blob: ee338bfde18b25d45bb0252ff41ea4160095d6e7 [file] [log] [blame]
/******************************************************************************
* blkif.h
*
* Unified block-device I/O interface for Xen guest OSes.
*
* Copyright (c) 2003-2004, Keir Fraser
*/
#ifndef __XEN_PUBLIC_IO_BLKIF_H__
#define __XEN_PUBLIC_IO_BLKIF_H__
#include "ring.h"
#include "../grant_table.h"
/*
* Front->back notifications: When enqueuing a new request, sending a
* notification can be made conditional on req_event (i.e., the generic
* hold-off mechanism provided by the ring macros). Backends must set
* req_event appropriately (e.g., using RING_FINAL_CHECK_FOR_REQUESTS()).
*
* Back->front notifications: When enqueuing a new response, sending a
* notification can be made conditional on rsp_event (i.e., the generic
* hold-off mechanism provided by the ring macros). Frontends must set
* rsp_event appropriately (e.g., using RING_FINAL_CHECK_FOR_RESPONSES()).
*/
typedef uint16_t blkif_vdev_t;
typedef uint64_t blkif_sector_t;
/*
* REQUEST CODES.
*/
#define BLKIF_OP_READ 0
#define BLKIF_OP_WRITE 1
/*
* Recognised only if "feature-barrier" is present in backend xenbus info.
* The "feature_barrier" node contains a boolean indicating whether barrier
* requests are likely to succeed or fail. Either way, a barrier request
* may fail at any time with BLKIF_RSP_EOPNOTSUPP if it is unsupported by
* the underlying block-device hardware. The boolean simply indicates whether
* or not it is worthwhile for the frontend to attempt barrier requests.
* If a backend does not recognise BLKIF_OP_WRITE_BARRIER, it should *not*
* create the "feature-barrier" node!
*/
#define BLKIF_OP_WRITE_BARRIER 2
/*
* Recognised if "feature-flush-cache" is present in backend xenbus
* info. A flush will ask the underlying storage hardware to flush its
* non-volatile caches as appropriate. The "feature-flush-cache" node
* contains a boolean indicating whether flush requests are likely to
* succeed or fail. Either way, a flush request may fail at any time
* with BLKIF_RSP_EOPNOTSUPP if it is unsupported by the underlying
* block-device hardware. The boolean simply indicates whether or not it
* is worthwhile for the frontend to attempt flushes. If a backend does
* not recognise BLKIF_OP_WRITE_FLUSH_CACHE, it should *not* create the
* "feature-flush-cache" node!
*/
#define BLKIF_OP_FLUSH_DISKCACHE 3
/*
* Recognised only if "feature-discard" is present in backend xenbus info.
* The "feature-discard" node contains a boolean indicating whether trim
* (ATA) or unmap (SCSI) - conviently called discard requests are likely
* to succeed or fail. Either way, a discard request
* may fail at any time with BLKIF_RSP_EOPNOTSUPP if it is unsupported by
* the underlying block-device hardware. The boolean simply indicates whether
* or not it is worthwhile for the frontend to attempt discard requests.
* If a backend does not recognise BLKIF_OP_DISCARD, it should *not*
* create the "feature-discard" node!
*
* Discard operation is a request for the underlying block device to mark
* extents to be erased. However, discard does not guarantee that the blocks
* will be erased from the device - it is just a hint to the device
* controller that these blocks are no longer in use. What the device
* controller does with that information is left to the controller.
* Discard operations are passed with sector_number as the
* sector index to begin discard operations at and nr_sectors as the number of
* sectors to be discarded. The specified sectors should be discarded if the
* underlying block device supports trim (ATA) or unmap (SCSI) operations,
* or a BLKIF_RSP_EOPNOTSUPP should be returned.
* More information about trim/unmap operations at:
* http://t13.org/Documents/UploadedDocuments/docs2008/
* e07154r6-Data_Set_Management_Proposal_for_ATA-ACS2.doc
* http://www.seagate.com/staticfiles/support/disc/manuals/
* Interface%20manuals/100293068c.pdf
* The backend can optionally provide three extra XenBus attributes to
* further optimize the discard functionality:
* 'discard-aligment' - Devices that support discard functionality may
* internally allocate space in units that are bigger than the exported
* logical block size. The discard-alignment parameter indicates how many bytes
* the beginning of the partition is offset from the internal allocation unit's
* natural alignment.
* 'discard-granularity' - Devices that support discard functionality may
* internally allocate space using units that are bigger than the logical block
* size. The discard-granularity parameter indicates the size of the internal
* allocation unit in bytes if reported by the device. Otherwise the
* discard-granularity will be set to match the device's physical block size.
* 'discard-secure' - All copies of the discarded sectors (potentially created
* by garbage collection) must also be erased. To use this feature, the flag
* BLKIF_DISCARD_SECURE must be set in the blkif_request_trim.
*/
#define BLKIF_OP_DISCARD 5
/*
* Maximum scatter/gather segments per request.
* This is carefully chosen so that sizeof(struct blkif_ring) <= PAGE_SIZE.
* NB. This could be 12 if the ring indexes weren't stored in the same page.
*/
#define BLKIF_MAX_SEGMENTS_PER_REQUEST 11
struct blkif_request_rw {
uint8_t nr_segments; /* number of segments */
blkif_vdev_t handle; /* only for read/write requests */
#ifdef CONFIG_X86_64
uint32_t _pad1; /* offsetof(blkif_request,u.rw.id) == 8 */
#endif
uint64_t id; /* private guest value, echoed in resp */
blkif_sector_t sector_number;/* start sector idx on disk (r/w only) */
struct blkif_request_segment {
grant_ref_t gref; /* reference to I/O buffer frame */
/* @first_sect: first sector in frame to transfer (inclusive). */
/* @last_sect: last sector in frame to transfer (inclusive). */
uint8_t first_sect, last_sect;
} seg[BLKIF_MAX_SEGMENTS_PER_REQUEST];
} __attribute__((__packed__));
struct blkif_request_discard {
uint8_t flag; /* BLKIF_DISCARD_SECURE or zero. */
#define BLKIF_DISCARD_SECURE (1<<0) /* ignored if discard-secure=0 */
blkif_vdev_t _pad1; /* only for read/write requests */
#ifdef CONFIG_X86_64
uint32_t _pad2; /* offsetof(blkif_req..,u.discard.id)==8*/
#endif
uint64_t id; /* private guest value, echoed in resp */
blkif_sector_t sector_number;
uint64_t nr_sectors;
uint8_t _pad3;
} __attribute__((__packed__));
struct blkif_request {
uint8_t operation; /* BLKIF_OP_??? */
union {
struct blkif_request_rw rw;
struct blkif_request_discard discard;
} u;
} __attribute__((__packed__));
struct blkif_response {
uint64_t id; /* copied from request */
uint8_t operation; /* copied from request */
int16_t status; /* BLKIF_RSP_??? */
};
/*
* STATUS RETURN CODES.
*/
/* Operation not supported (only happens on barrier writes). */
#define BLKIF_RSP_EOPNOTSUPP -2
/* Operation failed for some unspecified reason (-EIO). */
#define BLKIF_RSP_ERROR -1
/* Operation completed successfully. */
#define BLKIF_RSP_OKAY 0
/*
* Generate blkif ring structures and types.
*/
DEFINE_RING_TYPES(blkif, struct blkif_request, struct blkif_response);
#define VDISK_CDROM 0x1
#define VDISK_REMOVABLE 0x2
#define VDISK_READONLY 0x4
/* Xen-defined major numbers for virtual disks, they look strangely
* familiar */
#define XEN_IDE0_MAJOR 3
#define XEN_IDE1_MAJOR 22
#define XEN_SCSI_DISK0_MAJOR 8
#define XEN_SCSI_DISK1_MAJOR 65
#define XEN_SCSI_DISK2_MAJOR 66
#define XEN_SCSI_DISK3_MAJOR 67
#define XEN_SCSI_DISK4_MAJOR 68
#define XEN_SCSI_DISK5_MAJOR 69
#define XEN_SCSI_DISK6_MAJOR 70
#define XEN_SCSI_DISK7_MAJOR 71
#define XEN_SCSI_DISK8_MAJOR 128
#define XEN_SCSI_DISK9_MAJOR 129
#define XEN_SCSI_DISK10_MAJOR 130
#define XEN_SCSI_DISK11_MAJOR 131
#define XEN_SCSI_DISK12_MAJOR 132
#define XEN_SCSI_DISK13_MAJOR 133
#define XEN_SCSI_DISK14_MAJOR 134
#define XEN_SCSI_DISK15_MAJOR 135
#endif /* __XEN_PUBLIC_IO_BLKIF_H__ */