block_size;
if (padding > 0) {
crypt_len = MAX(res, cipher->min_input_size);
crypt_len = ROUND_UP(crypt_len, padding);
crypt_len = MIN(crypt_len, block_size);
}
ASSERT(crypt_len >= res);
memset(&buf[res], 0, crypt_len - res);
if (decrypting)
cipher->decrypt(key, iv->bytes, buf, buf, crypt_len);
else
cipher->encrypt(key, iv->bytes, buf, buf, crypt_len);
full_write(STDOUT_FILENO, buf, crypt_len);
if (is_bnum_32bit)
iv->block_number32 = cpu_to_le32(
le32_to_cpu(iv->block_number32) + 1);
else
iv->block_number = cpu_to_le64(
le64_to_cpu(iv->block_number) + 1);
}
free(buf);
}
/* The supported key derivation functions */
enum kdf_algorithm {
KDF_NONE,
KDF_AES_128_ECB,
KDF_HKDF_SHA512,
};
static enum kdf_algorithm parse_kdf_algorithm(const char *arg)
{
if (strcmp(arg, "none") == 0)
return KDF_NONE;
if (strcmp(arg, "AES-128-ECB") == 0)
return KDF_AES_128_ECB;
if (strcmp(arg, "HKDF-SHA512") == 0)
return KDF_HKDF_SHA512;
die("Unknown KDF: %s", arg);
}
static u8 parse_mode_number(const char *arg)
{
char *tmp;
long num = strtol(arg, &tmp, 10);
if (num <= 0 || *tmp || (u8)num != num)
die("Invalid mode number: %s", arg);
return num;
}
struct key_and_iv_params {
u8 master_key[MAX_KEY_SIZE];
int master_key_size;
enum kdf_algorithm kdf;
u8 mode_num;
u8 file_nonce[FILE_NONCE_SIZE];
bool file_nonce_specified;
bool iv_ino_lblk_64;
bool iv_ino_lblk_32;
u64 block_number;
u64 inode_number;
u8 fs_uuid[UUID_SIZE];
bool fs_uuid_specified;
};
#define HKDF_CONTEXT_KEY_IDENTIFIER 1
#define HKDF_CONTEXT_PER_FILE_ENC_KEY 2
#define HKDF_CONTEXT_DIRECT_KEY 3
#define HKDF_CONTEXT_IV_INO_LBLK_64_KEY 4
#define HKDF_CONTEXT_DIRHASH_KEY 5
#define HKDF_CONTEXT_IV_INO_LBLK_32_KEY 6
#define HKDF_CONTEXT_INODE_HASH_KEY 7
/* Hash the file's inode number using SipHash keyed by a derived key */
static u32 hash_inode_number(const struct key_and_iv_params *params)
{
u8 info[9] = "fscrypt";
union {
u64 words[2];
u8 bytes[16];
} hash_key;
info[8] = HKDF_CONTEXT_INODE_HASH_KEY;
hkdf_sha512(params->master_key, params->master_key_size,
NULL, 0, info, sizeof(info),
hash_key.bytes, sizeof(hash_key));
hash_key.words[0] = get_unaligned_le64(&hash_key.bytes[0]);
hash_key.words[1] = get_unaligned_le64(&hash_key.bytes[8]);
return (u32)siphash_1u64(hash_key.words, params->inode_number);
}
/*
* Get the key and starting IV with which the encryption will actually be done.
* If a KDF was specified, a subkey is derived from the master key and the mode
* number or file nonce. Otherwise, the master key is used directly.
*/
static void get_key_and_iv(const struct key_and_iv_params *params,
u8 *real_key, size_t real_key_size,
union fscrypt_iv *iv)
{
bool file_nonce_in_iv = false;
struct aes_key aes_key;
u8 info[8 + 1 + 1 + UUID_SIZE] = "fscrypt";
size_t infolen = 8;
size_t i;
ASSERT(real_key_size <= params->master_key_size);
memset(iv, 0, sizeof(*iv));
/* Overridden later for iv_ino_lblk_{64,32} */
iv->block_number = cpu_to_le64(params->block_number);
if (params->iv_ino_lblk_64 || params->iv_ino_lblk_32) {
const char *opt = params->iv_ino_lblk_64 ? "--iv-ino-lblk-64" :
"--iv-ino-lblk-32";
if (params->iv_ino_lblk_64 && params->iv_ino_lblk_32)
die("--iv-ino-lblk-64 and --iv-ino-lblk-32 are mutually exclusive");
if (params->kdf != KDF_HKDF_SHA512)
die("%s requires --kdf=HKDF-SHA512", opt);
if (!params->fs_uuid_specified)
die("%s requires --fs-uuid", opt);
if (params->inode_number == 0)
die("%s requires --inode-number", opt);
if (params->mode_num == 0)
die("%s requires --mode-num", opt);
if (params->block_number > UINT32_MAX)
die("%s can't use --block-number > UINT32_MAX", opt);
if (params->inode_number > UINT32_MAX)
die("%s can't use --inode-number > UINT32_MAX", opt);
}
switch (params->kdf) {
case KDF_NONE:
if (params->mode_num != 0)
die("--mode-num isn't supported with --kdf=none");
memcpy(real_key, params->master_key, real_key_size);
file_nonce_in_iv = true;
break;
case KDF_AES_128_ECB:
if (!params->file_nonce_specified)
die("--file-nonce is required with --kdf=AES-128-ECB");
if (params->mode_num != 0)
die("--mode-num isn't supported with --kdf=AES-128-ECB");
STATIC_ASSERT(FILE_NONCE_SIZE == AES_128_KEY_SIZE);
ASSERT(real_key_size % AES_BLOCK_SIZE == 0);
aes_setkey(&aes_key, params->file_nonce, AES_128_KEY_SIZE);
for (i = 0; i < real_key_size; i += AES_BLOCK_SIZE)
aes_encrypt(&aes_key, &params->master_key[i],
&real_key[i]);
break;
case KDF_HKDF_SHA512:
if (params->iv_ino_lblk_64) {
info[infolen++] = HKDF_CONTEXT_IV_INO_LBLK_64_KEY;
info[infolen++] = params->mode_num;
memcpy(&info[infolen], params->fs_uuid, UUID_SIZE);
infolen += UUID_SIZE;
iv->block_number32 = cpu_to_le32(params->block_number);
iv->inode_number = cpu_to_le32(params->inode_number);
} else if (params->iv_ino_lblk_32) {
info[infolen++] = HKDF_CONTEXT_IV_INO_LBLK_32_KEY;
info[infolen++] = params->mode_num;
memcpy(&info[infolen], params->fs_uuid, UUID_SIZE);
infolen += UUID_SIZE;
iv->block_number32 =
cpu_to_le32(hash_inode_number(params) +
params->block_number);
iv->inode_number = 0;
} else if (params->mode_num != 0) {
info[infolen++] = HKDF_CONTEXT_DIRECT_KEY;
info[infolen++] = params->mode_num;
file_nonce_in_iv = true;
} else if (params->file_nonce_specified) {
info[infolen++] = HKDF_CONTEXT_PER_FILE_ENC_KEY;
memcpy(&info[infolen], params->file_nonce,
FILE_NONCE_SIZE);
infolen += FILE_NONCE_SIZE;
} else {
die("With --kdf=HKDF-SHA512, at least one of --file-nonce and --mode-num must be specified");
}
hkdf_sha512(params->master_key, params->master_key_size,
NULL, 0, info, infolen, real_key, real_key_size);
break;
default:
ASSERT(0);
}
if (file_nonce_in_iv && params->file_nonce_specified)
memcpy(iv->nonce, params->file_nonce, FILE_NONCE_SIZE);
}
enum {
OPT_BLOCK_NUMBER,
OPT_BLOCK_SIZE,
OPT_DECRYPT,
OPT_FILE_NONCE,
OPT_FS_UUID,
OPT_HELP,
OPT_INODE_NUMBER,
OPT_IV_INO_LBLK_32,
OPT_IV_INO_LBLK_64,
OPT_KDF,
OPT_MODE_NUM,
OPT_PADDING,
};
static const struct option longopts[] = {
{ "block-number", required_argument, NULL, OPT_BLOCK_NUMBER },
{ "block-size", required_argument, NULL, OPT_BLOCK_SIZE },
{ "decrypt", no_argument, NULL, OPT_DECRYPT },
{ "file-nonce", required_argument, NULL, OPT_FILE_NONCE },
{ "fs-uuid", required_argument, NULL, OPT_FS_UUID },
{ "help", no_argument, NULL, OPT_HELP },
{ "inode-number", required_argument, NULL, OPT_INODE_NUMBER },
{ "iv-ino-lblk-32", no_argument, NULL, OPT_IV_INO_LBLK_32 },
{ "iv-ino-lblk-64", no_argument, NULL, OPT_IV_INO_LBLK_64 },
{ "kdf", required_argument, NULL, OPT_KDF },
{ "mode-num", required_argument, NULL, OPT_MODE_NUM },
{ "padding", required_argument, NULL, OPT_PADDING },
{ NULL, 0, NULL, 0 },
};
int main(int argc, char *argv[])
{
size_t block_size = 4096;
bool decrypting = false;
struct key_and_iv_params params;
size_t padding = 0;
const struct fscrypt_cipher *cipher;
u8 real_key[MAX_KEY_SIZE];
union fscrypt_iv iv;
char *tmp;
int c;
memset(&params, 0, sizeof(params));
aes_init();
#ifdef ENABLE_ALG_TESTS
test_aes();
test_sha2();
test_hkdf_sha512();
test_aes_256_xts();
test_aes_256_cts_cbc();
test_adiantum();
#endif
while ((c = getopt_long(argc, argv, "", longopts, NULL)) != -1) {
switch (c) {
case OPT_BLOCK_NUMBER:
errno = 0;
params.block_number = strtoull(optarg, &tmp, 10);
if (*tmp || errno)
die("Invalid block number: %s", optarg);
break;
case OPT_BLOCK_SIZE:
errno = 0;
block_size = strtoul(optarg, &tmp, 10);
if (block_size <= 0 || *tmp || errno)
die("Invalid block size: %s", optarg);
break;
case OPT_DECRYPT:
decrypting = true;
break;
case OPT_FILE_NONCE:
if (hex2bin(optarg, params.file_nonce, FILE_NONCE_SIZE)
!= FILE_NONCE_SIZE)
die("Invalid file nonce: %s", optarg);
params.file_nonce_specified = true;
break;
case OPT_FS_UUID:
if (hex2bin(optarg, params.fs_uuid, UUID_SIZE)
!= UUID_SIZE)
die("Invalid filesystem UUID: %s", optarg);
params.fs_uuid_specified = true;
break;
case OPT_HELP:
usage(stdout);
return 0;
case OPT_INODE_NUMBER:
errno = 0;
params.inode_number = strtoull(optarg, &tmp, 10);
if (params.inode_number <= 0 || *tmp || errno)
die("Invalid inode number: %s", optarg);
break;
case OPT_IV_INO_LBLK_32:
params.iv_ino_lblk_32 = true;
break;
case OPT_IV_INO_LBLK_64:
params.iv_ino_lblk_64 = true;
break;
case OPT_KDF:
params.kdf = parse_kdf_algorithm(optarg);
break;
case OPT_MODE_NUM:
params.mode_num = parse_mode_number(optarg);
break;
case OPT_PADDING:
padding = strtoul(optarg, &tmp, 10);
if (padding <= 0 || *tmp || !is_power_of_2(padding) ||
padding > INT_MAX)
die("Invalid padding amount: %s", optarg);
break;
default:
usage(stderr);
return 2;
}
}
argc -= optind;
argv += optind;
if (argc != 2) {
usage(stderr);
return 2;
}
cipher = find_fscrypt_cipher(argv[0]);
if (cipher == NULL)
die("Unknown cipher: %s", argv[0]);
if (block_size < cipher->min_input_size)
die("Block size of %zu bytes is too small for cipher %s",
block_size, cipher->name);
params.master_key_size = hex2bin(argv[1], params.master_key,
MAX_KEY_SIZE);
if (params.master_key_size < 0)
die("Invalid master_key: %s", argv[1]);
if (params.master_key_size < cipher->keysize)
die("Master key is too short for cipher %s", cipher->name);
get_key_and_iv(&params, real_key, cipher->keysize, &iv);
crypt_loop(cipher, real_key, &iv, decrypting, block_size, padding,
params.iv_ino_lblk_64 || params.iv_ino_lblk_32);
return 0;
}