| /* |
| * Agere Systems Inc. |
| * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs |
| * |
| * Copyright © 2005 Agere Systems Inc. |
| * All rights reserved. |
| * http://www.agere.com |
| * |
| * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com> |
| * |
| *------------------------------------------------------------------------------ |
| * |
| * SOFTWARE LICENSE |
| * |
| * This software is provided subject to the following terms and conditions, |
| * which you should read carefully before using the software. Using this |
| * software indicates your acceptance of these terms and conditions. If you do |
| * not agree with these terms and conditions, do not use the software. |
| * |
| * Copyright © 2005 Agere Systems Inc. |
| * All rights reserved. |
| * |
| * Redistribution and use in source or binary forms, with or without |
| * modifications, are permitted provided that the following conditions are met: |
| * |
| * . Redistributions of source code must retain the above copyright notice, this |
| * list of conditions and the following Disclaimer as comments in the code as |
| * well as in the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * . Redistributions in binary form must reproduce the above copyright notice, |
| * this list of conditions and the following Disclaimer in the documentation |
| * and/or other materials provided with the distribution. |
| * |
| * . Neither the name of Agere Systems Inc. nor the names of the contributors |
| * may be used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * Disclaimer |
| * |
| * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, |
| * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY |
| * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN |
| * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT |
| * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH |
| * DAMAGE. |
| * |
| */ |
| |
| #include <linux/pci.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| |
| #include <linux/sched.h> |
| #include <linux/ptrace.h> |
| #include <linux/slab.h> |
| #include <linux/ctype.h> |
| #include <linux/string.h> |
| #include <linux/timer.h> |
| #include <linux/interrupt.h> |
| #include <linux/in.h> |
| #include <linux/delay.h> |
| #include <linux/bitops.h> |
| #include <linux/io.h> |
| #include <asm/system.h> |
| |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/if_arp.h> |
| #include <linux/ioport.h> |
| #include <linux/crc32.h> |
| #include <linux/random.h> |
| #include <linux/phy.h> |
| |
| #include "et131x.h" |
| |
| MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>"); |
| MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>"); |
| MODULE_LICENSE("Dual BSD/GPL"); |
| MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver " |
| "for the ET1310 by Agere Systems"); |
| |
| /* EEPROM defines */ |
| #define MAX_NUM_REGISTER_POLLS 1000 |
| #define MAX_NUM_WRITE_RETRIES 2 |
| |
| /* MAC defines */ |
| #define COUNTER_WRAP_16_BIT 0x10000 |
| #define COUNTER_WRAP_12_BIT 0x1000 |
| |
| /* PCI defines */ |
| #define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */ |
| #define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */ |
| |
| /* ISR defines */ |
| /* |
| * For interrupts, normal running is: |
| * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt, |
| * watchdog_interrupt & txdma_xfer_done |
| * |
| * In both cases, when flow control is enabled for either Tx or bi-direction, |
| * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the |
| * buffer rings are running low. |
| */ |
| #define INT_MASK_DISABLE 0xffffffff |
| |
| /* NOTE: Masking out MAC_STAT Interrupt for now... |
| * #define INT_MASK_ENABLE 0xfff6bf17 |
| * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7 |
| */ |
| #define INT_MASK_ENABLE 0xfffebf17 |
| #define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7 |
| |
| /* General defines */ |
| /* Packet and header sizes */ |
| #define NIC_MIN_PACKET_SIZE 60 |
| |
| /* Multicast list size */ |
| #define NIC_MAX_MCAST_LIST 128 |
| |
| /* Supported Filters */ |
| #define ET131X_PACKET_TYPE_DIRECTED 0x0001 |
| #define ET131X_PACKET_TYPE_MULTICAST 0x0002 |
| #define ET131X_PACKET_TYPE_BROADCAST 0x0004 |
| #define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008 |
| #define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010 |
| |
| /* Tx Timeout */ |
| #define ET131X_TX_TIMEOUT (1 * HZ) |
| #define NIC_SEND_HANG_THRESHOLD 0 |
| |
| /* MP_TCB flags */ |
| #define fMP_DEST_MULTI 0x00000001 |
| #define fMP_DEST_BROAD 0x00000002 |
| |
| /* MP_ADAPTER flags */ |
| #define fMP_ADAPTER_RECV_LOOKASIDE 0x00000004 |
| #define fMP_ADAPTER_INTERRUPT_IN_USE 0x00000008 |
| |
| /* MP_SHARED flags */ |
| #define fMP_ADAPTER_LOWER_POWER 0x00200000 |
| |
| #define fMP_ADAPTER_NON_RECOVER_ERROR 0x00800000 |
| #define fMP_ADAPTER_HARDWARE_ERROR 0x04000000 |
| |
| #define fMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000 |
| |
| /* Some offsets in PCI config space that are actually used. */ |
| #define ET1310_PCI_MAC_ADDRESS 0xA4 |
| #define ET1310_PCI_EEPROM_STATUS 0xB2 |
| #define ET1310_PCI_ACK_NACK 0xC0 |
| #define ET1310_PCI_REPLAY 0xC2 |
| #define ET1310_PCI_L0L1LATENCY 0xCF |
| |
| /* PCI Product IDs */ |
| #define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */ |
| #define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */ |
| |
| /* Define order of magnitude converter */ |
| #define NANO_IN_A_MICRO 1000 |
| |
| #define PARM_RX_NUM_BUFS_DEF 4 |
| #define PARM_RX_TIME_INT_DEF 10 |
| #define PARM_RX_MEM_END_DEF 0x2bc |
| #define PARM_TX_TIME_INT_DEF 40 |
| #define PARM_TX_NUM_BUFS_DEF 4 |
| #define PARM_DMA_CACHE_DEF 0 |
| |
| /* RX defines */ |
| #define USE_FBR0 1 |
| #define FBR_CHUNKS 32 |
| #define MAX_DESC_PER_RING_RX 1024 |
| |
| /* number of RFDs - default and min */ |
| #ifdef USE_FBR0 |
| #define RFD_LOW_WATER_MARK 40 |
| #define NIC_DEFAULT_NUM_RFD 1024 |
| #define NUM_FBRS 2 |
| #else |
| #define RFD_LOW_WATER_MARK 20 |
| #define NIC_DEFAULT_NUM_RFD 256 |
| #define NUM_FBRS 1 |
| #endif |
| |
| #define NIC_MIN_NUM_RFD 64 |
| #define NUM_PACKETS_HANDLED 256 |
| |
| #define ALCATEL_MULTICAST_PKT 0x01000000 |
| #define ALCATEL_BROADCAST_PKT 0x02000000 |
| |
| /* typedefs for Free Buffer Descriptors */ |
| struct fbr_desc { |
| u32 addr_lo; |
| u32 addr_hi; |
| u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */ |
| }; |
| |
| /* Packet Status Ring Descriptors |
| * |
| * Word 0: |
| * |
| * top 16 bits are from the Alcatel Status Word as enumerated in |
| * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2) |
| * |
| * 0: hp hash pass |
| * 1: ipa IP checksum assist |
| * 2: ipp IP checksum pass |
| * 3: tcpa TCP checksum assist |
| * 4: tcpp TCP checksum pass |
| * 5: wol WOL Event |
| * 6: rxmac_error RXMAC Error Indicator |
| * 7: drop Drop packet |
| * 8: ft Frame Truncated |
| * 9: jp Jumbo Packet |
| * 10: vp VLAN Packet |
| * 11-15: unused |
| * 16: asw_prev_pkt_dropped e.g. IFG too small on previous |
| * 17: asw_RX_DV_event short receive event detected |
| * 18: asw_false_carrier_event bad carrier since last good packet |
| * 19: asw_code_err one or more nibbles signalled as errors |
| * 20: asw_CRC_err CRC error |
| * 21: asw_len_chk_err frame length field incorrect |
| * 22: asw_too_long frame length > 1518 bytes |
| * 23: asw_OK valid CRC + no code error |
| * 24: asw_multicast has a multicast address |
| * 25: asw_broadcast has a broadcast address |
| * 26: asw_dribble_nibble spurious bits after EOP |
| * 27: asw_control_frame is a control frame |
| * 28: asw_pause_frame is a pause frame |
| * 29: asw_unsupported_op unsupported OP code |
| * 30: asw_VLAN_tag VLAN tag detected |
| * 31: asw_long_evt Rx long event |
| * |
| * Word 1: |
| * 0-15: length length in bytes |
| * 16-25: bi Buffer Index |
| * 26-27: ri Ring Index |
| * 28-31: reserved |
| */ |
| |
| struct pkt_stat_desc { |
| u32 word0; |
| u32 word1; |
| }; |
| |
| /* Typedefs for the RX DMA status word */ |
| |
| /* |
| * rx status word 0 holds part of the status bits of the Rx DMA engine |
| * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word |
| * which contains the Free Buffer ring 0 and 1 available offset. |
| * |
| * bit 0-9 FBR1 offset |
| * bit 10 Wrap flag for FBR1 |
| * bit 16-25 FBR0 offset |
| * bit 26 Wrap flag for FBR0 |
| */ |
| |
| /* |
| * RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine |
| * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word |
| * which contains the Packet Status Ring available offset. |
| * |
| * bit 0-15 reserved |
| * bit 16-27 PSRoffset |
| * bit 28 PSRwrap |
| * bit 29-31 unused |
| */ |
| |
| /* |
| * struct rx_status_block is a structure representing the status of the Rx |
| * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020 |
| */ |
| struct rx_status_block { |
| u32 word0; |
| u32 word1; |
| }; |
| |
| /* |
| * Structure for look-up table holding free buffer ring pointers, addresses |
| * and state. |
| */ |
| struct fbr_lookup { |
| void *virt[MAX_DESC_PER_RING_RX]; |
| void *buffer1[MAX_DESC_PER_RING_RX]; |
| void *buffer2[MAX_DESC_PER_RING_RX]; |
| u32 bus_high[MAX_DESC_PER_RING_RX]; |
| u32 bus_low[MAX_DESC_PER_RING_RX]; |
| void *ring_virtaddr; |
| dma_addr_t ring_physaddr; |
| void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS]; |
| dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS]; |
| u64 real_physaddr; |
| u64 offset; |
| u32 local_full; |
| u32 num_entries; |
| u32 buffsize; |
| }; |
| |
| /* |
| * struct rx_ring is the sructure representing the adaptor's local |
| * reference(s) to the rings |
| * |
| ****************************************************************************** |
| * IMPORTANT NOTE :- fbr_lookup *fbr[NUM_FBRS] uses index 0 to refer to FBR1 |
| * and index 1 to refer to FRB0 |
| ****************************************************************************** |
| */ |
| struct rx_ring { |
| struct fbr_lookup *fbr[NUM_FBRS]; |
| void *ps_ring_virtaddr; |
| dma_addr_t ps_ring_physaddr; |
| u32 local_psr_full; |
| u32 psr_num_entries; |
| |
| struct rx_status_block *rx_status_block; |
| dma_addr_t rx_status_bus; |
| |
| /* RECV */ |
| struct list_head recv_list; |
| u32 num_ready_recv; |
| |
| u32 num_rfd; |
| |
| bool unfinished_receives; |
| |
| /* lookaside lists */ |
| struct kmem_cache *recv_lookaside; |
| }; |
| |
| /* TX defines */ |
| /* |
| * word 2 of the control bits in the Tx Descriptor ring for the ET-1310 |
| * |
| * 0-15: length of packet |
| * 16-27: VLAN tag |
| * 28: VLAN CFI |
| * 29-31: VLAN priority |
| * |
| * word 3 of the control bits in the Tx Descriptor ring for the ET-1310 |
| * |
| * 0: last packet in the sequence |
| * 1: first packet in the sequence |
| * 2: interrupt the processor when this pkt sent |
| * 3: Control word - no packet data |
| * 4: Issue half-duplex backpressure : XON/XOFF |
| * 5: send pause frame |
| * 6: Tx frame has error |
| * 7: append CRC |
| * 8: MAC override |
| * 9: pad packet |
| * 10: Packet is a Huge packet |
| * 11: append VLAN tag |
| * 12: IP checksum assist |
| * 13: TCP checksum assist |
| * 14: UDP checksum assist |
| */ |
| |
| /* struct tx_desc represents each descriptor on the ring */ |
| struct tx_desc { |
| u32 addr_hi; |
| u32 addr_lo; |
| u32 len_vlan; /* control words how to xmit the */ |
| u32 flags; /* data (detailed above) */ |
| }; |
| |
| /* |
| * The status of the Tx DMA engine it sits in free memory, and is pointed to |
| * by 0x101c / 0x1020. This is a DMA10 type |
| */ |
| |
| /* TCB (Transmit Control Block: Host Side) */ |
| struct tcb { |
| struct tcb *next; /* Next entry in ring */ |
| u32 flags; /* Our flags for the packet */ |
| u32 count; /* Used to spot stuck/lost packets */ |
| u32 stale; /* Used to spot stuck/lost packets */ |
| struct sk_buff *skb; /* Network skb we are tied to */ |
| u32 index; /* Ring indexes */ |
| u32 index_start; |
| }; |
| |
| /* Structure representing our local reference(s) to the ring */ |
| struct tx_ring { |
| /* TCB (Transmit Control Block) memory and lists */ |
| struct tcb *tcb_ring; |
| |
| /* List of TCBs that are ready to be used */ |
| struct tcb *tcb_qhead; |
| struct tcb *tcb_qtail; |
| |
| /* list of TCBs that are currently being sent. NOTE that access to all |
| * three of these (including used) are controlled via the |
| * TCBSendQLock. This lock should be secured prior to incementing / |
| * decrementing used, or any queue manipulation on send_head / |
| * tail |
| */ |
| struct tcb *send_head; |
| struct tcb *send_tail; |
| int used; |
| |
| /* The actual descriptor ring */ |
| struct tx_desc *tx_desc_ring; |
| dma_addr_t tx_desc_ring_pa; |
| |
| /* send_idx indicates where we last wrote to in the descriptor ring. */ |
| u32 send_idx; |
| |
| /* The location of the write-back status block */ |
| u32 *tx_status; |
| dma_addr_t tx_status_pa; |
| |
| /* Packets since the last IRQ: used for interrupt coalescing */ |
| int since_irq; |
| }; |
| |
| /* |
| * Do not change these values: if changed, then change also in respective |
| * TXdma and Rxdma engines |
| */ |
| #define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */ |
| #define NUM_TCB 64 |
| |
| /* |
| * These values are all superseded by registry entries to facilitate tuning. |
| * Once the desired performance has been achieved, the optimal registry values |
| * should be re-populated to these #defines: |
| */ |
| #define TX_ERROR_PERIOD 1000 |
| |
| #define LO_MARK_PERCENT_FOR_PSR 15 |
| #define LO_MARK_PERCENT_FOR_RX 15 |
| |
| /* RFD (Receive Frame Descriptor) */ |
| struct rfd { |
| struct list_head list_node; |
| struct sk_buff *skb; |
| u32 len; /* total size of receive frame */ |
| u16 bufferindex; |
| u8 ringindex; |
| }; |
| |
| /* Flow Control */ |
| #define FLOW_BOTH 0 |
| #define FLOW_TXONLY 1 |
| #define FLOW_RXONLY 2 |
| #define FLOW_NONE 3 |
| |
| /* Struct to define some device statistics */ |
| struct ce_stats { |
| /* MIB II variables |
| * |
| * NOTE: atomic_t types are only guaranteed to store 24-bits; if we |
| * MUST have 32, then we'll need another way to perform atomic |
| * operations |
| */ |
| u32 unicast_pkts_rcvd; |
| atomic_t unicast_pkts_xmtd; |
| u32 multicast_pkts_rcvd; |
| atomic_t multicast_pkts_xmtd; |
| u32 broadcast_pkts_rcvd; |
| atomic_t broadcast_pkts_xmtd; |
| u32 rcvd_pkts_dropped; |
| |
| /* Tx Statistics. */ |
| u32 tx_underflows; |
| |
| u32 tx_collisions; |
| u32 tx_excessive_collisions; |
| u32 tx_first_collisions; |
| u32 tx_late_collisions; |
| u32 tx_max_pkt_errs; |
| u32 tx_deferred; |
| |
| /* Rx Statistics. */ |
| u32 rx_overflows; |
| |
| u32 rx_length_errs; |
| u32 rx_align_errs; |
| u32 rx_crc_errs; |
| u32 rx_code_violations; |
| u32 rx_other_errs; |
| |
| u32 synchronous_iterations; |
| u32 interrupt_status; |
| }; |
| |
| /* The private adapter structure */ |
| struct et131x_adapter { |
| struct net_device *netdev; |
| struct pci_dev *pdev; |
| struct mii_bus *mii_bus; |
| struct phy_device *phydev; |
| struct work_struct task; |
| |
| /* Flags that indicate current state of the adapter */ |
| u32 flags; |
| |
| /* local link state, to determine if a state change has occurred */ |
| int link; |
| |
| /* Configuration */ |
| u8 rom_addr[ETH_ALEN]; |
| u8 addr[ETH_ALEN]; |
| bool has_eeprom; |
| u8 eeprom_data[2]; |
| |
| /* Spinlocks */ |
| spinlock_t lock; |
| |
| spinlock_t tcb_send_qlock; |
| spinlock_t tcb_ready_qlock; |
| spinlock_t send_hw_lock; |
| |
| spinlock_t rcv_lock; |
| spinlock_t rcv_pend_lock; |
| spinlock_t fbr_lock; |
| |
| spinlock_t phy_lock; |
| |
| /* Packet Filter and look ahead size */ |
| u32 packet_filter; |
| |
| /* multicast list */ |
| u32 multicast_addr_count; |
| u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN]; |
| |
| /* Pointer to the device's PCI register space */ |
| struct address_map __iomem *regs; |
| |
| /* Registry parameters */ |
| u8 wanted_flow; /* Flow we want for 802.3x flow control */ |
| u32 registry_jumbo_packet; /* Max supported ethernet packet size */ |
| |
| /* Derived from the registry: */ |
| u8 flowcontrol; /* flow control validated by the far-end */ |
| |
| /* Minimize init-time */ |
| struct timer_list error_timer; |
| |
| /* variable putting the phy into coma mode when boot up with no cable |
| * plugged in after 5 seconds |
| */ |
| u8 boot_coma; |
| |
| /* Next two used to save power information at power down. This |
| * information will be used during power up to set up parts of Power |
| * Management in JAGCore |
| */ |
| u16 pdown_speed; |
| u8 pdown_duplex; |
| |
| /* Tx Memory Variables */ |
| struct tx_ring tx_ring; |
| |
| /* Rx Memory Variables */ |
| struct rx_ring rx_ring; |
| |
| /* Stats */ |
| struct ce_stats stats; |
| |
| struct net_device_stats net_stats; |
| }; |
| |
| static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status) |
| { |
| u32 reg; |
| int i; |
| |
| /* |
| * 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and |
| * bits 7,1:0 both equal to 1, at least once after reset. |
| * Subsequent operations need only to check that bits 1:0 are equal |
| * to 1 prior to starting a single byte read/write |
| */ |
| |
| for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) { |
| /* Read registers grouped in DWORD1 */ |
| if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, ®)) |
| return -EIO; |
| |
| /* I2C idle and Phy Queue Avail both true */ |
| if ((reg & 0x3000) == 0x3000) { |
| if (status) |
| *status = reg; |
| return reg & 0xFF; |
| } |
| } |
| return -ETIMEDOUT; |
| } |
| |
| |
| /** |
| * eeprom_write - Write a byte to the ET1310's EEPROM |
| * @adapter: pointer to our private adapter structure |
| * @addr: the address to write |
| * @data: the value to write |
| * |
| * Returns 1 for a successful write. |
| */ |
| static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| int index = 0; |
| int retries; |
| int err = 0; |
| int i2c_wack = 0; |
| int writeok = 0; |
| u32 status; |
| u32 val = 0; |
| |
| /* |
| * For an EEPROM, an I2C single byte write is defined as a START |
| * condition followed by the device address, EEPROM address, one byte |
| * of data and a STOP condition. The STOP condition will trigger the |
| * EEPROM's internally timed write cycle to the nonvolatile memory. |
| * All inputs are disabled during this write cycle and the EEPROM will |
| * not respond to any access until the internal write is complete. |
| */ |
| |
| err = eeprom_wait_ready(pdev, NULL); |
| if (err) |
| return err; |
| |
| /* |
| * 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0, |
| * and bits 1:0 both =0. Bit 5 should be set according to the |
| * type of EEPROM being accessed (1=two byte addressing, 0=one |
| * byte addressing). |
| */ |
| if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER, |
| LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE)) |
| return -EIO; |
| |
| i2c_wack = 1; |
| |
| /* Prepare EEPROM address for Step 3 */ |
| |
| for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) { |
| /* Write the address to the LBCIF Address Register */ |
| if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr)) |
| break; |
| /* |
| * Write the data to the LBCIF Data Register (the I2C write |
| * will begin). |
| */ |
| if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data)) |
| break; |
| /* |
| * Monitor bit 1:0 of the LBCIF Status Register. When bits |
| * 1:0 are both equal to 1, the I2C write has completed and the |
| * internal write cycle of the EEPROM is about to start. |
| * (bits 1:0 = 01 is a legal state while waiting from both |
| * equal to 1, but bits 1:0 = 10 is invalid and implies that |
| * something is broken). |
| */ |
| err = eeprom_wait_ready(pdev, &status); |
| if (err < 0) |
| return 0; |
| |
| /* |
| * Check bit 3 of the LBCIF Status Register. If equal to 1, |
| * an error has occurred.Don't break here if we are revision |
| * 1, this is so we do a blind write for load bug. |
| */ |
| if ((status & LBCIF_STATUS_GENERAL_ERROR) |
| && adapter->pdev->revision == 0) |
| break; |
| |
| /* |
| * Check bit 2 of the LBCIF Status Register. If equal to 1 an |
| * ACK error has occurred on the address phase of the write. |
| * This could be due to an actual hardware failure or the |
| * EEPROM may still be in its internal write cycle from a |
| * previous write. This write operation was ignored and must be |
| *repeated later. |
| */ |
| if (status & LBCIF_STATUS_ACK_ERROR) { |
| /* |
| * This could be due to an actual hardware failure |
| * or the EEPROM may still be in its internal write |
| * cycle from a previous write. This write operation |
| * was ignored and must be repeated later. |
| */ |
| udelay(10); |
| continue; |
| } |
| |
| writeok = 1; |
| break; |
| } |
| |
| /* |
| * Set bit 6 of the LBCIF Control Register = 0. |
| */ |
| udelay(10); |
| |
| while (i2c_wack) { |
| if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER, |
| LBCIF_CONTROL_LBCIF_ENABLE)) |
| writeok = 0; |
| |
| /* Do read until internal ACK_ERROR goes away meaning write |
| * completed |
| */ |
| do { |
| pci_write_config_dword(pdev, |
| LBCIF_ADDRESS_REGISTER, |
| addr); |
| do { |
| pci_read_config_dword(pdev, |
| LBCIF_DATA_REGISTER, &val); |
| } while ((val & 0x00010000) == 0); |
| } while (val & 0x00040000); |
| |
| if ((val & 0xFF00) != 0xC000 || index == 10000) |
| break; |
| index++; |
| } |
| return writeok ? 0 : -EIO; |
| } |
| |
| /** |
| * eeprom_read - Read a byte from the ET1310's EEPROM |
| * @adapter: pointer to our private adapter structure |
| * @addr: the address from which to read |
| * @pdata: a pointer to a byte in which to store the value of the read |
| * @eeprom_id: the ID of the EEPROM |
| * @addrmode: how the EEPROM is to be accessed |
| * |
| * Returns 1 for a successful read |
| */ |
| static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| int err; |
| u32 status; |
| |
| /* |
| * A single byte read is similar to the single byte write, with the |
| * exception of the data flow: |
| */ |
| |
| err = eeprom_wait_ready(pdev, NULL); |
| if (err) |
| return err; |
| /* |
| * Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0, |
| * and bits 1:0 both =0. Bit 5 should be set according to the type |
| * of EEPROM being accessed (1=two byte addressing, 0=one byte |
| * addressing). |
| */ |
| if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER, |
| LBCIF_CONTROL_LBCIF_ENABLE)) |
| return -EIO; |
| /* |
| * Write the address to the LBCIF Address Register (I2C read will |
| * begin). |
| */ |
| if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr)) |
| return -EIO; |
| /* |
| * Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read |
| * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure |
| * has occurred). |
| */ |
| err = eeprom_wait_ready(pdev, &status); |
| if (err < 0) |
| return err; |
| /* |
| * Regardless of error status, read data byte from LBCIF Data |
| * Register. |
| */ |
| *pdata = err; |
| /* |
| * Check bit 2 of the LBCIF Status Register. If = 1, |
| * then an error has occurred. |
| */ |
| return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0; |
| } |
| |
| static int et131x_init_eeprom(struct et131x_adapter *adapter) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| u8 eestatus; |
| |
| /* We first need to check the EEPROM Status code located at offset |
| * 0xB2 of config space |
| */ |
| pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, |
| &eestatus); |
| |
| /* THIS IS A WORKAROUND: |
| * I need to call this function twice to get my card in a |
| * LG M1 Express Dual running. I tried also a msleep before this |
| * function, because I thougth there could be some time condidions |
| * but it didn't work. Call the whole function twice also work. |
| */ |
| if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) { |
| dev_err(&pdev->dev, |
| "Could not read PCI config space for EEPROM Status\n"); |
| return -EIO; |
| } |
| |
| /* Determine if the error(s) we care about are present. If they are |
| * present we need to fail. |
| */ |
| if (eestatus & 0x4C) { |
| int write_failed = 0; |
| if (pdev->revision == 0x01) { |
| int i; |
| static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF }; |
| |
| /* Re-write the first 4 bytes if we have an eeprom |
| * present and the revision id is 1, this fixes the |
| * corruption seen with 1310 B Silicon |
| */ |
| for (i = 0; i < 3; i++) |
| if (eeprom_write(adapter, i, eedata[i]) < 0) |
| write_failed = 1; |
| } |
| if (pdev->revision != 0x01 || write_failed) { |
| dev_err(&pdev->dev, |
| "Fatal EEPROM Status Error - 0x%04x\n", eestatus); |
| |
| /* This error could mean that there was an error |
| * reading the eeprom or that the eeprom doesn't exist. |
| * We will treat each case the same and not try to |
| * gather additional information that normally would |
| * come from the eeprom, like MAC Address |
| */ |
| adapter->has_eeprom = 0; |
| return -EIO; |
| } |
| } |
| adapter->has_eeprom = 1; |
| |
| /* Read the EEPROM for information regarding LED behavior. Refer to |
| * ET1310_phy.c, et131x_xcvr_init(), for its use. |
| */ |
| eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]); |
| eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]); |
| |
| if (adapter->eeprom_data[0] != 0xcd) |
| /* Disable all optional features */ |
| adapter->eeprom_data[1] = 0x00; |
| |
| return 0; |
| } |
| |
| /** |
| * et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310. |
| * @adapter: pointer to our adapter structure |
| */ |
| static void et131x_rx_dma_enable(struct et131x_adapter *adapter) |
| { |
| /* Setup the receive dma configuration register for normal operation */ |
| u32 csr = 0x2000; /* FBR1 enable */ |
| |
| if (adapter->rx_ring.fbr[0]->buffsize == 4096) |
| csr |= 0x0800; |
| else if (adapter->rx_ring.fbr[0]->buffsize == 8192) |
| csr |= 0x1000; |
| else if (adapter->rx_ring.fbr[0]->buffsize == 16384) |
| csr |= 0x1800; |
| #ifdef USE_FBR0 |
| csr |= 0x0400; /* FBR0 enable */ |
| if (adapter->rx_ring.fbr[1]->buffsize == 256) |
| csr |= 0x0100; |
| else if (adapter->rx_ring.fbr[1]->buffsize == 512) |
| csr |= 0x0200; |
| else if (adapter->rx_ring.fbr[1]->buffsize == 1024) |
| csr |= 0x0300; |
| #endif |
| writel(csr, &adapter->regs->rxdma.csr); |
| |
| csr = readl(&adapter->regs->rxdma.csr); |
| if ((csr & 0x00020000) != 0) { |
| udelay(5); |
| csr = readl(&adapter->regs->rxdma.csr); |
| if ((csr & 0x00020000) != 0) { |
| dev_err(&adapter->pdev->dev, |
| "RX Dma failed to exit halt state. CSR 0x%08x\n", |
| csr); |
| } |
| } |
| } |
| |
| /** |
| * et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310 |
| * @adapter: pointer to our adapter structure |
| */ |
| static void et131x_rx_dma_disable(struct et131x_adapter *adapter) |
| { |
| u32 csr; |
| /* Setup the receive dma configuration register */ |
| writel(0x00002001, &adapter->regs->rxdma.csr); |
| csr = readl(&adapter->regs->rxdma.csr); |
| if ((csr & 0x00020000) == 0) { /* Check halt status (bit 17) */ |
| udelay(5); |
| csr = readl(&adapter->regs->rxdma.csr); |
| if ((csr & 0x00020000) == 0) |
| dev_err(&adapter->pdev->dev, |
| "RX Dma failed to enter halt state. CSR 0x%08x\n", |
| csr); |
| } |
| } |
| |
| /** |
| * et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310. |
| * @adapter: pointer to our adapter structure |
| * |
| * Mainly used after a return to the D0 (full-power) state from a lower state. |
| */ |
| static void et131x_tx_dma_enable(struct et131x_adapter *adapter) |
| { |
| /* Setup the transmit dma configuration register for normal |
| * operation |
| */ |
| writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT), |
| &adapter->regs->txdma.csr); |
| } |
| |
| static inline void add_10bit(u32 *v, int n) |
| { |
| *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP); |
| } |
| |
| static inline void add_12bit(u32 *v, int n) |
| { |
| *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP); |
| } |
| |
| /** |
| * et1310_config_mac_regs1 - Initialize the first part of MAC regs |
| * @adapter: pointer to our adapter structure |
| */ |
| static void et1310_config_mac_regs1(struct et131x_adapter *adapter) |
| { |
| struct mac_regs __iomem *macregs = &adapter->regs->mac; |
| u32 station1; |
| u32 station2; |
| u32 ipg; |
| |
| /* First we need to reset everything. Write to MAC configuration |
| * register 1 to perform reset. |
| */ |
| writel(0xC00F0000, ¯egs->cfg1); |
| |
| /* Next lets configure the MAC Inter-packet gap register */ |
| ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */ |
| ipg |= 0x50 << 8; /* ifg enforce 0x50 */ |
| writel(ipg, ¯egs->ipg); |
| |
| /* Next lets configure the MAC Half Duplex register */ |
| /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */ |
| writel(0x00A1F037, ¯egs->hfdp); |
| |
| /* Next lets configure the MAC Interface Control register */ |
| writel(0, ¯egs->if_ctrl); |
| |
| /* Let's move on to setting up the mii management configuration */ |
| writel(0x07, ¯egs->mii_mgmt_cfg); /* Clock reset 0x7 */ |
| |
| /* Next lets configure the MAC Station Address register. These |
| * values are read from the EEPROM during initialization and stored |
| * in the adapter structure. We write what is stored in the adapter |
| * structure to the MAC Station Address registers high and low. This |
| * station address is used for generating and checking pause control |
| * packets. |
| */ |
| station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) | |
| (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT); |
| station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) | |
| (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) | |
| (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) | |
| adapter->addr[2]; |
| writel(station1, ¯egs->station_addr_1); |
| writel(station2, ¯egs->station_addr_2); |
| |
| /* Max ethernet packet in bytes that will passed by the mac without |
| * being truncated. Allow the MAC to pass 4 more than our max packet |
| * size. This is 4 for the Ethernet CRC. |
| * |
| * Packets larger than (registry_jumbo_packet) that do not contain a |
| * VLAN ID will be dropped by the Rx function. |
| */ |
| writel(adapter->registry_jumbo_packet + 4, ¯egs->max_fm_len); |
| |
| /* clear out MAC config reset */ |
| writel(0, ¯egs->cfg1); |
| } |
| |
| /** |
| * et1310_config_mac_regs2 - Initialize the second part of MAC regs |
| * @adapter: pointer to our adapter structure |
| */ |
| static void et1310_config_mac_regs2(struct et131x_adapter *adapter) |
| { |
| int32_t delay = 0; |
| struct mac_regs __iomem *mac = &adapter->regs->mac; |
| struct phy_device *phydev = adapter->phydev; |
| u32 cfg1; |
| u32 cfg2; |
| u32 ifctrl; |
| u32 ctl; |
| |
| ctl = readl(&adapter->regs->txmac.ctl); |
| cfg1 = readl(&mac->cfg1); |
| cfg2 = readl(&mac->cfg2); |
| ifctrl = readl(&mac->if_ctrl); |
| |
| /* Set up the if mode bits */ |
| cfg2 &= ~0x300; |
| if (phydev && phydev->speed == SPEED_1000) { |
| cfg2 |= 0x200; |
| /* Phy mode bit */ |
| ifctrl &= ~(1 << 24); |
| } else { |
| cfg2 |= 0x100; |
| ifctrl |= (1 << 24); |
| } |
| |
| /* We need to enable Rx/Tx */ |
| cfg1 |= CFG1_RX_ENABLE | CFG1_TX_ENABLE | CFG1_TX_FLOW; |
| /* Initialize loop back to off */ |
| cfg1 &= ~(CFG1_LOOPBACK | CFG1_RX_FLOW); |
| if (adapter->flowcontrol == FLOW_RXONLY || |
| adapter->flowcontrol == FLOW_BOTH) |
| cfg1 |= CFG1_RX_FLOW; |
| writel(cfg1, &mac->cfg1); |
| |
| /* Now we need to initialize the MAC Configuration 2 register */ |
| /* preamble 7, check length, huge frame off, pad crc, crc enable |
| full duplex off */ |
| cfg2 |= 0x7016; |
| cfg2 &= ~0x0021; |
| |
| /* Turn on duplex if needed */ |
| if (phydev && phydev->duplex == DUPLEX_FULL) |
| cfg2 |= 0x01; |
| |
| ifctrl &= ~(1 << 26); |
| if (phydev && phydev->duplex == DUPLEX_HALF) |
| ifctrl |= (1<<26); /* Enable ghd */ |
| |
| writel(ifctrl, &mac->if_ctrl); |
| writel(cfg2, &mac->cfg2); |
| |
| do { |
| udelay(10); |
| delay++; |
| cfg1 = readl(&mac->cfg1); |
| } while ((cfg1 & CFG1_WAIT) != CFG1_WAIT && delay < 100); |
| |
| if (delay == 100) { |
| dev_warn(&adapter->pdev->dev, |
| "Syncd bits did not respond correctly cfg1 word 0x%08x\n", |
| cfg1); |
| } |
| |
| /* Enable txmac */ |
| ctl |= 0x09; /* TX mac enable, FC disable */ |
| writel(ctl, &adapter->regs->txmac.ctl); |
| |
| /* Ready to start the RXDMA/TXDMA engine */ |
| if (adapter->flags & fMP_ADAPTER_LOWER_POWER) { |
| et131x_rx_dma_enable(adapter); |
| et131x_tx_dma_enable(adapter); |
| } |
| } |
| |
| /** |
| * et1310_in_phy_coma - check if the device is in phy coma |
| * @adapter: pointer to our adapter structure |
| * |
| * Returns 0 if the device is not in phy coma, 1 if it is in phy coma |
| */ |
| static int et1310_in_phy_coma(struct et131x_adapter *adapter) |
| { |
| u32 pmcsr; |
| |
| pmcsr = readl(&adapter->regs->global.pm_csr); |
| |
| return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0; |
| } |
| |
| static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter) |
| { |
| struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac; |
| u32 hash1 = 0; |
| u32 hash2 = 0; |
| u32 hash3 = 0; |
| u32 hash4 = 0; |
| u32 pm_csr; |
| |
| /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision |
| * the multi-cast LIST. If it is NOT specified, (and "ALL" is not |
| * specified) then we should pass NO multi-cast addresses to the |
| * driver. |
| */ |
| if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) { |
| int i; |
| |
| /* Loop through our multicast array and set up the device */ |
| for (i = 0; i < adapter->multicast_addr_count; i++) { |
| u32 result; |
| |
| result = ether_crc(6, adapter->multicast_list[i]); |
| |
| result = (result & 0x3F800000) >> 23; |
| |
| if (result < 32) { |
| hash1 |= (1 << result); |
| } else if ((31 < result) && (result < 64)) { |
| result -= 32; |
| hash2 |= (1 << result); |
| } else if ((63 < result) && (result < 96)) { |
| result -= 64; |
| hash3 |= (1 << result); |
| } else { |
| result -= 96; |
| hash4 |= (1 << result); |
| } |
| } |
| } |
| |
| /* Write out the new hash to the device */ |
| pm_csr = readl(&adapter->regs->global.pm_csr); |
| if (!et1310_in_phy_coma(adapter)) { |
| writel(hash1, &rxmac->multi_hash1); |
| writel(hash2, &rxmac->multi_hash2); |
| writel(hash3, &rxmac->multi_hash3); |
| writel(hash4, &rxmac->multi_hash4); |
| } |
| } |
| |
| static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter) |
| { |
| struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac; |
| u32 uni_pf1; |
| u32 uni_pf2; |
| u32 uni_pf3; |
| u32 pm_csr; |
| |
| /* Set up unicast packet filter reg 3 to be the first two octets of |
| * the MAC address for both address |
| * |
| * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the |
| * MAC address for second address |
| * |
| * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the |
| * MAC address for first address |
| */ |
| uni_pf3 = (adapter->addr[0] << ET_UNI_PF_ADDR2_1_SHIFT) | |
| (adapter->addr[1] << ET_UNI_PF_ADDR2_2_SHIFT) | |
| (adapter->addr[0] << ET_UNI_PF_ADDR1_1_SHIFT) | |
| adapter->addr[1]; |
| |
| uni_pf2 = (adapter->addr[2] << ET_UNI_PF_ADDR2_3_SHIFT) | |
| (adapter->addr[3] << ET_UNI_PF_ADDR2_4_SHIFT) | |
| (adapter->addr[4] << ET_UNI_PF_ADDR2_5_SHIFT) | |
| adapter->addr[5]; |
| |
| uni_pf1 = (adapter->addr[2] << ET_UNI_PF_ADDR1_3_SHIFT) | |
| (adapter->addr[3] << ET_UNI_PF_ADDR1_4_SHIFT) | |
| (adapter->addr[4] << ET_UNI_PF_ADDR1_5_SHIFT) | |
| adapter->addr[5]; |
| |
| pm_csr = readl(&adapter->regs->global.pm_csr); |
| if (!et1310_in_phy_coma(adapter)) { |
| writel(uni_pf1, &rxmac->uni_pf_addr1); |
| writel(uni_pf2, &rxmac->uni_pf_addr2); |
| writel(uni_pf3, &rxmac->uni_pf_addr3); |
| } |
| } |
| |
| static void et1310_config_rxmac_regs(struct et131x_adapter *adapter) |
| { |
| struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac; |
| struct phy_device *phydev = adapter->phydev; |
| u32 sa_lo; |
| u32 sa_hi = 0; |
| u32 pf_ctrl = 0; |
| |
| /* Disable the MAC while it is being configured (also disable WOL) */ |
| writel(0x8, &rxmac->ctrl); |
| |
| /* Initialize WOL to disabled. */ |
| writel(0, &rxmac->crc0); |
| writel(0, &rxmac->crc12); |
| writel(0, &rxmac->crc34); |
| |
| /* We need to set the WOL mask0 - mask4 next. We initialize it to |
| * its default Values of 0x00000000 because there are not WOL masks |
| * as of this time. |
| */ |
| writel(0, &rxmac->mask0_word0); |
| writel(0, &rxmac->mask0_word1); |
| writel(0, &rxmac->mask0_word2); |
| writel(0, &rxmac->mask0_word3); |
| |
| writel(0, &rxmac->mask1_word0); |
| writel(0, &rxmac->mask1_word1); |
| writel(0, &rxmac->mask1_word2); |
| writel(0, &rxmac->mask1_word3); |
| |
| writel(0, &rxmac->mask2_word0); |
| writel(0, &rxmac->mask2_word1); |
| writel(0, &rxmac->mask2_word2); |
| writel(0, &rxmac->mask2_word3); |
| |
| writel(0, &rxmac->mask3_word0); |
| writel(0, &rxmac->mask3_word1); |
| writel(0, &rxmac->mask3_word2); |
| writel(0, &rxmac->mask3_word3); |
| |
| writel(0, &rxmac->mask4_word0); |
| writel(0, &rxmac->mask4_word1); |
| writel(0, &rxmac->mask4_word2); |
| writel(0, &rxmac->mask4_word3); |
| |
| /* Lets setup the WOL Source Address */ |
| sa_lo = (adapter->addr[2] << ET_WOL_LO_SA3_SHIFT) | |
| (adapter->addr[3] << ET_WOL_LO_SA4_SHIFT) | |
| (adapter->addr[4] << ET_WOL_LO_SA5_SHIFT) | |
| adapter->addr[5]; |
| writel(sa_lo, &rxmac->sa_lo); |
| |
| sa_hi = (u32) (adapter->addr[0] << ET_WOL_HI_SA1_SHIFT) | |
| adapter->addr[1]; |
| writel(sa_hi, &rxmac->sa_hi); |
| |
| /* Disable all Packet Filtering */ |
| writel(0, &rxmac->pf_ctrl); |
| |
| /* Let's initialize the Unicast Packet filtering address */ |
| if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) { |
| et1310_setup_device_for_unicast(adapter); |
| pf_ctrl |= 4; /* Unicast filter */ |
| } else { |
| writel(0, &rxmac->uni_pf_addr1); |
| writel(0, &rxmac->uni_pf_addr2); |
| writel(0, &rxmac->uni_pf_addr3); |
| } |
| |
| /* Let's initialize the Multicast hash */ |
| if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) { |
| pf_ctrl |= 2; /* Multicast filter */ |
| et1310_setup_device_for_multicast(adapter); |
| } |
| |
| /* Runt packet filtering. Didn't work in version A silicon. */ |
| pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << 16; |
| pf_ctrl |= 8; /* Fragment filter */ |
| |
| if (adapter->registry_jumbo_packet > 8192) |
| /* In order to transmit jumbo packets greater than 8k, the |
| * FIFO between RxMAC and RxDMA needs to be reduced in size |
| * to (16k - Jumbo packet size). In order to implement this, |
| * we must use "cut through" mode in the RxMAC, which chops |
| * packets down into segments which are (max_size * 16). In |
| * this case we selected 256 bytes, since this is the size of |
| * the PCI-Express TLP's that the 1310 uses. |
| * |
| * seg_en on, fc_en off, size 0x10 |
| */ |
| writel(0x41, &rxmac->mcif_ctrl_max_seg); |
| else |
| writel(0, &rxmac->mcif_ctrl_max_seg); |
| |
| /* Initialize the MCIF water marks */ |
| writel(0, &rxmac->mcif_water_mark); |
| |
| /* Initialize the MIF control */ |
| writel(0, &rxmac->mif_ctrl); |
| |
| /* Initialize the Space Available Register */ |
| writel(0, &rxmac->space_avail); |
| |
| /* Initialize the the mif_ctrl register |
| * bit 3: Receive code error. One or more nibbles were signaled as |
| * errors during the reception of the packet. Clear this |
| * bit in Gigabit, set it in 100Mbit. This was derived |
| * experimentally at UNH. |
| * bit 4: Receive CRC error. The packet's CRC did not match the |
| * internally generated CRC. |
| * bit 5: Receive length check error. Indicates that frame length |
| * field value in the packet does not match the actual data |
| * byte length and is not a type field. |
| * bit 16: Receive frame truncated. |
| * bit 17: Drop packet enable |
| */ |
| if (phydev && phydev->speed == SPEED_100) |
| writel(0x30038, &rxmac->mif_ctrl); |
| else |
| writel(0x30030, &rxmac->mif_ctrl); |
| |
| /* Finally we initialize RxMac to be enabled & WOL disabled. Packet |
| * filter is always enabled since it is where the runt packets are |
| * supposed to be dropped. For version A silicon, runt packet |
| * dropping doesn't work, so it is disabled in the pf_ctrl register, |
| * but we still leave the packet filter on. |
| */ |
| writel(pf_ctrl, &rxmac->pf_ctrl); |
| writel(0x9, &rxmac->ctrl); |
| } |
| |
| static void et1310_config_txmac_regs(struct et131x_adapter *adapter) |
| { |
| struct txmac_regs __iomem *txmac = &adapter->regs->txmac; |
| |
| /* We need to update the Control Frame Parameters |
| * cfpt - control frame pause timer set to 64 (0x40) |
| * cfep - control frame extended pause timer set to 0x0 |
| */ |
| if (adapter->flowcontrol == FLOW_NONE) |
| writel(0, &txmac->cf_param); |
| else |
| writel(0x40, &txmac->cf_param); |
| } |
| |
| static void et1310_config_macstat_regs(struct et131x_adapter *adapter) |
| { |
| struct macstat_regs __iomem *macstat = |
| &adapter->regs->macstat; |
| |
| /* Next we need to initialize all the macstat registers to zero on |
| * the device. |
| */ |
| writel(0, &macstat->txrx_0_64_byte_frames); |
| writel(0, &macstat->txrx_65_127_byte_frames); |
| writel(0, &macstat->txrx_128_255_byte_frames); |
| writel(0, &macstat->txrx_256_511_byte_frames); |
| writel(0, &macstat->txrx_512_1023_byte_frames); |
| writel(0, &macstat->txrx_1024_1518_byte_frames); |
| writel(0, &macstat->txrx_1519_1522_gvln_frames); |
| |
| writel(0, &macstat->rx_bytes); |
| writel(0, &macstat->rx_packets); |
| writel(0, &macstat->rx_fcs_errs); |
| writel(0, &macstat->rx_multicast_packets); |
| writel(0, &macstat->rx_broadcast_packets); |
| writel(0, &macstat->rx_control_frames); |
| writel(0, &macstat->rx_pause_frames); |
| writel(0, &macstat->rx_unknown_opcodes); |
| writel(0, &macstat->rx_align_errs); |
| writel(0, &macstat->rx_frame_len_errs); |
| writel(0, &macstat->rx_code_errs); |
| writel(0, &macstat->rx_carrier_sense_errs); |
| writel(0, &macstat->rx_undersize_packets); |
| writel(0, &macstat->rx_oversize_packets); |
| writel(0, &macstat->rx_fragment_packets); |
| writel(0, &macstat->rx_jabbers); |
| writel(0, &macstat->rx_drops); |
| |
| writel(0, &macstat->tx_bytes); |
| writel(0, &macstat->tx_packets); |
| writel(0, &macstat->tx_multicast_packets); |
| writel(0, &macstat->tx_broadcast_packets); |
| writel(0, &macstat->tx_pause_frames); |
| writel(0, &macstat->tx_deferred); |
| writel(0, &macstat->tx_excessive_deferred); |
| writel(0, &macstat->tx_single_collisions); |
| writel(0, &macstat->tx_multiple_collisions); |
| writel(0, &macstat->tx_late_collisions); |
| writel(0, &macstat->tx_excessive_collisions); |
| writel(0, &macstat->tx_total_collisions); |
| writel(0, &macstat->tx_pause_honored_frames); |
| writel(0, &macstat->tx_drops); |
| writel(0, &macstat->tx_jabbers); |
| writel(0, &macstat->tx_fcs_errs); |
| writel(0, &macstat->tx_control_frames); |
| writel(0, &macstat->tx_oversize_frames); |
| writel(0, &macstat->tx_undersize_frames); |
| writel(0, &macstat->tx_fragments); |
| writel(0, &macstat->carry_reg1); |
| writel(0, &macstat->carry_reg2); |
| |
| /* Unmask any counters that we want to track the overflow of. |
| * Initially this will be all counters. It may become clear later |
| * that we do not need to track all counters. |
| */ |
| writel(0xFFFFBE32, &macstat->carry_reg1_mask); |
| writel(0xFFFE7E8B, &macstat->carry_reg2_mask); |
| } |
| |
| /** |
| * et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC |
| * @adapter: pointer to our private adapter structure |
| * @addr: the address of the transceiver |
| * @reg: the register to read |
| * @value: pointer to a 16-bit value in which the value will be stored |
| * |
| * Returns 0 on success, errno on failure (as defined in errno.h) |
| */ |
| static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr, |
| u8 reg, u16 *value) |
| { |
| struct mac_regs __iomem *mac = &adapter->regs->mac; |
| int status = 0; |
| u32 delay = 0; |
| u32 mii_addr; |
| u32 mii_cmd; |
| u32 mii_indicator; |
| |
| /* Save a local copy of the registers we are dealing with so we can |
| * set them back |
| */ |
| mii_addr = readl(&mac->mii_mgmt_addr); |
| mii_cmd = readl(&mac->mii_mgmt_cmd); |
| |
| /* Stop the current operation */ |
| writel(0, &mac->mii_mgmt_cmd); |
| |
| /* Set up the register we need to read from on the correct PHY */ |
| writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr); |
| |
| writel(0x1, &mac->mii_mgmt_cmd); |
| |
| do { |
| udelay(50); |
| delay++; |
| mii_indicator = readl(&mac->mii_mgmt_indicator); |
| } while ((mii_indicator & MGMT_WAIT) && delay < 50); |
| |
| /* If we hit the max delay, we could not read the register */ |
| if (delay == 50) { |
| dev_warn(&adapter->pdev->dev, |
| "reg 0x%08x could not be read\n", reg); |
| dev_warn(&adapter->pdev->dev, "status is 0x%08x\n", |
| mii_indicator); |
| |
| status = -EIO; |
| } |
| |
| /* If we hit here we were able to read the register and we need to |
| * return the value to the caller */ |
| *value = readl(&mac->mii_mgmt_stat) & 0xFFFF; |
| |
| /* Stop the read operation */ |
| writel(0, &mac->mii_mgmt_cmd); |
| |
| /* set the registers we touched back to the state at which we entered |
| * this function |
| */ |
| writel(mii_addr, &mac->mii_mgmt_addr); |
| writel(mii_cmd, &mac->mii_mgmt_cmd); |
| |
| return status; |
| } |
| |
| static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value) |
| { |
| struct phy_device *phydev = adapter->phydev; |
| |
| if (!phydev) |
| return -EIO; |
| |
| return et131x_phy_mii_read(adapter, phydev->addr, reg, value); |
| } |
| |
| /** |
| * et131x_mii_write - Write to a PHY register through the MII interface of the MAC |
| * @adapter: pointer to our private adapter structure |
| * @reg: the register to read |
| * @value: 16-bit value to write |
| * |
| * FIXME: one caller in netdev still |
| * |
| * Return 0 on success, errno on failure (as defined in errno.h) |
| */ |
| static int et131x_mii_write(struct et131x_adapter *adapter, u8 reg, u16 value) |
| { |
| struct mac_regs __iomem *mac = &adapter->regs->mac; |
| struct phy_device *phydev = adapter->phydev; |
| int status = 0; |
| u8 addr; |
| u32 delay = 0; |
| u32 mii_addr; |
| u32 mii_cmd; |
| u32 mii_indicator; |
| |
| if (!phydev) |
| return -EIO; |
| |
| addr = phydev->addr; |
| |
| /* Save a local copy of the registers we are dealing with so we can |
| * set them back |
| */ |
| mii_addr = readl(&mac->mii_mgmt_addr); |
| mii_cmd = readl(&mac->mii_mgmt_cmd); |
| |
| /* Stop the current operation */ |
| writel(0, &mac->mii_mgmt_cmd); |
| |
| /* Set up the register we need to write to on the correct PHY */ |
| writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr); |
| |
| /* Add the value to write to the registers to the mac */ |
| writel(value, &mac->mii_mgmt_ctrl); |
| |
| do { |
| udelay(50); |
| delay++; |
| mii_indicator = readl(&mac->mii_mgmt_indicator); |
| } while ((mii_indicator & MGMT_BUSY) && delay < 100); |
| |
| /* If we hit the max delay, we could not write the register */ |
| if (delay == 100) { |
| u16 tmp; |
| |
| dev_warn(&adapter->pdev->dev, |
| "reg 0x%08x could not be written", reg); |
| dev_warn(&adapter->pdev->dev, "status is 0x%08x\n", |
| mii_indicator); |
| dev_warn(&adapter->pdev->dev, "command is 0x%08x\n", |
| readl(&mac->mii_mgmt_cmd)); |
| |
| et131x_mii_read(adapter, reg, &tmp); |
| |
| status = -EIO; |
| } |
| /* Stop the write operation */ |
| writel(0, &mac->mii_mgmt_cmd); |
| |
| /* |
| * set the registers we touched back to the state at which we entered |
| * this function |
| */ |
| writel(mii_addr, &mac->mii_mgmt_addr); |
| writel(mii_cmd, &mac->mii_mgmt_cmd); |
| |
| return status; |
| } |
| |
| /* Still used from _mac for BIT_READ */ |
| static void et1310_phy_access_mii_bit(struct et131x_adapter *adapter, |
| u16 action, u16 regnum, u16 bitnum, |
| u8 *value) |
| { |
| u16 reg; |
| u16 mask = 0x0001 << bitnum; |
| |
| /* Read the requested register */ |
| et131x_mii_read(adapter, regnum, ®); |
| |
| switch (action) { |
| case TRUEPHY_BIT_READ: |
| *value = (reg & mask) >> bitnum; |
| break; |
| |
| case TRUEPHY_BIT_SET: |
| et131x_mii_write(adapter, regnum, reg | mask); |
| break; |
| |
| case TRUEPHY_BIT_CLEAR: |
| et131x_mii_write(adapter, regnum, reg & ~mask); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| static void et1310_config_flow_control(struct et131x_adapter *adapter) |
| { |
| struct phy_device *phydev = adapter->phydev; |
| |
| if (phydev->duplex == DUPLEX_HALF) { |
| adapter->flowcontrol = FLOW_NONE; |
| } else { |
| char remote_pause, remote_async_pause; |
| |
| et1310_phy_access_mii_bit(adapter, |
| TRUEPHY_BIT_READ, 5, 10, &remote_pause); |
| et1310_phy_access_mii_bit(adapter, |
| TRUEPHY_BIT_READ, 5, 11, |
| &remote_async_pause); |
| |
| if ((remote_pause == TRUEPHY_BIT_SET) && |
| (remote_async_pause == TRUEPHY_BIT_SET)) { |
| adapter->flowcontrol = adapter->wanted_flow; |
| } else if ((remote_pause == TRUEPHY_BIT_SET) && |
| (remote_async_pause == TRUEPHY_BIT_CLEAR)) { |
| if (adapter->wanted_flow == FLOW_BOTH) |
| adapter->flowcontrol = FLOW_BOTH; |
| else |
| adapter->flowcontrol = FLOW_NONE; |
| } else if ((remote_pause == TRUEPHY_BIT_CLEAR) && |
| (remote_async_pause == TRUEPHY_BIT_CLEAR)) { |
| adapter->flowcontrol = FLOW_NONE; |
| } else {/* if (remote_pause == TRUEPHY_CLEAR_BIT && |
| remote_async_pause == TRUEPHY_SET_BIT) */ |
| if (adapter->wanted_flow == FLOW_BOTH) |
| adapter->flowcontrol = FLOW_RXONLY; |
| else |
| adapter->flowcontrol = FLOW_NONE; |
| } |
| } |
| } |
| |
| /** |
| * et1310_update_macstat_host_counters - Update the local copy of the statistics |
| * @adapter: pointer to the adapter structure |
| */ |
| static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter) |
| { |
| struct ce_stats *stats = &adapter->stats; |
| struct macstat_regs __iomem *macstat = |
| &adapter->regs->macstat; |
| |
| stats->tx_collisions += readl(&macstat->tx_total_collisions); |
| stats->tx_first_collisions += readl(&macstat->tx_single_collisions); |
| stats->tx_deferred += readl(&macstat->tx_deferred); |
| stats->tx_excessive_collisions += |
| readl(&macstat->tx_multiple_collisions); |
| stats->tx_late_collisions += readl(&macstat->tx_late_collisions); |
| stats->tx_underflows += readl(&macstat->tx_undersize_frames); |
| stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames); |
| |
| stats->rx_align_errs += readl(&macstat->rx_align_errs); |
| stats->rx_crc_errs += readl(&macstat->rx_code_errs); |
| stats->rcvd_pkts_dropped += readl(&macstat->rx_drops); |
| stats->rx_overflows += readl(&macstat->rx_oversize_packets); |
| stats->rx_code_violations += readl(&macstat->rx_fcs_errs); |
| stats->rx_length_errs += readl(&macstat->rx_frame_len_errs); |
| stats->rx_other_errs += readl(&macstat->rx_fragment_packets); |
| } |
| |
| /** |
| * et1310_handle_macstat_interrupt |
| * @adapter: pointer to the adapter structure |
| * |
| * One of the MACSTAT counters has wrapped. Update the local copy of |
| * the statistics held in the adapter structure, checking the "wrap" |
| * bit for each counter. |
| */ |
| static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter) |
| { |
| u32 carry_reg1; |
| u32 carry_reg2; |
| |
| /* Read the interrupt bits from the register(s). These are Clear On |
| * Write. |
| */ |
| carry_reg1 = readl(&adapter->regs->macstat.carry_reg1); |
| carry_reg2 = readl(&adapter->regs->macstat.carry_reg2); |
| |
| writel(carry_reg1, &adapter->regs->macstat.carry_reg1); |
| writel(carry_reg2, &adapter->regs->macstat.carry_reg2); |
| |
| /* We need to do update the host copy of all the MAC_STAT counters. |
| * For each counter, check it's overflow bit. If the overflow bit is |
| * set, then increment the host version of the count by one complete |
| * revolution of the counter. This routine is called when the counter |
| * block indicates that one of the counters has wrapped. |
| */ |
| if (carry_reg1 & (1 << 14)) |
| adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT; |
| if (carry_reg1 & (1 << 8)) |
| adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT; |
| if (carry_reg1 & (1 << 7)) |
| adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT; |
| if (carry_reg1 & (1 << 2)) |
| adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT; |
| if (carry_reg1 & (1 << 6)) |
| adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT; |
| if (carry_reg1 & (1 << 3)) |
| adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT; |
| if (carry_reg1 & (1 << 0)) |
| adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT; |
| if (carry_reg2 & (1 << 16)) |
| adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT; |
| if (carry_reg2 & (1 << 15)) |
| adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT; |
| if (carry_reg2 & (1 << 6)) |
| adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT; |
| if (carry_reg2 & (1 << 8)) |
| adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT; |
| if (carry_reg2 & (1 << 5)) |
| adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT; |
| if (carry_reg2 & (1 << 4)) |
| adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT; |
| if (carry_reg2 & (1 << 2)) |
| adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT; |
| } |
| |
| static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg) |
| { |
| struct net_device *netdev = bus->priv; |
| struct et131x_adapter *adapter = netdev_priv(netdev); |
| u16 value; |
| int ret; |
| |
| ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value); |
| |
| if (ret < 0) |
| return ret; |
| else |
| return value; |
| } |
| |
| static int et131x_mdio_write(struct mii_bus *bus, int phy_addr, int reg, u16 value) |
| { |
| struct net_device *netdev = bus->priv; |
| struct et131x_adapter *adapter = netdev_priv(netdev); |
| |
| return et131x_mii_write(adapter, reg, value); |
| } |
| |
| static int et131x_mdio_reset(struct mii_bus *bus) |
| { |
| struct net_device *netdev = bus->priv; |
| struct et131x_adapter *adapter = netdev_priv(netdev); |
| |
| et131x_mii_write(adapter, MII_BMCR, BMCR_RESET); |
| |
| return 0; |
| } |
| |
| /** |
| * et1310_phy_power_down - PHY power control |
| * @adapter: device to control |
| * @down: true for off/false for back on |
| * |
| * one hundred, ten, one thousand megs |
| * How would you like to have your LAN accessed |
| * Can't you see that this code processed |
| * Phy power, phy power.. |
| */ |
| static void et1310_phy_power_down(struct et131x_adapter *adapter, bool down) |
| { |
| u16 data; |
| |
| et131x_mii_read(adapter, MII_BMCR, &data); |
| data &= ~BMCR_PDOWN; |
| if (down) |
| data |= BMCR_PDOWN; |
| et131x_mii_write(adapter, MII_BMCR, data); |
| } |
| |
| /** |
| * et131x_xcvr_init - Init the phy if we are setting it into force mode |
| * @adapter: pointer to our private adapter structure |
| * |
| */ |
| static void et131x_xcvr_init(struct et131x_adapter *adapter) |
| { |
| u16 imr; |
| u16 isr; |
| u16 lcr2; |
| |
| et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &isr); |
| et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &imr); |
| |
| /* Set the link status interrupt only. Bad behavior when link status |
| * and auto neg are set, we run into a nested interrupt problem |
| */ |
| imr |= (ET_PHY_INT_MASK_AUTONEGSTAT & |
| ET_PHY_INT_MASK_LINKSTAT & |
| ET_PHY_INT_MASK_ENABLE); |
| |
| et131x_mii_write(adapter, PHY_INTERRUPT_MASK, imr); |
| |
| /* Set the LED behavior such that LED 1 indicates speed (off = |
| * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates |
| * link and activity (on for link, blink off for activity). |
| * |
| * NOTE: Some customizations have been added here for specific |
| * vendors; The LED behavior is now determined by vendor data in the |
| * EEPROM. However, the above description is the default. |
| */ |
| if ((adapter->eeprom_data[1] & 0x4) == 0) { |
| et131x_mii_read(adapter, PHY_LED_2, &lcr2); |
| |
| lcr2 &= (ET_LED2_LED_100TX & ET_LED2_LED_1000T); |
| lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT); |
| |
| if ((adapter->eeprom_data[1] & 0x8) == 0) |
| lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT); |
| else |
| lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT); |
| |
| et131x_mii_write(adapter, PHY_LED_2, lcr2); |
| } |
| } |
| |
| /** |
| * et131x_configure_global_regs - configure JAGCore global regs |
| * @adapter: pointer to our adapter structure |
| * |
| * Used to configure the global registers on the JAGCore |
| */ |
| static void et131x_configure_global_regs(struct et131x_adapter *adapter) |
| { |
| struct global_regs __iomem *regs = &adapter->regs->global; |
| |
| writel(0, ®s->rxq_start_addr); |
| writel(INTERNAL_MEM_SIZE - 1, ®s->txq_end_addr); |
| |
| if (adapter->registry_jumbo_packet < 2048) { |
| /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word |
| * block of RAM that the driver can split between Tx |
| * and Rx as it desires. Our default is to split it |
| * 50/50: |
| */ |
| writel(PARM_RX_MEM_END_DEF, ®s->rxq_end_addr); |
| writel(PARM_RX_MEM_END_DEF + 1, ®s->txq_start_addr); |
| } else if (adapter->registry_jumbo_packet < 8192) { |
| /* For jumbo packets > 2k but < 8k, split 50-50. */ |
| writel(INTERNAL_MEM_RX_OFFSET, ®s->rxq_end_addr); |
| writel(INTERNAL_MEM_RX_OFFSET + 1, ®s->txq_start_addr); |
| } else { |
| /* 9216 is the only packet size greater than 8k that |
| * is available. The Tx buffer has to be big enough |
| * for one whole packet on the Tx side. We'll make |
| * the Tx 9408, and give the rest to Rx |
| */ |
| writel(0x01b3, ®s->rxq_end_addr); |
| writel(0x01b4, ®s->txq_start_addr); |
| } |
| |
| /* Initialize the loopback register. Disable all loopbacks. */ |
| writel(0, ®s->loopback); |
| |
| /* MSI Register */ |
| writel(0, ®s->msi_config); |
| |
| /* By default, disable the watchdog timer. It will be enabled when |
| * a packet is queued. |
| */ |
| writel(0, ®s->watchdog_timer); |
| } |
| |
| /** |
| * et131x_config_rx_dma_regs - Start of Rx_DMA init sequence |
| * @adapter: pointer to our adapter structure |
| */ |
| static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter) |
| { |
| struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma; |
| struct rx_ring *rx_local = &adapter->rx_ring; |
| struct fbr_desc *fbr_entry; |
| u32 entry; |
| u32 psr_num_des; |
| unsigned long flags; |
| |
| /* Halt RXDMA to perform the reconfigure. */ |
| et131x_rx_dma_disable(adapter); |
| |
| /* Load the completion writeback physical address |
| * |
| * NOTE : dma_alloc_coherent(), used above to alloc DMA regions, |
| * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses |
| * are ever returned, make sure the high part is retrieved here |
| * before storing the adjusted address. |
| */ |
| writel((u32) ((u64)rx_local->rx_status_bus >> 32), |
| &rx_dma->dma_wb_base_hi); |
| writel((u32) rx_local->rx_status_bus, &rx_dma->dma_wb_base_lo); |
| |
| memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block)); |
| |
| /* Set the address and parameters of the packet status ring into the |
| * 1310's registers |
| */ |
| writel((u32) ((u64)rx_local->ps_ring_physaddr >> 32), |
| &rx_dma->psr_base_hi); |
| writel((u32) rx_local->ps_ring_physaddr, &rx_dma->psr_base_lo); |
| writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des); |
| writel(0, &rx_dma->psr_full_offset); |
| |
| psr_num_des = readl(&rx_dma->psr_num_des) & 0xFFF; |
| writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100, |
| &rx_dma->psr_min_des); |
| |
| spin_lock_irqsave(&adapter->rcv_lock, flags); |
| |
| /* These local variables track the PSR in the adapter structure */ |
| rx_local->local_psr_full = 0; |
| |
| /* Now's the best time to initialize FBR1 contents */ |
| fbr_entry = (struct fbr_desc *) rx_local->fbr[0]->ring_virtaddr; |
| for (entry = 0; entry < rx_local->fbr[0]->num_entries; entry++) { |
| fbr_entry->addr_hi = rx_local->fbr[0]->bus_high[entry]; |
| fbr_entry->addr_lo = rx_local->fbr[0]->bus_low[entry]; |
| fbr_entry->word2 = entry; |
| fbr_entry++; |
| } |
| |
| /* Set the address and parameters of Free buffer ring 1 (and 0 if |
| * required) into the 1310's registers |
| */ |
| writel((u32) (rx_local->fbr[0]->real_physaddr >> 32), |
| &rx_dma->fbr1_base_hi); |
| writel((u32) rx_local->fbr[0]->real_physaddr, &rx_dma->fbr1_base_lo); |
| writel(rx_local->fbr[0]->num_entries - 1, &rx_dma->fbr1_num_des); |
| writel(ET_DMA10_WRAP, &rx_dma->fbr1_full_offset); |
| |
| /* This variable tracks the free buffer ring 1 full position, so it |
| * has to match the above. |
| */ |
| rx_local->fbr[0]->local_full = ET_DMA10_WRAP; |
| writel( |
| ((rx_local->fbr[0]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1, |
| &rx_dma->fbr1_min_des); |
| |
| #ifdef USE_FBR0 |
| /* Now's the best time to initialize FBR0 contents */ |
| fbr_entry = (struct fbr_desc *) rx_local->fbr[1]->ring_virtaddr; |
| for (entry = 0; entry < rx_local->fbr[1]->num_entries; entry++) { |
| fbr_entry->addr_hi = rx_local->fbr[1]->bus_high[entry]; |
| fbr_entry->addr_lo = rx_local->fbr[1]->bus_low[entry]; |
| fbr_entry->word2 = entry; |
| fbr_entry++; |
| } |
| |
| writel((u32) (rx_local->fbr[1]->real_physaddr >> 32), |
| &rx_dma->fbr0_base_hi); |
| writel((u32) rx_local->fbr[1]->real_physaddr, &rx_dma->fbr0_base_lo); |
| writel(rx_local->fbr[1]->num_entries - 1, &rx_dma->fbr0_num_des); |
| writel(ET_DMA10_WRAP, &rx_dma->fbr0_full_offset); |
| |
| /* This variable tracks the free buffer ring 0 full position, so it |
| * has to match the above. |
| */ |
| rx_local->fbr[1]->local_full = ET_DMA10_WRAP; |
| writel( |
| ((rx_local->fbr[1]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1, |
| &rx_dma->fbr0_min_des); |
| #endif |
| |
| /* Program the number of packets we will receive before generating an |
| * interrupt. |
| * For version B silicon, this value gets updated once autoneg is |
| *complete. |
| */ |
| writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done); |
| |
| /* The "time_done" is not working correctly to coalesce interrupts |
| * after a given time period, but rather is giving us an interrupt |
| * regardless of whether we have received packets. |
| * This value gets updated once autoneg is complete. |
| */ |
| writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time); |
| |
| spin_unlock_irqrestore(&adapter->rcv_lock, flags); |
| } |
| |
| /** |
| * et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore. |
| * @adapter: pointer to our private adapter structure |
| * |
| * Configure the transmit engine with the ring buffers we have created |
| * and prepare it for use. |
| */ |
| static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter) |
| { |
| struct txdma_regs __iomem *txdma = &adapter->regs->txdma; |
| |
| /* Load the hardware with the start of the transmit descriptor ring. */ |
| writel((u32) ((u64)adapter->tx_ring.tx_desc_ring_pa >> 32), |
| &txdma->pr_base_hi); |
| writel((u32) adapter->tx_ring.tx_desc_ring_pa, |
| &txdma->pr_base_lo); |
| |
| /* Initialise the transmit DMA engine */ |
| writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des); |
| |
| /* Load the completion writeback physical address */ |
| writel((u32)((u64)adapter->tx_ring.tx_status_pa >> 32), |
| &txdma->dma_wb_base_hi); |
| writel((u32)adapter->tx_ring.tx_status_pa, &txdma->dma_wb_base_lo); |
| |
| *adapter->tx_ring.tx_status = 0; |
| |
| writel(0, &txdma->service_request); |
| adapter->tx_ring.send_idx = 0; |
| } |
| |
| /** |
| * et131x_adapter_setup - Set the adapter up as per cassini+ documentation |
| * @adapter: pointer to our private adapter structure |
| * |
| * Returns 0 on success, errno on failure (as defined in errno.h) |
| */ |
| static void et131x_adapter_setup(struct et131x_adapter *adapter) |
| { |
| /* Configure the JAGCore */ |
| et131x_configure_global_regs(adapter); |
| |
| et1310_config_mac_regs1(adapter); |
| |
| /* Configure the MMC registers */ |
| /* All we need to do is initialize the Memory Control Register */ |
| writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl); |
| |
| et1310_config_rxmac_regs(adapter); |
| et1310_config_txmac_regs(adapter); |
| |
| et131x_config_rx_dma_regs(adapter); |
| et131x_config_tx_dma_regs(adapter); |
| |
| et1310_config_macstat_regs(adapter); |
| |
| et1310_phy_power_down(adapter, 0); |
| et131x_xcvr_init(adapter); |
| } |
| |
| /** |
| * et131x_soft_reset - Issue a soft reset to the hardware, complete for ET1310 |
| * @adapter: pointer to our private adapter structure |
| */ |
| static void et131x_soft_reset(struct et131x_adapter *adapter) |
| { |
| /* Disable MAC Core */ |
| writel(0xc00f0000, &adapter->regs->mac.cfg1); |
| |
| /* Set everything to a reset value */ |
| writel(0x7F, &adapter->regs->global.sw_reset); |
| writel(0x000f0000, &adapter->regs->mac.cfg1); |
| writel(0x00000000, &adapter->regs->mac.cfg1); |
| } |
| |
| /** |
| * et131x_enable_interrupts - enable interrupt |
| * @adapter: et131x device |
| * |
| * Enable the appropriate interrupts on the ET131x according to our |
| * configuration |
| */ |
| static void et131x_enable_interrupts(struct et131x_adapter *adapter) |
| { |
| u32 mask; |
| |
| /* Enable all global interrupts */ |
| if (adapter->flowcontrol == FLOW_TXONLY || |
| adapter->flowcontrol == FLOW_BOTH) |
| mask = INT_MASK_ENABLE; |
| else |
| mask = INT_MASK_ENABLE_NO_FLOW; |
| |
| writel(mask, &adapter->regs->global.int_mask); |
| } |
| |
| /** |
| * et131x_disable_interrupts - interrupt disable |
| * @adapter: et131x device |
| * |
| * Block all interrupts from the et131x device at the device itself |
| */ |
| static void et131x_disable_interrupts(struct et131x_adapter *adapter) |
| { |
| /* Disable all global interrupts */ |
| writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask); |
| } |
| |
| /** |
| * et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310 |
| * @adapter: pointer to our adapter structure |
| */ |
| static void et131x_tx_dma_disable(struct et131x_adapter *adapter) |
| { |
| /* Setup the tramsmit dma configuration register */ |
| writel(ET_TXDMA_CSR_HALT|ET_TXDMA_SNGL_EPKT, |
| &adapter->regs->txdma.csr); |
| } |
| |
| /** |
| * et131x_enable_txrx - Enable tx/rx queues |
| * @netdev: device to be enabled |
| */ |
| static void et131x_enable_txrx(struct net_device *netdev) |
| { |
| struct et131x_adapter *adapter = netdev_priv(netdev); |
| |
| /* Enable the Tx and Rx DMA engines (if not already enabled) */ |
| et131x_rx_dma_enable(adapter); |
| et131x_tx_dma_enable(adapter); |
| |
| /* Enable device interrupts */ |
| if (adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE) |
| et131x_enable_interrupts(adapter); |
| |
| /* We're ready to move some data, so start the queue */ |
| netif_start_queue(netdev); |
| } |
| |
| /** |
| * et131x_disable_txrx - Disable tx/rx queues |
| * @netdev: device to be disabled |
| */ |
| static void et131x_disable_txrx(struct net_device *netdev) |
| { |
| struct et131x_adapter *adapter = netdev_priv(netdev); |
| |
| /* First thing is to stop the queue */ |
| netif_stop_queue(netdev); |
| |
| /* Stop the Tx and Rx DMA engines */ |
| et131x_rx_dma_disable(adapter); |
| et131x_tx_dma_disable(adapter); |
| |
| /* Disable device interrupts */ |
| et131x_disable_interrupts(adapter); |
| } |
| |
| /** |
| * et131x_init_send - Initialize send data structures |
| * @adapter: pointer to our private adapter structure |
| */ |
| static void et131x_init_send(struct et131x_adapter *adapter) |
| { |
| struct tcb *tcb; |
| u32 ct; |
| struct tx_ring *tx_ring; |
| |
| /* Setup some convenience pointers */ |
| tx_ring = &adapter->tx_ring; |
| tcb = adapter->tx_ring.tcb_ring; |
| |
| tx_ring->tcb_qhead = tcb; |
| |
| memset(tcb, 0, sizeof(struct tcb) * NUM_TCB); |
| |
| /* Go through and set up each TCB */ |
| for (ct = 0; ct++ < NUM_TCB; tcb++) |
| /* Set the link pointer in HW TCB to the next TCB in the |
| * chain |
| */ |
| tcb->next = tcb + 1; |
| |
| /* Set the tail pointer */ |
| tcb--; |
| tx_ring->tcb_qtail = tcb; |
| tcb->next = NULL; |
| /* Curr send queue should now be empty */ |
| tx_ring->send_head = NULL; |
| tx_ring->send_tail = NULL; |
| } |
| |
| /** |
| * et1310_enable_phy_coma - called when network cable is unplugged |
| * @adapter: pointer to our adapter structure |
| * |
| * driver receive an phy status change interrupt while in D0 and check that |
| * phy_status is down. |
| * |
| * -- gate off JAGCore; |
| * -- set gigE PHY in Coma mode |
| * -- wake on phy_interrupt; Perform software reset JAGCore, |
| * re-initialize jagcore and gigE PHY |
| * |
| * Add D0-ASPM-PhyLinkDown Support: |
| * -- while in D0, when there is a phy_interrupt indicating phy link |
| * down status, call the MPSetPhyComa routine to enter this active |
| * state power saving mode |
| * -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt |
| * indicating linkup status, call the MPDisablePhyComa routine to |
| * restore JAGCore and gigE PHY |
| */ |
| static void et1310_enable_phy_coma(struct et131x_adapter *adapter) |
| { |
| unsigned long flags; |
| u32 pmcsr; |
| |
| pmcsr = readl(&adapter->regs->global.pm_csr); |
| |
| /* Save the GbE PHY speed and duplex modes. Need to restore this |
| * when cable is plugged back in |
| */ |
| /* |
| * TODO - when PM is re-enabled, check if we need to |
| * perform a similar task as this - |
| * adapter->pdown_speed = adapter->ai_force_speed; |
| * adapter->pdown_duplex = adapter->ai_force_duplex; |
| */ |
| |
| /* Stop sending packets. */ |
| spin_lock_irqsave(&adapter->send_hw_lock, flags); |
| adapter->flags |= fMP_ADAPTER_LOWER_POWER; |
| spin_unlock_irqrestore(&adapter->send_hw_lock, flags); |
| |
| /* Wait for outstanding Receive packets */ |
| |
| et131x_disable_txrx(adapter->netdev); |
| |
| /* Gate off JAGCore 3 clock domains */ |
| pmcsr &= ~ET_PMCSR_INIT; |
| writel(pmcsr, &adapter->regs->global.pm_csr); |
| |
| /* Program gigE PHY in to Coma mode */ |
| pmcsr |= ET_PM_PHY_SW_COMA; |
| writel(pmcsr, &adapter->regs->global.pm_csr); |
| } |
| |
| /** |
| * et1310_disable_phy_coma - Disable the Phy Coma Mode |
| * @adapter: pointer to our adapter structure |
| */ |
| static void et1310_disable_phy_coma(struct et131x_adapter *adapter) |
| { |
| u32 pmcsr; |
| |
| pmcsr = readl(&adapter->regs->global.pm_csr); |
| |
| /* Disable phy_sw_coma register and re-enable JAGCore clocks */ |
| pmcsr |= ET_PMCSR_INIT; |
| pmcsr &= ~ET_PM_PHY_SW_COMA; |
| writel(pmcsr, &adapter->regs->global.pm_csr); |
| |
| /* Restore the GbE PHY speed and duplex modes; |
| * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY |
| */ |
| /* TODO - when PM is re-enabled, check if we need to |
| * perform a similar task as this - |
| * adapter->ai_force_speed = adapter->pdown_speed; |
| * adapter->ai_force_duplex = adapter->pdown_duplex; |
| */ |
| |
| /* Re-initialize the send structures */ |
| et131x_init_send(adapter); |
| |
| /* Bring the device back to the state it was during init prior to |
| * autonegotiation being complete. This way, when we get the auto-neg |
| * complete interrupt, we can complete init by calling ConfigMacREGS2. |
| */ |
| et131x_soft_reset(adapter); |
| |
| /* setup et1310 as per the documentation ?? */ |
| et131x_adapter_setup(adapter); |
| |
| /* Allow Tx to restart */ |
| adapter->flags &= ~fMP_ADAPTER_LOWER_POWER; |
| |
| et131x_enable_txrx(adapter->netdev); |
| } |
| |
| static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit) |
| { |
| u32 tmp_free_buff_ring = *free_buff_ring; |
| tmp_free_buff_ring++; |
| /* This works for all cases where limit < 1024. The 1023 case |
| works because 1023++ is 1024 which means the if condition is not |
| taken but the carry of the bit into the wrap bit toggles the wrap |
| value correctly */ |
| if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) { |
| tmp_free_buff_ring &= ~ET_DMA10_MASK; |
| tmp_free_buff_ring ^= ET_DMA10_WRAP; |
| } |
| /* For the 1023 case */ |
| tmp_free_buff_ring &= (ET_DMA10_MASK|ET_DMA10_WRAP); |
| *free_buff_ring = tmp_free_buff_ring; |
| return tmp_free_buff_ring; |
| } |
| |
| /** |
| * et131x_align_allocated_memory - Align allocated memory on a given boundary |
| * @adapter: pointer to our adapter structure |
| * @phys_addr: pointer to Physical address |
| * @offset: pointer to the offset variable |
| * @mask: correct mask |
| */ |
| static void et131x_align_allocated_memory(struct et131x_adapter *adapter, |
| u64 *phys_addr, u64 *offset, |
| u64 mask) |
| { |
| u64 new_addr = *phys_addr & ~mask; |
| |
| *offset = 0; |
| |
| if (new_addr != *phys_addr) { |
| /* Move to next aligned block */ |
| new_addr += mask + 1; |
| /* Return offset for adjusting virt addr */ |
| *offset = new_addr - *phys_addr; |
| /* Return new physical address */ |
| *phys_addr = new_addr; |
| } |
| } |
| |
| /** |
| * et131x_rx_dma_memory_alloc |
| * @adapter: pointer to our private adapter structure |
| * |
| * Returns 0 on success and errno on failure (as defined in errno.h) |
| * |
| * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required, |
| * and the Packet Status Ring. |
| */ |
| static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter) |
| { |
| u32 i, j; |
| u32 bufsize; |
| u32 pktstat_ringsize, fbr_chunksize; |
| struct rx_ring *rx_ring; |
| |
| /* Setup some convenience pointers */ |
| rx_ring = &adapter->rx_ring; |
| |
| /* Alloc memory for the lookup table */ |
| #ifdef USE_FBR0 |
| rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL); |
| #endif |
| rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL); |
| |
| /* The first thing we will do is configure the sizes of the buffer |
| * rings. These will change based on jumbo packet support. Larger |
| * jumbo packets increases the size of each entry in FBR0, and the |
| * number of entries in FBR0, while at the same time decreasing the |
| * number of entries in FBR1. |
| * |
| * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1 |
| * entries are huge in order to accommodate a "jumbo" frame, then it |
| * will have less entries. Conversely, FBR1 will now be relied upon |
| * to carry more "normal" frames, thus it's entry size also increases |
| * and the number of entries goes up too (since it now carries |
| * "small" + "regular" packets. |
| * |
| * In this scheme, we try to maintain 512 entries between the two |
| * rings. Also, FBR1 remains a constant size - when it's size doubles |
| * the number of entries halves. FBR0 increases in size, however. |
| */ |
| |
| if (adapter->registry_jumbo_packet < 2048) { |
| #ifdef USE_FBR0 |
| rx_ring->fbr[1]->buffsize = 256; |
| rx_ring->fbr[1]->num_entries = 512; |
| #endif |
| rx_ring->fbr[0]->buffsize = 2048; |
| rx_ring->fbr[0]->num_entries = 512; |
| } else if (adapter->registry_jumbo_packet < 4096) { |
| #ifdef USE_FBR0 |
| rx_ring->fbr[1]->buffsize = 512; |
| rx_ring->fbr[1]->num_entries = 1024; |
| #endif |
| rx_ring->fbr[0]->buffsize = 4096; |
| rx_ring->fbr[0]->num_entries = 512; |
| } else { |
| #ifdef USE_FBR0 |
| rx_ring->fbr[1]->buffsize = 1024; |
| rx_ring->fbr[1]->num_entries = 768; |
| #endif |
| rx_ring->fbr[0]->buffsize = 16384; |
| rx_ring->fbr[0]->num_entries = 128; |
| } |
| |
| #ifdef USE_FBR0 |
| adapter->rx_ring.psr_num_entries = |
| adapter->rx_ring.fbr[1]->num_entries + |
| adapter->rx_ring.fbr[0]->num_entries; |
| #else |
| adapter->rx_ring.psr_num_entries = adapter->rx_ring.fbr[0]->num_entries; |
| #endif |
| |
| /* Allocate an area of memory for Free Buffer Ring 1 */ |
| bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) + |
| 0xfff; |
| rx_ring->fbr[0]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev, |
| bufsize, |
| &rx_ring->fbr[0]->ring_physaddr, |
| GFP_KERNEL); |
| if (!rx_ring->fbr[0]->ring_virtaddr) { |
| dev_err(&adapter->pdev->dev, |
| "Cannot alloc memory for Free Buffer Ring 1\n"); |
| return -ENOMEM; |
| } |
| |
| /* Save physical address |
| * |
| * NOTE: dma_alloc_coherent(), used above to alloc DMA regions, |
| * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses |
| * are ever returned, make sure the high part is retrieved here |
| * before storing the adjusted address. |
| */ |
| rx_ring->fbr[0]->real_physaddr = rx_ring->fbr[0]->ring_physaddr; |
| |
| /* Align Free Buffer Ring 1 on a 4K boundary */ |
| et131x_align_allocated_memory(adapter, |
| &rx_ring->fbr[0]->real_physaddr, |
| &rx_ring->fbr[0]->offset, 0x0FFF); |
| |
| rx_ring->fbr[0]->ring_virtaddr = |
| (void *)((u8 *) rx_ring->fbr[0]->ring_virtaddr + |
| rx_ring->fbr[0]->offset); |
| |
| #ifdef USE_FBR0 |
| /* Allocate an area of memory for Free Buffer Ring 0 */ |
| bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) + |
| 0xfff; |
| rx_ring->fbr[1]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev, |
| bufsize, |
| &rx_ring->fbr[1]->ring_physaddr, |
| GFP_KERNEL); |
| if (!rx_ring->fbr[1]->ring_virtaddr) { |
| dev_err(&adapter->pdev->dev, |
| "Cannot alloc memory for Free Buffer Ring 0\n"); |
| return -ENOMEM; |
| } |
| |
| /* Save physical address |
| * |
| * NOTE: dma_alloc_coherent(), used above to alloc DMA regions, |
| * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses |
| * are ever returned, make sure the high part is retrieved here before |
| * storing the adjusted address. |
| */ |
| rx_ring->fbr[1]->real_physaddr = rx_ring->fbr[1]->ring_physaddr; |
| |
| /* Align Free Buffer Ring 0 on a 4K boundary */ |
| et131x_align_allocated_memory(adapter, |
| &rx_ring->fbr[1]->real_physaddr, |
| &rx_ring->fbr[1]->offset, 0x0FFF); |
| |
| rx_ring->fbr[1]->ring_virtaddr = |
| (void *)((u8 *) rx_ring->fbr[1]->ring_virtaddr + |
| rx_ring->fbr[1]->offset); |
| #endif |
| for (i = 0; i < (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); i++) { |
| u64 fbr1_tmp_physaddr; |
| u64 fbr1_offset; |
| u32 fbr1_align; |
| |
| /* This code allocates an area of memory big enough for N |
| * free buffers + (buffer_size - 1) so that the buffers can |
| * be aligned on 4k boundaries. If each buffer were aligned |
| * to a buffer_size boundary, the effect would be to double |
| * the size of FBR0. By allocating N buffers at once, we |
| * reduce this overhead. |
| */ |
| if (rx_ring->fbr[0]->buffsize > 4096) |
| fbr1_align = 4096; |
| else |
| fbr1_align = rx_ring->fbr[0]->buffsize; |
| |
| fbr_chunksize = |
| (FBR_CHUNKS * rx_ring->fbr[0]->buffsize) + fbr1_align - 1; |
| rx_ring->fbr[0]->mem_virtaddrs[i] = |
| dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize, |
| &rx_ring->fbr[0]->mem_physaddrs[i], |
| GFP_KERNEL); |
| |
| if (!rx_ring->fbr[0]->mem_virtaddrs[i]) { |
| dev_err(&adapter->pdev->dev, |
| "Could not alloc memory\n"); |
| return -ENOMEM; |
| } |
| |
| /* See NOTE in "Save Physical Address" comment above */ |
| fbr1_tmp_physaddr = rx_ring->fbr[0]->mem_physaddrs[i]; |
| |
| et131x_align_allocated_memory(adapter, |
| &fbr1_tmp_physaddr, |
| &fbr1_offset, (fbr1_align - 1)); |
| |
| for (j = 0; j < FBR_CHUNKS; j++) { |
| u32 index = (i * FBR_CHUNKS) + j; |
| |
| /* Save the Virtual address of this index for quick |
| * access later |
| */ |
| rx_ring->fbr[0]->virt[index] = |
| (u8 *) rx_ring->fbr[0]->mem_virtaddrs[i] + |
| (j * rx_ring->fbr[0]->buffsize) + fbr1_offset; |
| |
| /* now store the physical address in the descriptor |
| * so the device can access it |
| */ |
| rx_ring->fbr[0]->bus_high[index] = |
| (u32) (fbr1_tmp_physaddr >> 32); |
| rx_ring->fbr[0]->bus_low[index] = |
| (u32) fbr1_tmp_physaddr; |
| |
| fbr1_tmp_physaddr += rx_ring->fbr[0]->buffsize; |
| |
| rx_ring->fbr[0]->buffer1[index] = |
| rx_ring->fbr[0]->virt[index]; |
| rx_ring->fbr[0]->buffer2[index] = |
| rx_ring->fbr[0]->virt[index] - 4; |
| } |
| } |
| |
| #ifdef USE_FBR0 |
| /* Same for FBR0 (if in use) */ |
| for (i = 0; i < (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); i++) { |
| u64 fbr0_tmp_physaddr; |
| u64 fbr0_offset; |
| |
| fbr_chunksize = |
| ((FBR_CHUNKS + 1) * rx_ring->fbr[1]->buffsize) - 1; |
| rx_ring->fbr[1]->mem_virtaddrs[i] = |
| dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize, |
| &rx_ring->fbr[1]->mem_physaddrs[i], |
| GFP_KERNEL); |
| |
| if (!rx_ring->fbr[1]->mem_virtaddrs[i]) { |
| dev_err(&adapter->pdev->dev, |
| "Could not alloc memory\n"); |
| return -ENOMEM; |
| } |
| |
| /* See NOTE in "Save Physical Address" comment above */ |
| fbr0_tmp_physaddr = rx_ring->fbr[1]->mem_physaddrs[i]; |
| |
| et131x_align_allocated_memory(adapter, |
| &fbr0_tmp_physaddr, |
| &fbr0_offset, |
| rx_ring->fbr[1]->buffsize - 1); |
| |
| for (j = 0; j < FBR_CHUNKS; j++) { |
| u32 index = (i * FBR_CHUNKS) + j; |
| |
| rx_ring->fbr[1]->virt[index] = |
| (u8 *) rx_ring->fbr[1]->mem_virtaddrs[i] + |
| (j * rx_ring->fbr[1]->buffsize) + fbr0_offset; |
| |
| rx_ring->fbr[1]->bus_high[index] = |
| (u32) (fbr0_tmp_physaddr >> 32); |
| rx_ring->fbr[1]->bus_low[index] = |
| (u32) fbr0_tmp_physaddr; |
| |
| fbr0_tmp_physaddr += rx_ring->fbr[1]->buffsize; |
| |
| rx_ring->fbr[1]->buffer1[index] = |
| rx_ring->fbr[1]->virt[index]; |
| rx_ring->fbr[1]->buffer2[index] = |
| rx_ring->fbr[1]->virt[index] - 4; |
| } |
| } |
| #endif |
| |
| /* Allocate an area of memory for FIFO of Packet Status ring entries */ |
| pktstat_ringsize = |
| sizeof(struct pkt_stat_desc) * adapter->rx_ring.psr_num_entries; |
| |
| rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev, |
| pktstat_ringsize, |
| &rx_ring->ps_ring_physaddr, |
| GFP_KERNEL); |
| |
| if (!rx_ring->ps_ring_virtaddr) { |
| dev_err(&adapter->pdev->dev, |
| "Cannot alloc memory for Packet Status Ring\n"); |
| return -ENOMEM; |
| } |
| printk(KERN_INFO "Packet Status Ring %lx\n", |
| (unsigned long) rx_ring->ps_ring_physaddr); |
| |
| /* |
| * NOTE : dma_alloc_coherent(), used above to alloc DMA regions, |
| * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses |
| * are ever returned, make sure the high part is retrieved here before |
| * storing the adjusted address. |
| */ |
| |
| /* Allocate an area of memory for writeback of status information */ |
| rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev, |
| sizeof(struct rx_status_block), |
| &rx_ring->rx_status_bus, |
| GFP_KERNEL); |
| if (!rx_ring->rx_status_block) { |
| dev_err(&adapter->pdev->dev, |
| "Cannot alloc memory for Status Block\n"); |
| return -ENOMEM; |
| } |
| rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD; |
| printk(KERN_INFO "PRS %lx\n", (unsigned long)rx_ring->rx_status_bus); |
| |
| /* Recv |
| * kmem_cache_create initializes a lookaside list. After successful |
| * creation, nonpaged fixed-size blocks can be allocated from and |
| * freed to the lookaside list. |
| * RFDs will be allocated from this pool. |
| */ |
| rx_ring->recv_lookaside = kmem_cache_create(adapter->netdev->name, |
| sizeof(struct rfd), |
| 0, |
| SLAB_CACHE_DMA | |
| SLAB_HWCACHE_ALIGN, |
| NULL); |
| |
| adapter->flags |= fMP_ADAPTER_RECV_LOOKASIDE; |
| |
| /* The RFDs are going to be put on lists later on, so initialize the |
| * lists now. |
| */ |
| INIT_LIST_HEAD(&rx_ring->recv_list); |
| return 0; |
| } |
| |
| /** |
| * et131x_rx_dma_memory_free - Free all memory allocated within this module. |
| * @adapter: pointer to our private adapter structure |
| */ |
| static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter) |
| { |
| u32 index; |
| u32 bufsize; |
| u32 pktstat_ringsize; |
| struct rfd *rfd; |
| struct rx_ring *rx_ring; |
| |
| /* Setup some convenience pointers */ |
| rx_ring = &adapter->rx_ring; |
| |
| /* Free RFDs and associated packet descriptors */ |
| WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd); |
| |
| while (!list_empty(&rx_ring->recv_list)) { |
| rfd = (struct rfd *) list_entry(rx_ring->recv_list.next, |
| struct rfd, list_node); |
| |
| list_del(&rfd->list_node); |
| rfd->skb = NULL; |
| kmem_cache_free(adapter->rx_ring.recv_lookaside, rfd); |
| } |
| |
| /* Free Free Buffer Ring 1 */ |
| if (rx_ring->fbr[0]->ring_virtaddr) { |
| /* First the packet memory */ |
| for (index = 0; index < |
| (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); index++) { |
| if (rx_ring->fbr[0]->mem_virtaddrs[index]) { |
| u32 fbr1_align; |
| |
| if (rx_ring->fbr[0]->buffsize > 4096) |
| fbr1_align = 4096; |
| else |
| fbr1_align = rx_ring->fbr[0]->buffsize; |
| |
| bufsize = |
| (rx_ring->fbr[0]->buffsize * FBR_CHUNKS) + |
| fbr1_align - 1; |
| |
| dma_free_coherent(&adapter->pdev->dev, |
| bufsize, |
| rx_ring->fbr[0]->mem_virtaddrs[index], |
| rx_ring->fbr[0]->mem_physaddrs[index]); |
| |
| rx_ring->fbr[0]->mem_virtaddrs[index] = NULL; |
| } |
| } |
| |
| /* Now the FIFO itself */ |
| rx_ring->fbr[0]->ring_virtaddr = (void *)((u8 *) |
| rx_ring->fbr[0]->ring_virtaddr - rx_ring->fbr[0]->offset); |
| |
| bufsize = |
| (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) + |
| 0xfff; |
| |
| dma_free_coherent(&adapter->pdev->dev, bufsize, |
| rx_ring->fbr[0]->ring_virtaddr, |
| rx_ring->fbr[0]->ring_physaddr); |
| |
| rx_ring->fbr[0]->ring_virtaddr = NULL; |
| } |
| |
| #ifdef USE_FBR0 |
| /* Now the same for Free Buffer Ring 0 */ |
| if (rx_ring->fbr[1]->ring_virtaddr) { |
| /* First the packet memory */ |
| for (index = 0; index < |
| (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); index++) { |
| if (rx_ring->fbr[1]->mem_virtaddrs[index]) { |
| bufsize = |
| (rx_ring->fbr[1]->buffsize * |
| (FBR_CHUNKS + 1)) - 1; |
| |
| dma_free_coherent(&adapter->pdev->dev, |
| bufsize, |
| rx_ring->fbr[1]->mem_virtaddrs[index], |
| rx_ring->fbr[1]->mem_physaddrs[index]); |
| |
| rx_ring->fbr[1]->mem_virtaddrs[index] = NULL; |
| } |
| } |
| |
| /* Now the FIFO itself */ |
| rx_ring->fbr[1]->ring_virtaddr = (void *)((u8 *) |
| rx_ring->fbr[1]->ring_virtaddr - rx_ring->fbr[1]->offset); |
| |
| bufsize = |
| (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) + |
| 0xfff; |
| |
| dma_free_coherent(&adapter->pdev->dev, |
| bufsize, |
| rx_ring->fbr[1]->ring_virtaddr, |
| rx_ring->fbr[1]->ring_physaddr); |
| |
| rx_ring->fbr[1]->ring_virtaddr = NULL; |
| } |
| #endif |
| |
| /* Free Packet Status Ring */ |
| if (rx_ring->ps_ring_virtaddr) { |
| pktstat_ringsize = |
| sizeof(struct pkt_stat_desc) * |
| adapter->rx_ring.psr_num_entries; |
| |
| dma_free_coherent(&adapter->pdev->dev, pktstat_ringsize, |
| rx_ring->ps_ring_virtaddr, |
| rx_ring->ps_ring_physaddr); |
| |
| rx_ring->ps_ring_virtaddr = NULL; |
| } |
| |
| /* Free area of memory for the writeback of status information */ |
| if (rx_ring->rx_status_block) { |
| dma_free_coherent(&adapter->pdev->dev, |
| sizeof(struct rx_status_block), |
| rx_ring->rx_status_block, rx_ring->rx_status_bus); |
| rx_ring->rx_status_block = NULL; |
| } |
| |
| /* Destroy the lookaside (RFD) pool */ |
| if (adapter->flags & fMP_ADAPTER_RECV_LOOKASIDE) { |
| kmem_cache_destroy(rx_ring->recv_lookaside); |
| adapter->flags &= ~fMP_ADAPTER_RECV_LOOKASIDE; |
| } |
| |
| /* Free the FBR Lookup Table */ |
| #ifdef USE_FBR0 |
| kfree(rx_ring->fbr[1]); |
| #endif |
| |
| kfree(rx_ring->fbr[0]); |
| |
| /* Reset Counters */ |
| rx_ring->num_ready_recv = 0; |
| } |
| |
| /** |
| * et131x_init_recv - Initialize receive data structures. |
| * @adapter: pointer to our private adapter structure |
| * |
| * Returns 0 on success and errno on failure (as defined in errno.h) |
| */ |
| static int et131x_init_recv(struct et131x_adapter *adapter) |
| { |
| int status = -ENOMEM; |
| struct rfd *rfd = NULL; |
| u32 rfdct; |
| u32 numrfd = 0; |
| struct rx_ring *rx_ring; |
| |
| /* Setup some convenience pointers */ |
| rx_ring = &adapter->rx_ring; |
| |
| /* Setup each RFD */ |
| for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) { |
| rfd = kmem_cache_alloc(rx_ring->recv_lookaside, |
| GFP_ATOMIC | GFP_DMA); |
| |
| if (!rfd) { |
| dev_err(&adapter->pdev->dev, |
| "Couldn't alloc RFD out of kmem_cache\n"); |
| status = -ENOMEM; |
| continue; |
| } |
| |
| rfd->skb = NULL; |
| |
| /* Add this RFD to the recv_list */ |
| list_add_tail(&rfd->list_node, &rx_ring->recv_list); |
| |
| /* Increment both the available RFD's, and the total RFD's. */ |
| rx_ring->num_ready_recv++; |
| numrfd++; |
| } |
| |
| if (numrfd > NIC_MIN_NUM_RFD) |
| status = 0; |
| |
| rx_ring->num_rfd = numrfd; |
| |
| if (status != 0) { |
| kmem_cache_free(rx_ring->recv_lookaside, rfd); |
| dev_err(&adapter->pdev->dev, |
| "Allocation problems in et131x_init_recv\n"); |
| } |
| return status; |
| } |
| |
| /** |
| * et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate. |
| * @adapter: pointer to our adapter structure |
| */ |
| static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter) |
| { |
| struct phy_device *phydev = adapter->phydev; |
| |
| if (!phydev) |
| return; |
| |
| /* For version B silicon, we do not use the RxDMA timer for 10 and 100 |
| * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing. |
| */ |
| if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) { |
| writel(0, &adapter->regs->rxdma.max_pkt_time); |
| writel(1, &adapter->regs->rxdma.num_pkt_done); |
| } |
| } |
| |
| /** |
| * NICReturnRFD - Recycle a RFD and put it back onto the receive list |
| * @adapter: pointer to our adapter |
| * @rfd: pointer to the RFD |
| */ |
| static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd) |
| { |
| struct rx_ring *rx_local = &adapter->rx_ring; |
| struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma; |
| u16 buff_index = rfd->bufferindex; |
| u8 ring_index = rfd->ringindex; |
| unsigned long flags; |
| |
| /* We don't use any of the OOB data besides status. Otherwise, we |
| * need to clean up OOB data |
| */ |
| if ( |
| #ifdef USE_FBR0 |
| (ring_index == 0 && buff_index < rx_local->fbr[1]->num_entries) || |
| #endif |
| (ring_index == 1 && buff_index < rx_local->fbr[0]->num_entries)) { |
| spin_lock_irqsave(&adapter->fbr_lock, flags); |
| |
| if (ring_index == 1) { |
| struct fbr_desc *next = (struct fbr_desc *) |
| (rx_local->fbr[0]->ring_virtaddr) + |
| INDEX10(rx_local->fbr[0]->local_full); |
| |
| /* Handle the Free Buffer Ring advancement here. Write |
| * the PA / Buffer Index for the returned buffer into |
| * the oldest (next to be freed)FBR entry |
| */ |
| next->addr_hi = rx_local->fbr[0]->bus_high[buff_index]; |
| next->addr_lo = rx_local->fbr[0]->bus_low[buff_index]; |
| next->word2 = buff_index; |
| |
| writel(bump_free_buff_ring( |
| &rx_local->fbr[0]->local_full, |
| rx_local->fbr[0]->num_entries - 1), |
| &rx_dma->fbr1_full_offset); |
| } |
| #ifdef USE_FBR0 |
| else { |
| struct fbr_desc *next = (struct fbr_desc *) |
| rx_local->fbr[1]->ring_virtaddr + |
| INDEX10(rx_local->fbr[1]->local_full); |
| |
| /* Handle the Free Buffer Ring advancement here. Write |
| * the PA / Buffer Index for the returned buffer into |
| * the oldest (next to be freed) FBR entry |
| */ |
| next->addr_hi = rx_local->fbr[1]->bus_high[buff_index]; |
| next->addr_lo = rx_local->fbr[1]->bus_low[buff_index]; |
| next->word2 = buff_index; |
| |
| writel(bump_free_buff_ring( |
| &rx_local->fbr[1]->local_full, |
| rx_local->fbr[1]->num_entries - 1), |
| &rx_dma->fbr0_full_offset); |
| } |
| #endif |
| spin_unlock_irqrestore(&adapter->fbr_lock, flags); |
| } else { |
| dev_err(&adapter->pdev->dev, |
| "%s illegal Buffer Index returned\n", __func__); |
| } |
| |
| /* The processing on this RFD is done, so put it back on the tail of |
| * our list |
| */ |
| spin_lock_irqsave(&adapter->rcv_lock, flags); |
| list_add_tail(&rfd->list_node, &rx_local->recv_list); |
| rx_local->num_ready_recv++; |
| spin_unlock_irqrestore(&adapter->rcv_lock, flags); |
| |
| WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd); |
| } |
| |
| /** |
| * nic_rx_pkts - Checks the hardware for available packets |
| * @adapter: pointer to our adapter |
| * |
| * Returns rfd, a pointer to our MPRFD. |
| * |
| * Checks the hardware for available packets, using completion ring |
| * If packets are available, it gets an RFD from the recv_list, attaches |
| * the packet to it, puts the RFD in the RecvPendList, and also returns |
| * the pointer to the RFD. |
| */ |
| static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter) |
| { |
| struct rx_ring *rx_local = &adapter->rx_ring; |
| struct rx_status_block *status; |
| struct pkt_stat_desc *psr; |
| struct rfd *rfd; |
| u32 i; |
| u8 *buf; |
| unsigned long flags; |
| struct list_head *element; |
| u8 ring_index; |
| u16 buff_index; |
| u32 len; |
| u32 word0; |
| u32 word1; |
| |
| /* RX Status block is written by the DMA engine prior to every |
| * interrupt. It contains the next to be used entry in the Packet |
| * Status Ring, and also the two Free Buffer rings. |
| */ |
| status = rx_local->rx_status_block; |
| word1 = status->word1 >> 16; /* Get the useful bits */ |
| |
| /* Check the PSR and wrap bits do not match */ |
| if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF)) |
| /* Looks like this ring is not updated yet */ |
| return NULL; |
| |
| /* The packet status ring indicates that data is available. */ |
| psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) + |
| (rx_local->local_psr_full & 0xFFF); |
| |
| /* Grab any information that is required once the PSR is |
| * advanced, since we can no longer rely on the memory being |
| * accurate |
| */ |
| len = psr->word1 & 0xFFFF; |
| ring_index = (psr->word1 >> 26) & 0x03; |
| buff_index = (psr->word1 >> 16) & 0x3FF; |
| word0 = psr->word0; |
| |
| /* Indicate that we have used this PSR entry. */ |
| /* FIXME wrap 12 */ |
| add_12bit(&rx_local->local_psr_full, 1); |
| if ( |
| (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) { |
| /* Clear psr full and toggle the wrap bit */ |
| rx_local->local_psr_full &= ~0xFFF; |
| rx_local->local_psr_full ^= 0x1000; |
| } |
| |
| writel(rx_local->local_psr_full, |
| &adapter->regs->rxdma.psr_full_offset); |
| |
| #ifndef USE_FBR0 |
| if (ring_index != 1) |
| return NULL; |
| #endif |
| |
| #ifdef USE_FBR0 |
| if (ring_index > 1 || |
| (ring_index == 0 && |
| buff_index > rx_local->fbr[1]->num_entries - 1) || |
| (ring_index == 1 && |
| buff_index > rx_local->fbr[0]->num_entries - 1)) |
| #else |
| if (ring_index != 1 || buff_index > rx_local->fbr[0]->num_entries - 1) |
| #endif |
| { |
| /* Illegal buffer or ring index cannot be used by S/W*/ |
| dev_err(&adapter->pdev->dev, |
| "NICRxPkts PSR Entry %d indicates " |
| "length of %d and/or bad bi(%d)\n", |
| rx_local->local_psr_full & 0xFFF, |
| len, buff_index); |
| return NULL; |
| } |
| |
| /* Get and fill the RFD. */ |
| spin_lock_irqsave(&adapter->rcv_lock, flags); |
| |
| rfd = NULL; |
| element = rx_local->recv_list.next; |
| rfd = (struct rfd *) list_entry(element, struct rfd, list_node); |
| |
| if (rfd == NULL) { |
| spin_unlock_irqrestore(&adapter->rcv_lock, flags); |
| return NULL; |
| } |
| |
| list_del(&rfd->list_node); |
| rx_local->num_ready_recv--; |
| |
| spin_unlock_irqrestore(&adapter->rcv_lock, flags); |
| |
| rfd->bufferindex = buff_index; |
| rfd->ringindex = ring_index; |
| |
| /* In V1 silicon, there is a bug which screws up filtering of |
| * runt packets. Therefore runt packet filtering is disabled |
| * in the MAC and the packets are dropped here. They are |
| * also counted here. |
| */ |
| if (len < (NIC_MIN_PACKET_SIZE + 4)) { |
| adapter->stats.rx_other_errs++; |
| len = 0; |
| } |
| |
| if (len) { |
| /* Determine if this is a multicast packet coming in */ |
| if ((word0 & ALCATEL_MULTICAST_PKT) && |
| !(word0 & ALCATEL_BROADCAST_PKT)) { |
| /* Promiscuous mode and Multicast mode are |
| * not mutually exclusive as was first |
| * thought. I guess Promiscuous is just |
| * considered a super-set of the other |
| * filters. Generally filter is 0x2b when in |
| * promiscuous mode. |
| */ |
| if ((adapter->packet_filter & |
| ET131X_PACKET_TYPE_MULTICAST) |
| && !(adapter->packet_filter & |
| ET131X_PACKET_TYPE_PROMISCUOUS) |
| && !(adapter->packet_filter & |
| ET131X_PACKET_TYPE_ALL_MULTICAST)) { |
| /* |
| * Note - ring_index for fbr[] array is reversed |
| * 1 for FBR0 etc |
| */ |
| buf = rx_local->fbr[(ring_index == 0 ? 1 : 0)]-> |
| virt[buff_index]; |
| |
| /* Loop through our list to see if the |
| * destination address of this packet |
| * matches one in our list. |
| */ |
| for (i = 0; i < adapter->multicast_addr_count; |
| i++) { |
| if (buf[0] == |
| adapter->multicast_list[i][0] |
| && buf[1] == |
| adapter->multicast_list[i][1] |
| && buf[2] == |
| adapter->multicast_list[i][2] |
| && buf[3] == |
| adapter->multicast_list[i][3] |
| && buf[4] == |
| adapter->multicast_list[i][4] |
| && buf[5] == |
| adapter->multicast_list[i][5]) { |
| break; |
| } |
| } |
| |
| /* If our index is equal to the number |
| * of Multicast address we have, then |
| * this means we did not find this |
| * packet's matching address in our |
| * list. Set the len to zero, |
| * so we free our RFD when we return |
| * from this function. |
| */ |
| if (i == adapter->multicast_addr_count) |
| len = 0; |
| } |
| |
| if (len > 0) |
| adapter->stats.multicast_pkts_rcvd++; |
| } else if (word0 & ALCATEL_BROADCAST_PKT) |
| adapter->stats.broadcast_pkts_rcvd++; |
| else |
| /* Not sure what this counter measures in |
| * promiscuous mode. Perhaps we should check |
| * the MAC address to see if it is directed |
| * to us in promiscuous mode. |
| */ |
| adapter->stats.unicast_pkts_rcvd++; |
| } |
| |
| if (len > 0) { |
| struct sk_buff *skb = NULL; |
| |
| /*rfd->len = len - 4; */ |
| rfd->len = len; |
| |
| skb = dev_alloc_skb(rfd->len + 2); |
| if (!skb) { |
| dev_err(&adapter->pdev->dev, |
| "Couldn't alloc an SKB for Rx\n"); |
| return NULL; |
| } |
| |
| adapter->net_stats.rx_bytes += rfd->len; |
| |
| /* |
| * Note - ring_index for fbr[] array is reversed, |
| * 1 for FBR0 etc |
| */ |
| memcpy(skb_put(skb, rfd->len), |
| rx_local->fbr[(ring_index == 0 ? 1 : 0)]->virt[buff_index], |
| rfd->len); |
| |
| skb->dev = adapter->netdev; |
| skb->protocol = eth_type_trans(skb, adapter->netdev); |
| skb->ip_summed = CHECKSUM_NONE; |
| |
| netif_rx(skb); |
| } else { |
| rfd->len = 0; |
| } |
| |
| nic_return_rfd(adapter, rfd); |
| return rfd; |
| } |
| |
| /** |
| * et131x_handle_recv_interrupt - Interrupt handler for receive processing |
| * @adapter: pointer to our adapter |
| * |
| * Assumption, Rcv spinlock has been acquired. |
| */ |
| static void et131x_handle_recv_interrupt(struct et131x_adapter *adapter) |
| { |
| struct rfd *rfd = NULL; |
| u32 count = 0; |
| bool done = true; |
| |
| /* Process up to available RFD's */ |
| while (count < NUM_PACKETS_HANDLED) { |
| if (list_empty(&adapter->rx_ring.recv_list)) { |
| WARN_ON(adapter->rx_ring.num_ready_recv != 0); |
| done = false; |
| break; |
| } |
| |
| rfd = nic_rx_pkts(adapter); |
| |
| if (rfd == NULL) |
| break; |
| |
| /* Do not receive any packets until a filter has been set. |
| * Do not receive any packets until we have link. |
| * If length is zero, return the RFD in order to advance the |
| * Free buffer ring. |
| */ |
| if (!adapter->packet_filter || |
| !netif_carrier_ok(adapter->netdev) || |
| rfd->len == 0) |
| continue; |
| |
| /* Increment the number of packets we received */ |
| adapter->net_stats.rx_packets++; |
| |
| /* Set the status on the packet, either resources or success */ |
| if (adapter->rx_ring.num_ready_recv < RFD_LOW_WATER_MARK) { |
| dev_warn(&adapter->pdev->dev, |
| "RFD's are running out\n"); |
| } |
| count++; |
| } |
| |
| if (count == NUM_PACKETS_HANDLED || !done) { |
| adapter->rx_ring.unfinished_receives = true; |
| writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO, |
| &adapter->regs->global.watchdog_timer); |
| } else |
| /* Watchdog timer will disable itself if appropriate. */ |
| adapter->rx_ring.unfinished_receives = false; |
| } |
| |
| /** |
| * et131x_tx_dma_memory_alloc |
| * @adapter: pointer to our private adapter structure |
| * |
| * Returns 0 on success and errno on failure (as defined in errno.h). |
| * |
| * Allocates memory that will be visible both to the device and to the CPU. |
| * The OS will pass us packets, pointers to which we will insert in the Tx |
| * Descriptor queue. The device will read this queue to find the packets in |
| * memory. The device will update the "status" in memory each time it xmits a |
| * packet. |
| */ |
| static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter) |
| { |
| int desc_size = 0; |
| struct tx_ring *tx_ring = &adapter->tx_ring; |
| |
| /* Allocate memory for the TCB's (Transmit Control Block) */ |
| adapter->tx_ring.tcb_ring = |
| kcalloc(NUM_TCB, sizeof(struct tcb), GFP_ATOMIC | GFP_DMA); |
| if (!adapter->tx_ring.tcb_ring) { |
| dev_err(&adapter->pdev->dev, "Cannot alloc memory for TCBs\n"); |
| return -ENOMEM; |
| } |
| |
| /* Allocate enough memory for the Tx descriptor ring, and allocate |
| * some extra so that the ring can be aligned on a 4k boundary. |
| */ |
| desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX) + 4096 - 1; |
| tx_ring->tx_desc_ring = |
| (struct tx_desc *) dma_alloc_coherent(&adapter->pdev->dev, |
| desc_size, |
| &tx_ring->tx_desc_ring_pa, |
| GFP_KERNEL); |
| if (!adapter->tx_ring.tx_desc_ring) { |
| dev_err(&adapter->pdev->dev, |
| "Cannot alloc memory for Tx Ring\n"); |
| return -ENOMEM; |
| } |
| |
| /* Save physical address |
| * |
| * NOTE: dma_alloc_coherent(), used above to alloc DMA regions, |
| * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses |
| * are ever returned, make sure the high part is retrieved here before |
| * storing the adjusted address. |
| */ |
| /* Allocate memory for the Tx status block */ |
| tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev, |
| sizeof(u32), |
| &tx_ring->tx_status_pa, |
| GFP_KERNEL); |
| if (!adapter->tx_ring.tx_status_pa) { |
| dev_err(&adapter->pdev->dev, |
|