blob: 2c4069fcd9816458837c6ee9c84a7f3aa909961b [file] [log] [blame]
/*
* Agere Systems Inc.
* 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
*
* Copyright © 2005 Agere Systems Inc.
* All rights reserved.
* http://www.agere.com
*
* Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
*
*------------------------------------------------------------------------------
*
* SOFTWARE LICENSE
*
* This software is provided subject to the following terms and conditions,
* which you should read carefully before using the software. Using this
* software indicates your acceptance of these terms and conditions. If you do
* not agree with these terms and conditions, do not use the software.
*
* Copyright © 2005 Agere Systems Inc.
* All rights reserved.
*
* Redistribution and use in source or binary forms, with or without
* modifications, are permitted provided that the following conditions are met:
*
* . Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following Disclaimer as comments in the code as
* well as in the documentation and/or other materials provided with the
* distribution.
*
* . Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following Disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* . Neither the name of Agere Systems Inc. nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* Disclaimer
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
* USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
* RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
*/
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/ctype.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/in.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <asm/system.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/if_arp.h>
#include <linux/ioport.h>
#include <linux/crc32.h>
#include <linux/random.h>
#include <linux/phy.h>
#include "et131x.h"
MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver "
"for the ET1310 by Agere Systems");
/* EEPROM defines */
#define MAX_NUM_REGISTER_POLLS 1000
#define MAX_NUM_WRITE_RETRIES 2
/* MAC defines */
#define COUNTER_WRAP_16_BIT 0x10000
#define COUNTER_WRAP_12_BIT 0x1000
/* PCI defines */
#define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */
#define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */
/* ISR defines */
/*
* For interrupts, normal running is:
* rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
* watchdog_interrupt & txdma_xfer_done
*
* In both cases, when flow control is enabled for either Tx or bi-direction,
* we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
* buffer rings are running low.
*/
#define INT_MASK_DISABLE 0xffffffff
/* NOTE: Masking out MAC_STAT Interrupt for now...
* #define INT_MASK_ENABLE 0xfff6bf17
* #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
*/
#define INT_MASK_ENABLE 0xfffebf17
#define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
/* General defines */
/* Packet and header sizes */
#define NIC_MIN_PACKET_SIZE 60
/* Multicast list size */
#define NIC_MAX_MCAST_LIST 128
/* Supported Filters */
#define ET131X_PACKET_TYPE_DIRECTED 0x0001
#define ET131X_PACKET_TYPE_MULTICAST 0x0002
#define ET131X_PACKET_TYPE_BROADCAST 0x0004
#define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008
#define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010
/* Tx Timeout */
#define ET131X_TX_TIMEOUT (1 * HZ)
#define NIC_SEND_HANG_THRESHOLD 0
/* MP_TCB flags */
#define fMP_DEST_MULTI 0x00000001
#define fMP_DEST_BROAD 0x00000002
/* MP_ADAPTER flags */
#define fMP_ADAPTER_RECV_LOOKASIDE 0x00000004
#define fMP_ADAPTER_INTERRUPT_IN_USE 0x00000008
/* MP_SHARED flags */
#define fMP_ADAPTER_LOWER_POWER 0x00200000
#define fMP_ADAPTER_NON_RECOVER_ERROR 0x00800000
#define fMP_ADAPTER_HARDWARE_ERROR 0x04000000
#define fMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000
/* Some offsets in PCI config space that are actually used. */
#define ET1310_PCI_MAC_ADDRESS 0xA4
#define ET1310_PCI_EEPROM_STATUS 0xB2
#define ET1310_PCI_ACK_NACK 0xC0
#define ET1310_PCI_REPLAY 0xC2
#define ET1310_PCI_L0L1LATENCY 0xCF
/* PCI Product IDs */
#define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */
#define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */
/* Define order of magnitude converter */
#define NANO_IN_A_MICRO 1000
#define PARM_RX_NUM_BUFS_DEF 4
#define PARM_RX_TIME_INT_DEF 10
#define PARM_RX_MEM_END_DEF 0x2bc
#define PARM_TX_TIME_INT_DEF 40
#define PARM_TX_NUM_BUFS_DEF 4
#define PARM_DMA_CACHE_DEF 0
/* RX defines */
#define USE_FBR0 1
#define FBR_CHUNKS 32
#define MAX_DESC_PER_RING_RX 1024
/* number of RFDs - default and min */
#ifdef USE_FBR0
#define RFD_LOW_WATER_MARK 40
#define NIC_DEFAULT_NUM_RFD 1024
#define NUM_FBRS 2
#else
#define RFD_LOW_WATER_MARK 20
#define NIC_DEFAULT_NUM_RFD 256
#define NUM_FBRS 1
#endif
#define NIC_MIN_NUM_RFD 64
#define NUM_PACKETS_HANDLED 256
#define ALCATEL_MULTICAST_PKT 0x01000000
#define ALCATEL_BROADCAST_PKT 0x02000000
/* typedefs for Free Buffer Descriptors */
struct fbr_desc {
u32 addr_lo;
u32 addr_hi;
u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */
};
/* Packet Status Ring Descriptors
*
* Word 0:
*
* top 16 bits are from the Alcatel Status Word as enumerated in
* PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
*
* 0: hp hash pass
* 1: ipa IP checksum assist
* 2: ipp IP checksum pass
* 3: tcpa TCP checksum assist
* 4: tcpp TCP checksum pass
* 5: wol WOL Event
* 6: rxmac_error RXMAC Error Indicator
* 7: drop Drop packet
* 8: ft Frame Truncated
* 9: jp Jumbo Packet
* 10: vp VLAN Packet
* 11-15: unused
* 16: asw_prev_pkt_dropped e.g. IFG too small on previous
* 17: asw_RX_DV_event short receive event detected
* 18: asw_false_carrier_event bad carrier since last good packet
* 19: asw_code_err one or more nibbles signalled as errors
* 20: asw_CRC_err CRC error
* 21: asw_len_chk_err frame length field incorrect
* 22: asw_too_long frame length > 1518 bytes
* 23: asw_OK valid CRC + no code error
* 24: asw_multicast has a multicast address
* 25: asw_broadcast has a broadcast address
* 26: asw_dribble_nibble spurious bits after EOP
* 27: asw_control_frame is a control frame
* 28: asw_pause_frame is a pause frame
* 29: asw_unsupported_op unsupported OP code
* 30: asw_VLAN_tag VLAN tag detected
* 31: asw_long_evt Rx long event
*
* Word 1:
* 0-15: length length in bytes
* 16-25: bi Buffer Index
* 26-27: ri Ring Index
* 28-31: reserved
*/
struct pkt_stat_desc {
u32 word0;
u32 word1;
};
/* Typedefs for the RX DMA status word */
/*
* rx status word 0 holds part of the status bits of the Rx DMA engine
* that get copied out to memory by the ET-1310. Word 0 is a 32 bit word
* which contains the Free Buffer ring 0 and 1 available offset.
*
* bit 0-9 FBR1 offset
* bit 10 Wrap flag for FBR1
* bit 16-25 FBR0 offset
* bit 26 Wrap flag for FBR0
*/
/*
* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
* that get copied out to memory by the ET-1310. Word 3 is a 32 bit word
* which contains the Packet Status Ring available offset.
*
* bit 0-15 reserved
* bit 16-27 PSRoffset
* bit 28 PSRwrap
* bit 29-31 unused
*/
/*
* struct rx_status_block is a structure representing the status of the Rx
* DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
*/
struct rx_status_block {
u32 word0;
u32 word1;
};
/*
* Structure for look-up table holding free buffer ring pointers, addresses
* and state.
*/
struct fbr_lookup {
void *virt[MAX_DESC_PER_RING_RX];
void *buffer1[MAX_DESC_PER_RING_RX];
void *buffer2[MAX_DESC_PER_RING_RX];
u32 bus_high[MAX_DESC_PER_RING_RX];
u32 bus_low[MAX_DESC_PER_RING_RX];
void *ring_virtaddr;
dma_addr_t ring_physaddr;
void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
u64 real_physaddr;
u64 offset;
u32 local_full;
u32 num_entries;
u32 buffsize;
};
/*
* struct rx_ring is the sructure representing the adaptor's local
* reference(s) to the rings
*
******************************************************************************
* IMPORTANT NOTE :- fbr_lookup *fbr[NUM_FBRS] uses index 0 to refer to FBR1
* and index 1 to refer to FRB0
******************************************************************************
*/
struct rx_ring {
struct fbr_lookup *fbr[NUM_FBRS];
void *ps_ring_virtaddr;
dma_addr_t ps_ring_physaddr;
u32 local_psr_full;
u32 psr_num_entries;
struct rx_status_block *rx_status_block;
dma_addr_t rx_status_bus;
/* RECV */
struct list_head recv_list;
u32 num_ready_recv;
u32 num_rfd;
bool unfinished_receives;
/* lookaside lists */
struct kmem_cache *recv_lookaside;
};
/* TX defines */
/*
* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
*
* 0-15: length of packet
* 16-27: VLAN tag
* 28: VLAN CFI
* 29-31: VLAN priority
*
* word 3 of the control bits in the Tx Descriptor ring for the ET-1310
*
* 0: last packet in the sequence
* 1: first packet in the sequence
* 2: interrupt the processor when this pkt sent
* 3: Control word - no packet data
* 4: Issue half-duplex backpressure : XON/XOFF
* 5: send pause frame
* 6: Tx frame has error
* 7: append CRC
* 8: MAC override
* 9: pad packet
* 10: Packet is a Huge packet
* 11: append VLAN tag
* 12: IP checksum assist
* 13: TCP checksum assist
* 14: UDP checksum assist
*/
/* struct tx_desc represents each descriptor on the ring */
struct tx_desc {
u32 addr_hi;
u32 addr_lo;
u32 len_vlan; /* control words how to xmit the */
u32 flags; /* data (detailed above) */
};
/*
* The status of the Tx DMA engine it sits in free memory, and is pointed to
* by 0x101c / 0x1020. This is a DMA10 type
*/
/* TCB (Transmit Control Block: Host Side) */
struct tcb {
struct tcb *next; /* Next entry in ring */
u32 flags; /* Our flags for the packet */
u32 count; /* Used to spot stuck/lost packets */
u32 stale; /* Used to spot stuck/lost packets */
struct sk_buff *skb; /* Network skb we are tied to */
u32 index; /* Ring indexes */
u32 index_start;
};
/* Structure representing our local reference(s) to the ring */
struct tx_ring {
/* TCB (Transmit Control Block) memory and lists */
struct tcb *tcb_ring;
/* List of TCBs that are ready to be used */
struct tcb *tcb_qhead;
struct tcb *tcb_qtail;
/* list of TCBs that are currently being sent. NOTE that access to all
* three of these (including used) are controlled via the
* TCBSendQLock. This lock should be secured prior to incementing /
* decrementing used, or any queue manipulation on send_head /
* tail
*/
struct tcb *send_head;
struct tcb *send_tail;
int used;
/* The actual descriptor ring */
struct tx_desc *tx_desc_ring;
dma_addr_t tx_desc_ring_pa;
/* send_idx indicates where we last wrote to in the descriptor ring. */
u32 send_idx;
/* The location of the write-back status block */
u32 *tx_status;
dma_addr_t tx_status_pa;
/* Packets since the last IRQ: used for interrupt coalescing */
int since_irq;
};
/*
* Do not change these values: if changed, then change also in respective
* TXdma and Rxdma engines
*/
#define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */
#define NUM_TCB 64
/*
* These values are all superseded by registry entries to facilitate tuning.
* Once the desired performance has been achieved, the optimal registry values
* should be re-populated to these #defines:
*/
#define TX_ERROR_PERIOD 1000
#define LO_MARK_PERCENT_FOR_PSR 15
#define LO_MARK_PERCENT_FOR_RX 15
/* RFD (Receive Frame Descriptor) */
struct rfd {
struct list_head list_node;
struct sk_buff *skb;
u32 len; /* total size of receive frame */
u16 bufferindex;
u8 ringindex;
};
/* Flow Control */
#define FLOW_BOTH 0
#define FLOW_TXONLY 1
#define FLOW_RXONLY 2
#define FLOW_NONE 3
/* Struct to define some device statistics */
struct ce_stats {
/* MIB II variables
*
* NOTE: atomic_t types are only guaranteed to store 24-bits; if we
* MUST have 32, then we'll need another way to perform atomic
* operations
*/
u32 unicast_pkts_rcvd;
atomic_t unicast_pkts_xmtd;
u32 multicast_pkts_rcvd;
atomic_t multicast_pkts_xmtd;
u32 broadcast_pkts_rcvd;
atomic_t broadcast_pkts_xmtd;
u32 rcvd_pkts_dropped;
/* Tx Statistics. */
u32 tx_underflows;
u32 tx_collisions;
u32 tx_excessive_collisions;
u32 tx_first_collisions;
u32 tx_late_collisions;
u32 tx_max_pkt_errs;
u32 tx_deferred;
/* Rx Statistics. */
u32 rx_overflows;
u32 rx_length_errs;
u32 rx_align_errs;
u32 rx_crc_errs;
u32 rx_code_violations;
u32 rx_other_errs;
u32 synchronous_iterations;
u32 interrupt_status;
};
/* The private adapter structure */
struct et131x_adapter {
struct net_device *netdev;
struct pci_dev *pdev;
struct mii_bus *mii_bus;
struct phy_device *phydev;
struct work_struct task;
/* Flags that indicate current state of the adapter */
u32 flags;
/* local link state, to determine if a state change has occurred */
int link;
/* Configuration */
u8 rom_addr[ETH_ALEN];
u8 addr[ETH_ALEN];
bool has_eeprom;
u8 eeprom_data[2];
/* Spinlocks */
spinlock_t lock;
spinlock_t tcb_send_qlock;
spinlock_t tcb_ready_qlock;
spinlock_t send_hw_lock;
spinlock_t rcv_lock;
spinlock_t rcv_pend_lock;
spinlock_t fbr_lock;
spinlock_t phy_lock;
/* Packet Filter and look ahead size */
u32 packet_filter;
/* multicast list */
u32 multicast_addr_count;
u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
/* Pointer to the device's PCI register space */
struct address_map __iomem *regs;
/* Registry parameters */
u8 wanted_flow; /* Flow we want for 802.3x flow control */
u32 registry_jumbo_packet; /* Max supported ethernet packet size */
/* Derived from the registry: */
u8 flowcontrol; /* flow control validated by the far-end */
/* Minimize init-time */
struct timer_list error_timer;
/* variable putting the phy into coma mode when boot up with no cable
* plugged in after 5 seconds
*/
u8 boot_coma;
/* Next two used to save power information at power down. This
* information will be used during power up to set up parts of Power
* Management in JAGCore
*/
u16 pdown_speed;
u8 pdown_duplex;
/* Tx Memory Variables */
struct tx_ring tx_ring;
/* Rx Memory Variables */
struct rx_ring rx_ring;
/* Stats */
struct ce_stats stats;
struct net_device_stats net_stats;
};
static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
{
u32 reg;
int i;
/*
* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
* bits 7,1:0 both equal to 1, at least once after reset.
* Subsequent operations need only to check that bits 1:0 are equal
* to 1 prior to starting a single byte read/write
*/
for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
/* Read registers grouped in DWORD1 */
if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
return -EIO;
/* I2C idle and Phy Queue Avail both true */
if ((reg & 0x3000) == 0x3000) {
if (status)
*status = reg;
return reg & 0xFF;
}
}
return -ETIMEDOUT;
}
/**
* eeprom_write - Write a byte to the ET1310's EEPROM
* @adapter: pointer to our private adapter structure
* @addr: the address to write
* @data: the value to write
*
* Returns 1 for a successful write.
*/
static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
{
struct pci_dev *pdev = adapter->pdev;
int index = 0;
int retries;
int err = 0;
int i2c_wack = 0;
int writeok = 0;
u32 status;
u32 val = 0;
/*
* For an EEPROM, an I2C single byte write is defined as a START
* condition followed by the device address, EEPROM address, one byte
* of data and a STOP condition. The STOP condition will trigger the
* EEPROM's internally timed write cycle to the nonvolatile memory.
* All inputs are disabled during this write cycle and the EEPROM will
* not respond to any access until the internal write is complete.
*/
err = eeprom_wait_ready(pdev, NULL);
if (err)
return err;
/*
* 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
* and bits 1:0 both =0. Bit 5 should be set according to the
* type of EEPROM being accessed (1=two byte addressing, 0=one
* byte addressing).
*/
if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE))
return -EIO;
i2c_wack = 1;
/* Prepare EEPROM address for Step 3 */
for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
/* Write the address to the LBCIF Address Register */
if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
break;
/*
* Write the data to the LBCIF Data Register (the I2C write
* will begin).
*/
if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
break;
/*
* Monitor bit 1:0 of the LBCIF Status Register. When bits
* 1:0 are both equal to 1, the I2C write has completed and the
* internal write cycle of the EEPROM is about to start.
* (bits 1:0 = 01 is a legal state while waiting from both
* equal to 1, but bits 1:0 = 10 is invalid and implies that
* something is broken).
*/
err = eeprom_wait_ready(pdev, &status);
if (err < 0)
return 0;
/*
* Check bit 3 of the LBCIF Status Register. If equal to 1,
* an error has occurred.Don't break here if we are revision
* 1, this is so we do a blind write for load bug.
*/
if ((status & LBCIF_STATUS_GENERAL_ERROR)
&& adapter->pdev->revision == 0)
break;
/*
* Check bit 2 of the LBCIF Status Register. If equal to 1 an
* ACK error has occurred on the address phase of the write.
* This could be due to an actual hardware failure or the
* EEPROM may still be in its internal write cycle from a
* previous write. This write operation was ignored and must be
*repeated later.
*/
if (status & LBCIF_STATUS_ACK_ERROR) {
/*
* This could be due to an actual hardware failure
* or the EEPROM may still be in its internal write
* cycle from a previous write. This write operation
* was ignored and must be repeated later.
*/
udelay(10);
continue;
}
writeok = 1;
break;
}
/*
* Set bit 6 of the LBCIF Control Register = 0.
*/
udelay(10);
while (i2c_wack) {
if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
LBCIF_CONTROL_LBCIF_ENABLE))
writeok = 0;
/* Do read until internal ACK_ERROR goes away meaning write
* completed
*/
do {
pci_write_config_dword(pdev,
LBCIF_ADDRESS_REGISTER,
addr);
do {
pci_read_config_dword(pdev,
LBCIF_DATA_REGISTER, &val);
} while ((val & 0x00010000) == 0);
} while (val & 0x00040000);
if ((val & 0xFF00) != 0xC000 || index == 10000)
break;
index++;
}
return writeok ? 0 : -EIO;
}
/**
* eeprom_read - Read a byte from the ET1310's EEPROM
* @adapter: pointer to our private adapter structure
* @addr: the address from which to read
* @pdata: a pointer to a byte in which to store the value of the read
* @eeprom_id: the ID of the EEPROM
* @addrmode: how the EEPROM is to be accessed
*
* Returns 1 for a successful read
*/
static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
{
struct pci_dev *pdev = adapter->pdev;
int err;
u32 status;
/*
* A single byte read is similar to the single byte write, with the
* exception of the data flow:
*/
err = eeprom_wait_ready(pdev, NULL);
if (err)
return err;
/*
* Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
* and bits 1:0 both =0. Bit 5 should be set according to the type
* of EEPROM being accessed (1=two byte addressing, 0=one byte
* addressing).
*/
if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
LBCIF_CONTROL_LBCIF_ENABLE))
return -EIO;
/*
* Write the address to the LBCIF Address Register (I2C read will
* begin).
*/
if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
return -EIO;
/*
* Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
* is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
* has occurred).
*/
err = eeprom_wait_ready(pdev, &status);
if (err < 0)
return err;
/*
* Regardless of error status, read data byte from LBCIF Data
* Register.
*/
*pdata = err;
/*
* Check bit 2 of the LBCIF Status Register. If = 1,
* then an error has occurred.
*/
return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
}
static int et131x_init_eeprom(struct et131x_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
u8 eestatus;
/* We first need to check the EEPROM Status code located at offset
* 0xB2 of config space
*/
pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS,
&eestatus);
/* THIS IS A WORKAROUND:
* I need to call this function twice to get my card in a
* LG M1 Express Dual running. I tried also a msleep before this
* function, because I thougth there could be some time condidions
* but it didn't work. Call the whole function twice also work.
*/
if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
dev_err(&pdev->dev,
"Could not read PCI config space for EEPROM Status\n");
return -EIO;
}
/* Determine if the error(s) we care about are present. If they are
* present we need to fail.
*/
if (eestatus & 0x4C) {
int write_failed = 0;
if (pdev->revision == 0x01) {
int i;
static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
/* Re-write the first 4 bytes if we have an eeprom
* present and the revision id is 1, this fixes the
* corruption seen with 1310 B Silicon
*/
for (i = 0; i < 3; i++)
if (eeprom_write(adapter, i, eedata[i]) < 0)
write_failed = 1;
}
if (pdev->revision != 0x01 || write_failed) {
dev_err(&pdev->dev,
"Fatal EEPROM Status Error - 0x%04x\n", eestatus);
/* This error could mean that there was an error
* reading the eeprom or that the eeprom doesn't exist.
* We will treat each case the same and not try to
* gather additional information that normally would
* come from the eeprom, like MAC Address
*/
adapter->has_eeprom = 0;
return -EIO;
}
}
adapter->has_eeprom = 1;
/* Read the EEPROM for information regarding LED behavior. Refer to
* ET1310_phy.c, et131x_xcvr_init(), for its use.
*/
eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
if (adapter->eeprom_data[0] != 0xcd)
/* Disable all optional features */
adapter->eeprom_data[1] = 0x00;
return 0;
}
/**
* et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
* @adapter: pointer to our adapter structure
*/
static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
{
/* Setup the receive dma configuration register for normal operation */
u32 csr = 0x2000; /* FBR1 enable */
if (adapter->rx_ring.fbr[0]->buffsize == 4096)
csr |= 0x0800;
else if (adapter->rx_ring.fbr[0]->buffsize == 8192)
csr |= 0x1000;
else if (adapter->rx_ring.fbr[0]->buffsize == 16384)
csr |= 0x1800;
#ifdef USE_FBR0
csr |= 0x0400; /* FBR0 enable */
if (adapter->rx_ring.fbr[1]->buffsize == 256)
csr |= 0x0100;
else if (adapter->rx_ring.fbr[1]->buffsize == 512)
csr |= 0x0200;
else if (adapter->rx_ring.fbr[1]->buffsize == 1024)
csr |= 0x0300;
#endif
writel(csr, &adapter->regs->rxdma.csr);
csr = readl(&adapter->regs->rxdma.csr);
if ((csr & 0x00020000) != 0) {
udelay(5);
csr = readl(&adapter->regs->rxdma.csr);
if ((csr & 0x00020000) != 0) {
dev_err(&adapter->pdev->dev,
"RX Dma failed to exit halt state. CSR 0x%08x\n",
csr);
}
}
}
/**
* et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
* @adapter: pointer to our adapter structure
*/
static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
{
u32 csr;
/* Setup the receive dma configuration register */
writel(0x00002001, &adapter->regs->rxdma.csr);
csr = readl(&adapter->regs->rxdma.csr);
if ((csr & 0x00020000) == 0) { /* Check halt status (bit 17) */
udelay(5);
csr = readl(&adapter->regs->rxdma.csr);
if ((csr & 0x00020000) == 0)
dev_err(&adapter->pdev->dev,
"RX Dma failed to enter halt state. CSR 0x%08x\n",
csr);
}
}
/**
* et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
* @adapter: pointer to our adapter structure
*
* Mainly used after a return to the D0 (full-power) state from a lower state.
*/
static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
{
/* Setup the transmit dma configuration register for normal
* operation
*/
writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
&adapter->regs->txdma.csr);
}
static inline void add_10bit(u32 *v, int n)
{
*v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
}
static inline void add_12bit(u32 *v, int n)
{
*v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
}
/**
* et1310_config_mac_regs1 - Initialize the first part of MAC regs
* @adapter: pointer to our adapter structure
*/
static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
{
struct mac_regs __iomem *macregs = &adapter->regs->mac;
u32 station1;
u32 station2;
u32 ipg;
/* First we need to reset everything. Write to MAC configuration
* register 1 to perform reset.
*/
writel(0xC00F0000, &macregs->cfg1);
/* Next lets configure the MAC Inter-packet gap register */
ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
ipg |= 0x50 << 8; /* ifg enforce 0x50 */
writel(ipg, &macregs->ipg);
/* Next lets configure the MAC Half Duplex register */
/* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
writel(0x00A1F037, &macregs->hfdp);
/* Next lets configure the MAC Interface Control register */
writel(0, &macregs->if_ctrl);
/* Let's move on to setting up the mii management configuration */
writel(0x07, &macregs->mii_mgmt_cfg); /* Clock reset 0x7 */
/* Next lets configure the MAC Station Address register. These
* values are read from the EEPROM during initialization and stored
* in the adapter structure. We write what is stored in the adapter
* structure to the MAC Station Address registers high and low. This
* station address is used for generating and checking pause control
* packets.
*/
station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
(adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
(adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
(adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
adapter->addr[2];
writel(station1, &macregs->station_addr_1);
writel(station2, &macregs->station_addr_2);
/* Max ethernet packet in bytes that will passed by the mac without
* being truncated. Allow the MAC to pass 4 more than our max packet
* size. This is 4 for the Ethernet CRC.
*
* Packets larger than (registry_jumbo_packet) that do not contain a
* VLAN ID will be dropped by the Rx function.
*/
writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
/* clear out MAC config reset */
writel(0, &macregs->cfg1);
}
/**
* et1310_config_mac_regs2 - Initialize the second part of MAC regs
* @adapter: pointer to our adapter structure
*/
static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
{
int32_t delay = 0;
struct mac_regs __iomem *mac = &adapter->regs->mac;
struct phy_device *phydev = adapter->phydev;
u32 cfg1;
u32 cfg2;
u32 ifctrl;
u32 ctl;
ctl = readl(&adapter->regs->txmac.ctl);
cfg1 = readl(&mac->cfg1);
cfg2 = readl(&mac->cfg2);
ifctrl = readl(&mac->if_ctrl);
/* Set up the if mode bits */
cfg2 &= ~0x300;
if (phydev && phydev->speed == SPEED_1000) {
cfg2 |= 0x200;
/* Phy mode bit */
ifctrl &= ~(1 << 24);
} else {
cfg2 |= 0x100;
ifctrl |= (1 << 24);
}
/* We need to enable Rx/Tx */
cfg1 |= CFG1_RX_ENABLE | CFG1_TX_ENABLE | CFG1_TX_FLOW;
/* Initialize loop back to off */
cfg1 &= ~(CFG1_LOOPBACK | CFG1_RX_FLOW);
if (adapter->flowcontrol == FLOW_RXONLY ||
adapter->flowcontrol == FLOW_BOTH)
cfg1 |= CFG1_RX_FLOW;
writel(cfg1, &mac->cfg1);
/* Now we need to initialize the MAC Configuration 2 register */
/* preamble 7, check length, huge frame off, pad crc, crc enable
full duplex off */
cfg2 |= 0x7016;
cfg2 &= ~0x0021;
/* Turn on duplex if needed */
if (phydev && phydev->duplex == DUPLEX_FULL)
cfg2 |= 0x01;
ifctrl &= ~(1 << 26);
if (phydev && phydev->duplex == DUPLEX_HALF)
ifctrl |= (1<<26); /* Enable ghd */
writel(ifctrl, &mac->if_ctrl);
writel(cfg2, &mac->cfg2);
do {
udelay(10);
delay++;
cfg1 = readl(&mac->cfg1);
} while ((cfg1 & CFG1_WAIT) != CFG1_WAIT && delay < 100);
if (delay == 100) {
dev_warn(&adapter->pdev->dev,
"Syncd bits did not respond correctly cfg1 word 0x%08x\n",
cfg1);
}
/* Enable txmac */
ctl |= 0x09; /* TX mac enable, FC disable */
writel(ctl, &adapter->regs->txmac.ctl);
/* Ready to start the RXDMA/TXDMA engine */
if (adapter->flags & fMP_ADAPTER_LOWER_POWER) {
et131x_rx_dma_enable(adapter);
et131x_tx_dma_enable(adapter);
}
}
/**
* et1310_in_phy_coma - check if the device is in phy coma
* @adapter: pointer to our adapter structure
*
* Returns 0 if the device is not in phy coma, 1 if it is in phy coma
*/
static int et1310_in_phy_coma(struct et131x_adapter *adapter)
{
u32 pmcsr;
pmcsr = readl(&adapter->regs->global.pm_csr);
return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
}
static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
{
struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
u32 hash1 = 0;
u32 hash2 = 0;
u32 hash3 = 0;
u32 hash4 = 0;
u32 pm_csr;
/* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
* the multi-cast LIST. If it is NOT specified, (and "ALL" is not
* specified) then we should pass NO multi-cast addresses to the
* driver.
*/
if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
int i;
/* Loop through our multicast array and set up the device */
for (i = 0; i < adapter->multicast_addr_count; i++) {
u32 result;
result = ether_crc(6, adapter->multicast_list[i]);
result = (result & 0x3F800000) >> 23;
if (result < 32) {
hash1 |= (1 << result);
} else if ((31 < result) && (result < 64)) {
result -= 32;
hash2 |= (1 << result);
} else if ((63 < result) && (result < 96)) {
result -= 64;
hash3 |= (1 << result);
} else {
result -= 96;
hash4 |= (1 << result);
}
}
}
/* Write out the new hash to the device */
pm_csr = readl(&adapter->regs->global.pm_csr);
if (!et1310_in_phy_coma(adapter)) {
writel(hash1, &rxmac->multi_hash1);
writel(hash2, &rxmac->multi_hash2);
writel(hash3, &rxmac->multi_hash3);
writel(hash4, &rxmac->multi_hash4);
}
}
static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
{
struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
u32 uni_pf1;
u32 uni_pf2;
u32 uni_pf3;
u32 pm_csr;
/* Set up unicast packet filter reg 3 to be the first two octets of
* the MAC address for both address
*
* Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
* MAC address for second address
*
* Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
* MAC address for first address
*/
uni_pf3 = (adapter->addr[0] << ET_UNI_PF_ADDR2_1_SHIFT) |
(adapter->addr[1] << ET_UNI_PF_ADDR2_2_SHIFT) |
(adapter->addr[0] << ET_UNI_PF_ADDR1_1_SHIFT) |
adapter->addr[1];
uni_pf2 = (adapter->addr[2] << ET_UNI_PF_ADDR2_3_SHIFT) |
(adapter->addr[3] << ET_UNI_PF_ADDR2_4_SHIFT) |
(adapter->addr[4] << ET_UNI_PF_ADDR2_5_SHIFT) |
adapter->addr[5];
uni_pf1 = (adapter->addr[2] << ET_UNI_PF_ADDR1_3_SHIFT) |
(adapter->addr[3] << ET_UNI_PF_ADDR1_4_SHIFT) |
(adapter->addr[4] << ET_UNI_PF_ADDR1_5_SHIFT) |
adapter->addr[5];
pm_csr = readl(&adapter->regs->global.pm_csr);
if (!et1310_in_phy_coma(adapter)) {
writel(uni_pf1, &rxmac->uni_pf_addr1);
writel(uni_pf2, &rxmac->uni_pf_addr2);
writel(uni_pf3, &rxmac->uni_pf_addr3);
}
}
static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
{
struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
struct phy_device *phydev = adapter->phydev;
u32 sa_lo;
u32 sa_hi = 0;
u32 pf_ctrl = 0;
/* Disable the MAC while it is being configured (also disable WOL) */
writel(0x8, &rxmac->ctrl);
/* Initialize WOL to disabled. */
writel(0, &rxmac->crc0);
writel(0, &rxmac->crc12);
writel(0, &rxmac->crc34);
/* We need to set the WOL mask0 - mask4 next. We initialize it to
* its default Values of 0x00000000 because there are not WOL masks
* as of this time.
*/
writel(0, &rxmac->mask0_word0);
writel(0, &rxmac->mask0_word1);
writel(0, &rxmac->mask0_word2);
writel(0, &rxmac->mask0_word3);
writel(0, &rxmac->mask1_word0);
writel(0, &rxmac->mask1_word1);
writel(0, &rxmac->mask1_word2);
writel(0, &rxmac->mask1_word3);
writel(0, &rxmac->mask2_word0);
writel(0, &rxmac->mask2_word1);
writel(0, &rxmac->mask2_word2);
writel(0, &rxmac->mask2_word3);
writel(0, &rxmac->mask3_word0);
writel(0, &rxmac->mask3_word1);
writel(0, &rxmac->mask3_word2);
writel(0, &rxmac->mask3_word3);
writel(0, &rxmac->mask4_word0);
writel(0, &rxmac->mask4_word1);
writel(0, &rxmac->mask4_word2);
writel(0, &rxmac->mask4_word3);
/* Lets setup the WOL Source Address */
sa_lo = (adapter->addr[2] << ET_WOL_LO_SA3_SHIFT) |
(adapter->addr[3] << ET_WOL_LO_SA4_SHIFT) |
(adapter->addr[4] << ET_WOL_LO_SA5_SHIFT) |
adapter->addr[5];
writel(sa_lo, &rxmac->sa_lo);
sa_hi = (u32) (adapter->addr[0] << ET_WOL_HI_SA1_SHIFT) |
adapter->addr[1];
writel(sa_hi, &rxmac->sa_hi);
/* Disable all Packet Filtering */
writel(0, &rxmac->pf_ctrl);
/* Let's initialize the Unicast Packet filtering address */
if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
et1310_setup_device_for_unicast(adapter);
pf_ctrl |= 4; /* Unicast filter */
} else {
writel(0, &rxmac->uni_pf_addr1);
writel(0, &rxmac->uni_pf_addr2);
writel(0, &rxmac->uni_pf_addr3);
}
/* Let's initialize the Multicast hash */
if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
pf_ctrl |= 2; /* Multicast filter */
et1310_setup_device_for_multicast(adapter);
}
/* Runt packet filtering. Didn't work in version A silicon. */
pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << 16;
pf_ctrl |= 8; /* Fragment filter */
if (adapter->registry_jumbo_packet > 8192)
/* In order to transmit jumbo packets greater than 8k, the
* FIFO between RxMAC and RxDMA needs to be reduced in size
* to (16k - Jumbo packet size). In order to implement this,
* we must use "cut through" mode in the RxMAC, which chops
* packets down into segments which are (max_size * 16). In
* this case we selected 256 bytes, since this is the size of
* the PCI-Express TLP's that the 1310 uses.
*
* seg_en on, fc_en off, size 0x10
*/
writel(0x41, &rxmac->mcif_ctrl_max_seg);
else
writel(0, &rxmac->mcif_ctrl_max_seg);
/* Initialize the MCIF water marks */
writel(0, &rxmac->mcif_water_mark);
/* Initialize the MIF control */
writel(0, &rxmac->mif_ctrl);
/* Initialize the Space Available Register */
writel(0, &rxmac->space_avail);
/* Initialize the the mif_ctrl register
* bit 3: Receive code error. One or more nibbles were signaled as
* errors during the reception of the packet. Clear this
* bit in Gigabit, set it in 100Mbit. This was derived
* experimentally at UNH.
* bit 4: Receive CRC error. The packet's CRC did not match the
* internally generated CRC.
* bit 5: Receive length check error. Indicates that frame length
* field value in the packet does not match the actual data
* byte length and is not a type field.
* bit 16: Receive frame truncated.
* bit 17: Drop packet enable
*/
if (phydev && phydev->speed == SPEED_100)
writel(0x30038, &rxmac->mif_ctrl);
else
writel(0x30030, &rxmac->mif_ctrl);
/* Finally we initialize RxMac to be enabled & WOL disabled. Packet
* filter is always enabled since it is where the runt packets are
* supposed to be dropped. For version A silicon, runt packet
* dropping doesn't work, so it is disabled in the pf_ctrl register,
* but we still leave the packet filter on.
*/
writel(pf_ctrl, &rxmac->pf_ctrl);
writel(0x9, &rxmac->ctrl);
}
static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
{
struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
/* We need to update the Control Frame Parameters
* cfpt - control frame pause timer set to 64 (0x40)
* cfep - control frame extended pause timer set to 0x0
*/
if (adapter->flowcontrol == FLOW_NONE)
writel(0, &txmac->cf_param);
else
writel(0x40, &txmac->cf_param);
}
static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
{
struct macstat_regs __iomem *macstat =
&adapter->regs->macstat;
/* Next we need to initialize all the macstat registers to zero on
* the device.
*/
writel(0, &macstat->txrx_0_64_byte_frames);
writel(0, &macstat->txrx_65_127_byte_frames);
writel(0, &macstat->txrx_128_255_byte_frames);
writel(0, &macstat->txrx_256_511_byte_frames);
writel(0, &macstat->txrx_512_1023_byte_frames);
writel(0, &macstat->txrx_1024_1518_byte_frames);
writel(0, &macstat->txrx_1519_1522_gvln_frames);
writel(0, &macstat->rx_bytes);
writel(0, &macstat->rx_packets);
writel(0, &macstat->rx_fcs_errs);
writel(0, &macstat->rx_multicast_packets);
writel(0, &macstat->rx_broadcast_packets);
writel(0, &macstat->rx_control_frames);
writel(0, &macstat->rx_pause_frames);
writel(0, &macstat->rx_unknown_opcodes);
writel(0, &macstat->rx_align_errs);
writel(0, &macstat->rx_frame_len_errs);
writel(0, &macstat->rx_code_errs);
writel(0, &macstat->rx_carrier_sense_errs);
writel(0, &macstat->rx_undersize_packets);
writel(0, &macstat->rx_oversize_packets);
writel(0, &macstat->rx_fragment_packets);
writel(0, &macstat->rx_jabbers);
writel(0, &macstat->rx_drops);
writel(0, &macstat->tx_bytes);
writel(0, &macstat->tx_packets);
writel(0, &macstat->tx_multicast_packets);
writel(0, &macstat->tx_broadcast_packets);
writel(0, &macstat->tx_pause_frames);
writel(0, &macstat->tx_deferred);
writel(0, &macstat->tx_excessive_deferred);
writel(0, &macstat->tx_single_collisions);
writel(0, &macstat->tx_multiple_collisions);
writel(0, &macstat->tx_late_collisions);
writel(0, &macstat->tx_excessive_collisions);
writel(0, &macstat->tx_total_collisions);
writel(0, &macstat->tx_pause_honored_frames);
writel(0, &macstat->tx_drops);
writel(0, &macstat->tx_jabbers);
writel(0, &macstat->tx_fcs_errs);
writel(0, &macstat->tx_control_frames);
writel(0, &macstat->tx_oversize_frames);
writel(0, &macstat->tx_undersize_frames);
writel(0, &macstat->tx_fragments);
writel(0, &macstat->carry_reg1);
writel(0, &macstat->carry_reg2);
/* Unmask any counters that we want to track the overflow of.
* Initially this will be all counters. It may become clear later
* that we do not need to track all counters.
*/
writel(0xFFFFBE32, &macstat->carry_reg1_mask);
writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
}
/**
* et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
* @adapter: pointer to our private adapter structure
* @addr: the address of the transceiver
* @reg: the register to read
* @value: pointer to a 16-bit value in which the value will be stored
*
* Returns 0 on success, errno on failure (as defined in errno.h)
*/
static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
u8 reg, u16 *value)
{
struct mac_regs __iomem *mac = &adapter->regs->mac;
int status = 0;
u32 delay = 0;
u32 mii_addr;
u32 mii_cmd;
u32 mii_indicator;
/* Save a local copy of the registers we are dealing with so we can
* set them back
*/
mii_addr = readl(&mac->mii_mgmt_addr);
mii_cmd = readl(&mac->mii_mgmt_cmd);
/* Stop the current operation */
writel(0, &mac->mii_mgmt_cmd);
/* Set up the register we need to read from on the correct PHY */
writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
writel(0x1, &mac->mii_mgmt_cmd);
do {
udelay(50);
delay++;
mii_indicator = readl(&mac->mii_mgmt_indicator);
} while ((mii_indicator & MGMT_WAIT) && delay < 50);
/* If we hit the max delay, we could not read the register */
if (delay == 50) {
dev_warn(&adapter->pdev->dev,
"reg 0x%08x could not be read\n", reg);
dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
mii_indicator);
status = -EIO;
}
/* If we hit here we were able to read the register and we need to
* return the value to the caller */
*value = readl(&mac->mii_mgmt_stat) & 0xFFFF;
/* Stop the read operation */
writel(0, &mac->mii_mgmt_cmd);
/* set the registers we touched back to the state at which we entered
* this function
*/
writel(mii_addr, &mac->mii_mgmt_addr);
writel(mii_cmd, &mac->mii_mgmt_cmd);
return status;
}
static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
{
struct phy_device *phydev = adapter->phydev;
if (!phydev)
return -EIO;
return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
}
/**
* et131x_mii_write - Write to a PHY register through the MII interface of the MAC
* @adapter: pointer to our private adapter structure
* @reg: the register to read
* @value: 16-bit value to write
*
* FIXME: one caller in netdev still
*
* Return 0 on success, errno on failure (as defined in errno.h)
*/
static int et131x_mii_write(struct et131x_adapter *adapter, u8 reg, u16 value)
{
struct mac_regs __iomem *mac = &adapter->regs->mac;
struct phy_device *phydev = adapter->phydev;
int status = 0;
u8 addr;
u32 delay = 0;
u32 mii_addr;
u32 mii_cmd;
u32 mii_indicator;
if (!phydev)
return -EIO;
addr = phydev->addr;
/* Save a local copy of the registers we are dealing with so we can
* set them back
*/
mii_addr = readl(&mac->mii_mgmt_addr);
mii_cmd = readl(&mac->mii_mgmt_cmd);
/* Stop the current operation */
writel(0, &mac->mii_mgmt_cmd);
/* Set up the register we need to write to on the correct PHY */
writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
/* Add the value to write to the registers to the mac */
writel(value, &mac->mii_mgmt_ctrl);
do {
udelay(50);
delay++;
mii_indicator = readl(&mac->mii_mgmt_indicator);
} while ((mii_indicator & MGMT_BUSY) && delay < 100);
/* If we hit the max delay, we could not write the register */
if (delay == 100) {
u16 tmp;
dev_warn(&adapter->pdev->dev,
"reg 0x%08x could not be written", reg);
dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
mii_indicator);
dev_warn(&adapter->pdev->dev, "command is 0x%08x\n",
readl(&mac->mii_mgmt_cmd));
et131x_mii_read(adapter, reg, &tmp);
status = -EIO;
}
/* Stop the write operation */
writel(0, &mac->mii_mgmt_cmd);
/*
* set the registers we touched back to the state at which we entered
* this function
*/
writel(mii_addr, &mac->mii_mgmt_addr);
writel(mii_cmd, &mac->mii_mgmt_cmd);
return status;
}
/* Still used from _mac for BIT_READ */
static void et1310_phy_access_mii_bit(struct et131x_adapter *adapter,
u16 action, u16 regnum, u16 bitnum,
u8 *value)
{
u16 reg;
u16 mask = 0x0001 << bitnum;
/* Read the requested register */
et131x_mii_read(adapter, regnum, &reg);
switch (action) {
case TRUEPHY_BIT_READ:
*value = (reg & mask) >> bitnum;
break;
case TRUEPHY_BIT_SET:
et131x_mii_write(adapter, regnum, reg | mask);
break;
case TRUEPHY_BIT_CLEAR:
et131x_mii_write(adapter, regnum, reg & ~mask);
break;
default:
break;
}
}
static void et1310_config_flow_control(struct et131x_adapter *adapter)
{
struct phy_device *phydev = adapter->phydev;
if (phydev->duplex == DUPLEX_HALF) {
adapter->flowcontrol = FLOW_NONE;
} else {
char remote_pause, remote_async_pause;
et1310_phy_access_mii_bit(adapter,
TRUEPHY_BIT_READ, 5, 10, &remote_pause);
et1310_phy_access_mii_bit(adapter,
TRUEPHY_BIT_READ, 5, 11,
&remote_async_pause);
if ((remote_pause == TRUEPHY_BIT_SET) &&
(remote_async_pause == TRUEPHY_BIT_SET)) {
adapter->flowcontrol = adapter->wanted_flow;
} else if ((remote_pause == TRUEPHY_BIT_SET) &&
(remote_async_pause == TRUEPHY_BIT_CLEAR)) {
if (adapter->wanted_flow == FLOW_BOTH)
adapter->flowcontrol = FLOW_BOTH;
else
adapter->flowcontrol = FLOW_NONE;
} else if ((remote_pause == TRUEPHY_BIT_CLEAR) &&
(remote_async_pause == TRUEPHY_BIT_CLEAR)) {
adapter->flowcontrol = FLOW_NONE;
} else {/* if (remote_pause == TRUEPHY_CLEAR_BIT &&
remote_async_pause == TRUEPHY_SET_BIT) */
if (adapter->wanted_flow == FLOW_BOTH)
adapter->flowcontrol = FLOW_RXONLY;
else
adapter->flowcontrol = FLOW_NONE;
}
}
}
/**
* et1310_update_macstat_host_counters - Update the local copy of the statistics
* @adapter: pointer to the adapter structure
*/
static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
{
struct ce_stats *stats = &adapter->stats;
struct macstat_regs __iomem *macstat =
&adapter->regs->macstat;
stats->tx_collisions += readl(&macstat->tx_total_collisions);
stats->tx_first_collisions += readl(&macstat->tx_single_collisions);
stats->tx_deferred += readl(&macstat->tx_deferred);
stats->tx_excessive_collisions +=
readl(&macstat->tx_multiple_collisions);
stats->tx_late_collisions += readl(&macstat->tx_late_collisions);
stats->tx_underflows += readl(&macstat->tx_undersize_frames);
stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames);
stats->rx_align_errs += readl(&macstat->rx_align_errs);
stats->rx_crc_errs += readl(&macstat->rx_code_errs);
stats->rcvd_pkts_dropped += readl(&macstat->rx_drops);
stats->rx_overflows += readl(&macstat->rx_oversize_packets);
stats->rx_code_violations += readl(&macstat->rx_fcs_errs);
stats->rx_length_errs += readl(&macstat->rx_frame_len_errs);
stats->rx_other_errs += readl(&macstat->rx_fragment_packets);
}
/**
* et1310_handle_macstat_interrupt
* @adapter: pointer to the adapter structure
*
* One of the MACSTAT counters has wrapped. Update the local copy of
* the statistics held in the adapter structure, checking the "wrap"
* bit for each counter.
*/
static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
{
u32 carry_reg1;
u32 carry_reg2;
/* Read the interrupt bits from the register(s). These are Clear On
* Write.
*/
carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
/* We need to do update the host copy of all the MAC_STAT counters.
* For each counter, check it's overflow bit. If the overflow bit is
* set, then increment the host version of the count by one complete
* revolution of the counter. This routine is called when the counter
* block indicates that one of the counters has wrapped.
*/
if (carry_reg1 & (1 << 14))
adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT;
if (carry_reg1 & (1 << 8))
adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT;
if (carry_reg1 & (1 << 7))
adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT;
if (carry_reg1 & (1 << 2))
adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT;
if (carry_reg1 & (1 << 6))
adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT;
if (carry_reg1 & (1 << 3))
adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT;
if (carry_reg1 & (1 << 0))
adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT;
if (carry_reg2 & (1 << 16))
adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT;
if (carry_reg2 & (1 << 15))
adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT;
if (carry_reg2 & (1 << 6))
adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
if (carry_reg2 & (1 << 8))
adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT;
if (carry_reg2 & (1 << 5))
adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
if (carry_reg2 & (1 << 4))
adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT;
if (carry_reg2 & (1 << 2))
adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT;
}
static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
{
struct net_device *netdev = bus->priv;
struct et131x_adapter *adapter = netdev_priv(netdev);
u16 value;
int ret;
ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
if (ret < 0)
return ret;
else
return value;
}
static int et131x_mdio_write(struct mii_bus *bus, int phy_addr, int reg, u16 value)
{
struct net_device *netdev = bus->priv;
struct et131x_adapter *adapter = netdev_priv(netdev);
return et131x_mii_write(adapter, reg, value);
}
static int et131x_mdio_reset(struct mii_bus *bus)
{
struct net_device *netdev = bus->priv;
struct et131x_adapter *adapter = netdev_priv(netdev);
et131x_mii_write(adapter, MII_BMCR, BMCR_RESET);
return 0;
}
/**
* et1310_phy_power_down - PHY power control
* @adapter: device to control
* @down: true for off/false for back on
*
* one hundred, ten, one thousand megs
* How would you like to have your LAN accessed
* Can't you see that this code processed
* Phy power, phy power..
*/
static void et1310_phy_power_down(struct et131x_adapter *adapter, bool down)
{
u16 data;
et131x_mii_read(adapter, MII_BMCR, &data);
data &= ~BMCR_PDOWN;
if (down)
data |= BMCR_PDOWN;
et131x_mii_write(adapter, MII_BMCR, data);
}
/**
* et131x_xcvr_init - Init the phy if we are setting it into force mode
* @adapter: pointer to our private adapter structure
*
*/
static void et131x_xcvr_init(struct et131x_adapter *adapter)
{
u16 imr;
u16 isr;
u16 lcr2;
et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &isr);
et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &imr);
/* Set the link status interrupt only. Bad behavior when link status
* and auto neg are set, we run into a nested interrupt problem
*/
imr |= (ET_PHY_INT_MASK_AUTONEGSTAT &
ET_PHY_INT_MASK_LINKSTAT &
ET_PHY_INT_MASK_ENABLE);
et131x_mii_write(adapter, PHY_INTERRUPT_MASK, imr);
/* Set the LED behavior such that LED 1 indicates speed (off =
* 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
* link and activity (on for link, blink off for activity).
*
* NOTE: Some customizations have been added here for specific
* vendors; The LED behavior is now determined by vendor data in the
* EEPROM. However, the above description is the default.
*/
if ((adapter->eeprom_data[1] & 0x4) == 0) {
et131x_mii_read(adapter, PHY_LED_2, &lcr2);
lcr2 &= (ET_LED2_LED_100TX & ET_LED2_LED_1000T);
lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
if ((adapter->eeprom_data[1] & 0x8) == 0)
lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
else
lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
et131x_mii_write(adapter, PHY_LED_2, lcr2);
}
}
/**
* et131x_configure_global_regs - configure JAGCore global regs
* @adapter: pointer to our adapter structure
*
* Used to configure the global registers on the JAGCore
*/
static void et131x_configure_global_regs(struct et131x_adapter *adapter)
{
struct global_regs __iomem *regs = &adapter->regs->global;
writel(0, &regs->rxq_start_addr);
writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
if (adapter->registry_jumbo_packet < 2048) {
/* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
* block of RAM that the driver can split between Tx
* and Rx as it desires. Our default is to split it
* 50/50:
*/
writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
} else if (adapter->registry_jumbo_packet < 8192) {
/* For jumbo packets > 2k but < 8k, split 50-50. */
writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
} else {
/* 9216 is the only packet size greater than 8k that
* is available. The Tx buffer has to be big enough
* for one whole packet on the Tx side. We'll make
* the Tx 9408, and give the rest to Rx
*/
writel(0x01b3, &regs->rxq_end_addr);
writel(0x01b4, &regs->txq_start_addr);
}
/* Initialize the loopback register. Disable all loopbacks. */
writel(0, &regs->loopback);
/* MSI Register */
writel(0, &regs->msi_config);
/* By default, disable the watchdog timer. It will be enabled when
* a packet is queued.
*/
writel(0, &regs->watchdog_timer);
}
/**
* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence
* @adapter: pointer to our adapter structure
*/
static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
{
struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
struct rx_ring *rx_local = &adapter->rx_ring;
struct fbr_desc *fbr_entry;
u32 entry;
u32 psr_num_des;
unsigned long flags;
/* Halt RXDMA to perform the reconfigure. */
et131x_rx_dma_disable(adapter);
/* Load the completion writeback physical address
*
* NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
* ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
* are ever returned, make sure the high part is retrieved here
* before storing the adjusted address.
*/
writel((u32) ((u64)rx_local->rx_status_bus >> 32),
&rx_dma->dma_wb_base_hi);
writel((u32) rx_local->rx_status_bus, &rx_dma->dma_wb_base_lo);
memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
/* Set the address and parameters of the packet status ring into the
* 1310's registers
*/
writel((u32) ((u64)rx_local->ps_ring_physaddr >> 32),
&rx_dma->psr_base_hi);
writel((u32) rx_local->ps_ring_physaddr, &rx_dma->psr_base_lo);
writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
writel(0, &rx_dma->psr_full_offset);
psr_num_des = readl(&rx_dma->psr_num_des) & 0xFFF;
writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
&rx_dma->psr_min_des);
spin_lock_irqsave(&adapter->rcv_lock, flags);
/* These local variables track the PSR in the adapter structure */
rx_local->local_psr_full = 0;
/* Now's the best time to initialize FBR1 contents */
fbr_entry = (struct fbr_desc *) rx_local->fbr[0]->ring_virtaddr;
for (entry = 0; entry < rx_local->fbr[0]->num_entries; entry++) {
fbr_entry->addr_hi = rx_local->fbr[0]->bus_high[entry];
fbr_entry->addr_lo = rx_local->fbr[0]->bus_low[entry];
fbr_entry->word2 = entry;
fbr_entry++;
}
/* Set the address and parameters of Free buffer ring 1 (and 0 if
* required) into the 1310's registers
*/
writel((u32) (rx_local->fbr[0]->real_physaddr >> 32),
&rx_dma->fbr1_base_hi);
writel((u32) rx_local->fbr[0]->real_physaddr, &rx_dma->fbr1_base_lo);
writel(rx_local->fbr[0]->num_entries - 1, &rx_dma->fbr1_num_des);
writel(ET_DMA10_WRAP, &rx_dma->fbr1_full_offset);
/* This variable tracks the free buffer ring 1 full position, so it
* has to match the above.
*/
rx_local->fbr[0]->local_full = ET_DMA10_WRAP;
writel(
((rx_local->fbr[0]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
&rx_dma->fbr1_min_des);
#ifdef USE_FBR0
/* Now's the best time to initialize FBR0 contents */
fbr_entry = (struct fbr_desc *) rx_local->fbr[1]->ring_virtaddr;
for (entry = 0; entry < rx_local->fbr[1]->num_entries; entry++) {
fbr_entry->addr_hi = rx_local->fbr[1]->bus_high[entry];
fbr_entry->addr_lo = rx_local->fbr[1]->bus_low[entry];
fbr_entry->word2 = entry;
fbr_entry++;
}
writel((u32) (rx_local->fbr[1]->real_physaddr >> 32),
&rx_dma->fbr0_base_hi);
writel((u32) rx_local->fbr[1]->real_physaddr, &rx_dma->fbr0_base_lo);
writel(rx_local->fbr[1]->num_entries - 1, &rx_dma->fbr0_num_des);
writel(ET_DMA10_WRAP, &rx_dma->fbr0_full_offset);
/* This variable tracks the free buffer ring 0 full position, so it
* has to match the above.
*/
rx_local->fbr[1]->local_full = ET_DMA10_WRAP;
writel(
((rx_local->fbr[1]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
&rx_dma->fbr0_min_des);
#endif
/* Program the number of packets we will receive before generating an
* interrupt.
* For version B silicon, this value gets updated once autoneg is
*complete.
*/
writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
/* The "time_done" is not working correctly to coalesce interrupts
* after a given time period, but rather is giving us an interrupt
* regardless of whether we have received packets.
* This value gets updated once autoneg is complete.
*/
writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
spin_unlock_irqrestore(&adapter->rcv_lock, flags);
}
/**
* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
* @adapter: pointer to our private adapter structure
*
* Configure the transmit engine with the ring buffers we have created
* and prepare it for use.
*/
static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
{
struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
/* Load the hardware with the start of the transmit descriptor ring. */
writel((u32) ((u64)adapter->tx_ring.tx_desc_ring_pa >> 32),
&txdma->pr_base_hi);
writel((u32) adapter->tx_ring.tx_desc_ring_pa,
&txdma->pr_base_lo);
/* Initialise the transmit DMA engine */
writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
/* Load the completion writeback physical address */
writel((u32)((u64)adapter->tx_ring.tx_status_pa >> 32),
&txdma->dma_wb_base_hi);
writel((u32)adapter->tx_ring.tx_status_pa, &txdma->dma_wb_base_lo);
*adapter->tx_ring.tx_status = 0;
writel(0, &txdma->service_request);
adapter->tx_ring.send_idx = 0;
}
/**
* et131x_adapter_setup - Set the adapter up as per cassini+ documentation
* @adapter: pointer to our private adapter structure
*
* Returns 0 on success, errno on failure (as defined in errno.h)
*/
static void et131x_adapter_setup(struct et131x_adapter *adapter)
{
/* Configure the JAGCore */
et131x_configure_global_regs(adapter);
et1310_config_mac_regs1(adapter);
/* Configure the MMC registers */
/* All we need to do is initialize the Memory Control Register */
writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
et1310_config_rxmac_regs(adapter);
et1310_config_txmac_regs(adapter);
et131x_config_rx_dma_regs(adapter);
et131x_config_tx_dma_regs(adapter);
et1310_config_macstat_regs(adapter);
et1310_phy_power_down(adapter, 0);
et131x_xcvr_init(adapter);
}
/**
* et131x_soft_reset - Issue a soft reset to the hardware, complete for ET1310
* @adapter: pointer to our private adapter structure
*/
static void et131x_soft_reset(struct et131x_adapter *adapter)
{
/* Disable MAC Core */
writel(0xc00f0000, &adapter->regs->mac.cfg1);
/* Set everything to a reset value */
writel(0x7F, &adapter->regs->global.sw_reset);
writel(0x000f0000, &adapter->regs->mac.cfg1);
writel(0x00000000, &adapter->regs->mac.cfg1);
}
/**
* et131x_enable_interrupts - enable interrupt
* @adapter: et131x device
*
* Enable the appropriate interrupts on the ET131x according to our
* configuration
*/
static void et131x_enable_interrupts(struct et131x_adapter *adapter)
{
u32 mask;
/* Enable all global interrupts */
if (adapter->flowcontrol == FLOW_TXONLY ||
adapter->flowcontrol == FLOW_BOTH)
mask = INT_MASK_ENABLE;
else
mask = INT_MASK_ENABLE_NO_FLOW;
writel(mask, &adapter->regs->global.int_mask);
}
/**
* et131x_disable_interrupts - interrupt disable
* @adapter: et131x device
*
* Block all interrupts from the et131x device at the device itself
*/
static void et131x_disable_interrupts(struct et131x_adapter *adapter)
{
/* Disable all global interrupts */
writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
}
/**
* et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310
* @adapter: pointer to our adapter structure
*/
static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
{
/* Setup the tramsmit dma configuration register */
writel(ET_TXDMA_CSR_HALT|ET_TXDMA_SNGL_EPKT,
&adapter->regs->txdma.csr);
}
/**
* et131x_enable_txrx - Enable tx/rx queues
* @netdev: device to be enabled
*/
static void et131x_enable_txrx(struct net_device *netdev)
{
struct et131x_adapter *adapter = netdev_priv(netdev);
/* Enable the Tx and Rx DMA engines (if not already enabled) */
et131x_rx_dma_enable(adapter);
et131x_tx_dma_enable(adapter);
/* Enable device interrupts */
if (adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE)
et131x_enable_interrupts(adapter);
/* We're ready to move some data, so start the queue */
netif_start_queue(netdev);
}
/**
* et131x_disable_txrx - Disable tx/rx queues
* @netdev: device to be disabled
*/
static void et131x_disable_txrx(struct net_device *netdev)
{
struct et131x_adapter *adapter = netdev_priv(netdev);
/* First thing is to stop the queue */
netif_stop_queue(netdev);
/* Stop the Tx and Rx DMA engines */
et131x_rx_dma_disable(adapter);
et131x_tx_dma_disable(adapter);
/* Disable device interrupts */
et131x_disable_interrupts(adapter);
}
/**
* et131x_init_send - Initialize send data structures
* @adapter: pointer to our private adapter structure
*/
static void et131x_init_send(struct et131x_adapter *adapter)
{
struct tcb *tcb;
u32 ct;
struct tx_ring *tx_ring;
/* Setup some convenience pointers */
tx_ring = &adapter->tx_ring;
tcb = adapter->tx_ring.tcb_ring;
tx_ring->tcb_qhead = tcb;
memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
/* Go through and set up each TCB */
for (ct = 0; ct++ < NUM_TCB; tcb++)
/* Set the link pointer in HW TCB to the next TCB in the
* chain
*/
tcb->next = tcb + 1;
/* Set the tail pointer */
tcb--;
tx_ring->tcb_qtail = tcb;
tcb->next = NULL;
/* Curr send queue should now be empty */
tx_ring->send_head = NULL;
tx_ring->send_tail = NULL;
}
/**
* et1310_enable_phy_coma - called when network cable is unplugged
* @adapter: pointer to our adapter structure
*
* driver receive an phy status change interrupt while in D0 and check that
* phy_status is down.
*
* -- gate off JAGCore;
* -- set gigE PHY in Coma mode
* -- wake on phy_interrupt; Perform software reset JAGCore,
* re-initialize jagcore and gigE PHY
*
* Add D0-ASPM-PhyLinkDown Support:
* -- while in D0, when there is a phy_interrupt indicating phy link
* down status, call the MPSetPhyComa routine to enter this active
* state power saving mode
* -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
* indicating linkup status, call the MPDisablePhyComa routine to
* restore JAGCore and gigE PHY
*/
static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
{
unsigned long flags;
u32 pmcsr;
pmcsr = readl(&adapter->regs->global.pm_csr);
/* Save the GbE PHY speed and duplex modes. Need to restore this
* when cable is plugged back in
*/
/*
* TODO - when PM is re-enabled, check if we need to
* perform a similar task as this -
* adapter->pdown_speed = adapter->ai_force_speed;
* adapter->pdown_duplex = adapter->ai_force_duplex;
*/
/* Stop sending packets. */
spin_lock_irqsave(&adapter->send_hw_lock, flags);
adapter->flags |= fMP_ADAPTER_LOWER_POWER;
spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
/* Wait for outstanding Receive packets */
et131x_disable_txrx(adapter->netdev);
/* Gate off JAGCore 3 clock domains */
pmcsr &= ~ET_PMCSR_INIT;
writel(pmcsr, &adapter->regs->global.pm_csr);
/* Program gigE PHY in to Coma mode */
pmcsr |= ET_PM_PHY_SW_COMA;
writel(pmcsr, &adapter->regs->global.pm_csr);
}
/**
* et1310_disable_phy_coma - Disable the Phy Coma Mode
* @adapter: pointer to our adapter structure
*/
static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
{
u32 pmcsr;
pmcsr = readl(&adapter->regs->global.pm_csr);
/* Disable phy_sw_coma register and re-enable JAGCore clocks */
pmcsr |= ET_PMCSR_INIT;
pmcsr &= ~ET_PM_PHY_SW_COMA;
writel(pmcsr, &adapter->regs->global.pm_csr);
/* Restore the GbE PHY speed and duplex modes;
* Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
*/
/* TODO - when PM is re-enabled, check if we need to
* perform a similar task as this -
* adapter->ai_force_speed = adapter->pdown_speed;
* adapter->ai_force_duplex = adapter->pdown_duplex;
*/
/* Re-initialize the send structures */
et131x_init_send(adapter);
/* Bring the device back to the state it was during init prior to
* autonegotiation being complete. This way, when we get the auto-neg
* complete interrupt, we can complete init by calling ConfigMacREGS2.
*/
et131x_soft_reset(adapter);
/* setup et1310 as per the documentation ?? */
et131x_adapter_setup(adapter);
/* Allow Tx to restart */
adapter->flags &= ~fMP_ADAPTER_LOWER_POWER;
et131x_enable_txrx(adapter->netdev);
}
static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
{
u32 tmp_free_buff_ring = *free_buff_ring;
tmp_free_buff_ring++;
/* This works for all cases where limit < 1024. The 1023 case
works because 1023++ is 1024 which means the if condition is not
taken but the carry of the bit into the wrap bit toggles the wrap
value correctly */
if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
tmp_free_buff_ring &= ~ET_DMA10_MASK;
tmp_free_buff_ring ^= ET_DMA10_WRAP;
}
/* For the 1023 case */
tmp_free_buff_ring &= (ET_DMA10_MASK|ET_DMA10_WRAP);
*free_buff_ring = tmp_free_buff_ring;
return tmp_free_buff_ring;
}
/**
* et131x_align_allocated_memory - Align allocated memory on a given boundary
* @adapter: pointer to our adapter structure
* @phys_addr: pointer to Physical address
* @offset: pointer to the offset variable
* @mask: correct mask
*/
static void et131x_align_allocated_memory(struct et131x_adapter *adapter,
u64 *phys_addr, u64 *offset,
u64 mask)
{
u64 new_addr = *phys_addr & ~mask;
*offset = 0;
if (new_addr != *phys_addr) {
/* Move to next aligned block */
new_addr += mask + 1;
/* Return offset for adjusting virt addr */
*offset = new_addr - *phys_addr;
/* Return new physical address */
*phys_addr = new_addr;
}
}
/**
* et131x_rx_dma_memory_alloc
* @adapter: pointer to our private adapter structure
*
* Returns 0 on success and errno on failure (as defined in errno.h)
*
* Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
* and the Packet Status Ring.
*/
static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
{
u32 i, j;
u32 bufsize;
u32 pktstat_ringsize, fbr_chunksize;
struct rx_ring *rx_ring;
/* Setup some convenience pointers */
rx_ring = &adapter->rx_ring;
/* Alloc memory for the lookup table */
#ifdef USE_FBR0
rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
#endif
rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
/* The first thing we will do is configure the sizes of the buffer
* rings. These will change based on jumbo packet support. Larger
* jumbo packets increases the size of each entry in FBR0, and the
* number of entries in FBR0, while at the same time decreasing the
* number of entries in FBR1.
*
* FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
* entries are huge in order to accommodate a "jumbo" frame, then it
* will have less entries. Conversely, FBR1 will now be relied upon
* to carry more "normal" frames, thus it's entry size also increases
* and the number of entries goes up too (since it now carries
* "small" + "regular" packets.
*
* In this scheme, we try to maintain 512 entries between the two
* rings. Also, FBR1 remains a constant size - when it's size doubles
* the number of entries halves. FBR0 increases in size, however.
*/
if (adapter->registry_jumbo_packet < 2048) {
#ifdef USE_FBR0
rx_ring->fbr[1]->buffsize = 256;
rx_ring->fbr[1]->num_entries = 512;
#endif
rx_ring->fbr[0]->buffsize = 2048;
rx_ring->fbr[0]->num_entries = 512;
} else if (adapter->registry_jumbo_packet < 4096) {
#ifdef USE_FBR0
rx_ring->fbr[1]->buffsize = 512;
rx_ring->fbr[1]->num_entries = 1024;
#endif
rx_ring->fbr[0]->buffsize = 4096;
rx_ring->fbr[0]->num_entries = 512;
} else {
#ifdef USE_FBR0
rx_ring->fbr[1]->buffsize = 1024;
rx_ring->fbr[1]->num_entries = 768;
#endif
rx_ring->fbr[0]->buffsize = 16384;
rx_ring->fbr[0]->num_entries = 128;
}
#ifdef USE_FBR0
adapter->rx_ring.psr_num_entries =
adapter->rx_ring.fbr[1]->num_entries +
adapter->rx_ring.fbr[0]->num_entries;
#else
adapter->rx_ring.psr_num_entries = adapter->rx_ring.fbr[0]->num_entries;
#endif
/* Allocate an area of memory for Free Buffer Ring 1 */
bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
0xfff;
rx_ring->fbr[0]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
bufsize,
&rx_ring->fbr[0]->ring_physaddr,
GFP_KERNEL);
if (!rx_ring->fbr[0]->ring_virtaddr) {
dev_err(&adapter->pdev->dev,
"Cannot alloc memory for Free Buffer Ring 1\n");
return -ENOMEM;
}
/* Save physical address
*
* NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
* ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
* are ever returned, make sure the high part is retrieved here
* before storing the adjusted address.
*/
rx_ring->fbr[0]->real_physaddr = rx_ring->fbr[0]->ring_physaddr;
/* Align Free Buffer Ring 1 on a 4K boundary */
et131x_align_allocated_memory(adapter,
&rx_ring->fbr[0]->real_physaddr,
&rx_ring->fbr[0]->offset, 0x0FFF);
rx_ring->fbr[0]->ring_virtaddr =
(void *)((u8 *) rx_ring->fbr[0]->ring_virtaddr +
rx_ring->fbr[0]->offset);
#ifdef USE_FBR0
/* Allocate an area of memory for Free Buffer Ring 0 */
bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
0xfff;
rx_ring->fbr[1]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
bufsize,
&rx_ring->fbr[1]->ring_physaddr,
GFP_KERNEL);
if (!rx_ring->fbr[1]->ring_virtaddr) {
dev_err(&adapter->pdev->dev,
"Cannot alloc memory for Free Buffer Ring 0\n");
return -ENOMEM;
}
/* Save physical address
*
* NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
* ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
* are ever returned, make sure the high part is retrieved here before
* storing the adjusted address.
*/
rx_ring->fbr[1]->real_physaddr = rx_ring->fbr[1]->ring_physaddr;
/* Align Free Buffer Ring 0 on a 4K boundary */
et131x_align_allocated_memory(adapter,
&rx_ring->fbr[1]->real_physaddr,
&rx_ring->fbr[1]->offset, 0x0FFF);
rx_ring->fbr[1]->ring_virtaddr =
(void *)((u8 *) rx_ring->fbr[1]->ring_virtaddr +
rx_ring->fbr[1]->offset);
#endif
for (i = 0; i < (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); i++) {
u64 fbr1_tmp_physaddr;
u64 fbr1_offset;
u32 fbr1_align;
/* This code allocates an area of memory big enough for N
* free buffers + (buffer_size - 1) so that the buffers can
* be aligned on 4k boundaries. If each buffer were aligned
* to a buffer_size boundary, the effect would be to double
* the size of FBR0. By allocating N buffers at once, we
* reduce this overhead.
*/
if (rx_ring->fbr[0]->buffsize > 4096)
fbr1_align = 4096;
else
fbr1_align = rx_ring->fbr[0]->buffsize;
fbr_chunksize =
(FBR_CHUNKS * rx_ring->fbr[0]->buffsize) + fbr1_align - 1;
rx_ring->fbr[0]->mem_virtaddrs[i] =
dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
&rx_ring->fbr[0]->mem_physaddrs[i],
GFP_KERNEL);
if (!rx_ring->fbr[0]->mem_virtaddrs[i]) {
dev_err(&adapter->pdev->dev,
"Could not alloc memory\n");
return -ENOMEM;
}
/* See NOTE in "Save Physical Address" comment above */
fbr1_tmp_physaddr = rx_ring->fbr[0]->mem_physaddrs[i];
et131x_align_allocated_memory(adapter,
&fbr1_tmp_physaddr,
&fbr1_offset, (fbr1_align - 1));
for (j = 0; j < FBR_CHUNKS; j++) {
u32 index = (i * FBR_CHUNKS) + j;
/* Save the Virtual address of this index for quick
* access later
*/
rx_ring->fbr[0]->virt[index] =
(u8 *) rx_ring->fbr[0]->mem_virtaddrs[i] +
(j * rx_ring->fbr[0]->buffsize) + fbr1_offset;
/* now store the physical address in the descriptor
* so the device can access it
*/
rx_ring->fbr[0]->bus_high[index] =
(u32) (fbr1_tmp_physaddr >> 32);
rx_ring->fbr[0]->bus_low[index] =
(u32) fbr1_tmp_physaddr;
fbr1_tmp_physaddr += rx_ring->fbr[0]->buffsize;
rx_ring->fbr[0]->buffer1[index] =
rx_ring->fbr[0]->virt[index];
rx_ring->fbr[0]->buffer2[index] =
rx_ring->fbr[0]->virt[index] - 4;
}
}
#ifdef USE_FBR0
/* Same for FBR0 (if in use) */
for (i = 0; i < (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); i++) {
u64 fbr0_tmp_physaddr;
u64 fbr0_offset;
fbr_chunksize =
((FBR_CHUNKS + 1) * rx_ring->fbr[1]->buffsize) - 1;
rx_ring->fbr[1]->mem_virtaddrs[i] =
dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
&rx_ring->fbr[1]->mem_physaddrs[i],
GFP_KERNEL);
if (!rx_ring->fbr[1]->mem_virtaddrs[i]) {
dev_err(&adapter->pdev->dev,
"Could not alloc memory\n");
return -ENOMEM;
}
/* See NOTE in "Save Physical Address" comment above */
fbr0_tmp_physaddr = rx_ring->fbr[1]->mem_physaddrs[i];
et131x_align_allocated_memory(adapter,
&fbr0_tmp_physaddr,
&fbr0_offset,
rx_ring->fbr[1]->buffsize - 1);
for (j = 0; j < FBR_CHUNKS; j++) {
u32 index = (i * FBR_CHUNKS) + j;
rx_ring->fbr[1]->virt[index] =
(u8 *) rx_ring->fbr[1]->mem_virtaddrs[i] +
(j * rx_ring->fbr[1]->buffsize) + fbr0_offset;
rx_ring->fbr[1]->bus_high[index] =
(u32) (fbr0_tmp_physaddr >> 32);
rx_ring->fbr[1]->bus_low[index] =
(u32) fbr0_tmp_physaddr;
fbr0_tmp_physaddr += rx_ring->fbr[1]->buffsize;
rx_ring->fbr[1]->buffer1[index] =
rx_ring->fbr[1]->virt[index];
rx_ring->fbr[1]->buffer2[index] =
rx_ring->fbr[1]->virt[index] - 4;
}
}
#endif
/* Allocate an area of memory for FIFO of Packet Status ring entries */
pktstat_ringsize =
sizeof(struct pkt_stat_desc) * adapter->rx_ring.psr_num_entries;
rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
pktstat_ringsize,
&rx_ring->ps_ring_physaddr,
GFP_KERNEL);
if (!rx_ring->ps_ring_virtaddr) {
dev_err(&adapter->pdev->dev,
"Cannot alloc memory for Packet Status Ring\n");
return -ENOMEM;
}
printk(KERN_INFO "Packet Status Ring %lx\n",
(unsigned long) rx_ring->ps_ring_physaddr);
/*
* NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
* ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
* are ever returned, make sure the high part is retrieved here before
* storing the adjusted address.
*/
/* Allocate an area of memory for writeback of status information */
rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
sizeof(struct rx_status_block),
&rx_ring->rx_status_bus,
GFP_KERNEL);
if (!rx_ring->rx_status_block) {
dev_err(&adapter->pdev->dev,
"Cannot alloc memory for Status Block\n");
return -ENOMEM;
}
rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
printk(KERN_INFO "PRS %lx\n", (unsigned long)rx_ring->rx_status_bus);
/* Recv
* kmem_cache_create initializes a lookaside list. After successful
* creation, nonpaged fixed-size blocks can be allocated from and
* freed to the lookaside list.
* RFDs will be allocated from this pool.
*/
rx_ring->recv_lookaside = kmem_cache_create(adapter->netdev->name,
sizeof(struct rfd),
0,
SLAB_CACHE_DMA |
SLAB_HWCACHE_ALIGN,
NULL);
adapter->flags |= fMP_ADAPTER_RECV_LOOKASIDE;
/* The RFDs are going to be put on lists later on, so initialize the
* lists now.
*/
INIT_LIST_HEAD(&rx_ring->recv_list);
return 0;
}
/**
* et131x_rx_dma_memory_free - Free all memory allocated within this module.
* @adapter: pointer to our private adapter structure
*/
static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
{
u32 index;
u32 bufsize;
u32 pktstat_ringsize;
struct rfd *rfd;
struct rx_ring *rx_ring;
/* Setup some convenience pointers */
rx_ring = &adapter->rx_ring;
/* Free RFDs and associated packet descriptors */
WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
while (!list_empty(&rx_ring->recv_list)) {
rfd = (struct rfd *) list_entry(rx_ring->recv_list.next,
struct rfd, list_node);
list_del(&rfd->list_node);
rfd->skb = NULL;
kmem_cache_free(adapter->rx_ring.recv_lookaside, rfd);
}
/* Free Free Buffer Ring 1 */
if (rx_ring->fbr[0]->ring_virtaddr) {
/* First the packet memory */
for (index = 0; index <
(rx_ring->fbr[0]->num_entries / FBR_CHUNKS); index++) {
if (rx_ring->fbr[0]->mem_virtaddrs[index]) {
u32 fbr1_align;
if (rx_ring->fbr[0]->buffsize > 4096)
fbr1_align = 4096;
else
fbr1_align = rx_ring->fbr[0]->buffsize;
bufsize =
(rx_ring->fbr[0]->buffsize * FBR_CHUNKS) +
fbr1_align - 1;
dma_free_coherent(&adapter->pdev->dev,
bufsize,
rx_ring->fbr[0]->mem_virtaddrs[index],
rx_ring->fbr[0]->mem_physaddrs[index]);
rx_ring->fbr[0]->mem_virtaddrs[index] = NULL;
}
}
/* Now the FIFO itself */
rx_ring->fbr[0]->ring_virtaddr = (void *)((u8 *)
rx_ring->fbr[0]->ring_virtaddr - rx_ring->fbr[0]->offset);
bufsize =
(sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
0xfff;
dma_free_coherent(&adapter->pdev->dev, bufsize,
rx_ring->fbr[0]->ring_virtaddr,
rx_ring->fbr[0]->ring_physaddr);
rx_ring->fbr[0]->ring_virtaddr = NULL;
}
#ifdef USE_FBR0
/* Now the same for Free Buffer Ring 0 */
if (rx_ring->fbr[1]->ring_virtaddr) {
/* First the packet memory */
for (index = 0; index <
(rx_ring->fbr[1]->num_entries / FBR_CHUNKS); index++) {
if (rx_ring->fbr[1]->mem_virtaddrs[index]) {
bufsize =
(rx_ring->fbr[1]->buffsize *
(FBR_CHUNKS + 1)) - 1;
dma_free_coherent(&adapter->pdev->dev,
bufsize,
rx_ring->fbr[1]->mem_virtaddrs[index],
rx_ring->fbr[1]->mem_physaddrs[index]);
rx_ring->fbr[1]->mem_virtaddrs[index] = NULL;
}
}
/* Now the FIFO itself */
rx_ring->fbr[1]->ring_virtaddr = (void *)((u8 *)
rx_ring->fbr[1]->ring_virtaddr - rx_ring->fbr[1]->offset);
bufsize =
(sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
0xfff;
dma_free_coherent(&adapter->pdev->dev,
bufsize,
rx_ring->fbr[1]->ring_virtaddr,
rx_ring->fbr[1]->ring_physaddr);
rx_ring->fbr[1]->ring_virtaddr = NULL;
}
#endif
/* Free Packet Status Ring */
if (rx_ring->ps_ring_virtaddr) {
pktstat_ringsize =
sizeof(struct pkt_stat_desc) *
adapter->rx_ring.psr_num_entries;
dma_free_coherent(&adapter->pdev->dev, pktstat_ringsize,
rx_ring->ps_ring_virtaddr,
rx_ring->ps_ring_physaddr);
rx_ring->ps_ring_virtaddr = NULL;
}
/* Free area of memory for the writeback of status information */
if (rx_ring->rx_status_block) {
dma_free_coherent(&adapter->pdev->dev,
sizeof(struct rx_status_block),
rx_ring->rx_status_block, rx_ring->rx_status_bus);
rx_ring->rx_status_block = NULL;
}
/* Destroy the lookaside (RFD) pool */
if (adapter->flags & fMP_ADAPTER_RECV_LOOKASIDE) {
kmem_cache_destroy(rx_ring->recv_lookaside);
adapter->flags &= ~fMP_ADAPTER_RECV_LOOKASIDE;
}
/* Free the FBR Lookup Table */
#ifdef USE_FBR0
kfree(rx_ring->fbr[1]);
#endif
kfree(rx_ring->fbr[0]);
/* Reset Counters */
rx_ring->num_ready_recv = 0;
}
/**
* et131x_init_recv - Initialize receive data structures.
* @adapter: pointer to our private adapter structure
*
* Returns 0 on success and errno on failure (as defined in errno.h)
*/
static int et131x_init_recv(struct et131x_adapter *adapter)
{
int status = -ENOMEM;
struct rfd *rfd = NULL;
u32 rfdct;
u32 numrfd = 0;
struct rx_ring *rx_ring;
/* Setup some convenience pointers */
rx_ring = &adapter->rx_ring;
/* Setup each RFD */
for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
rfd = kmem_cache_alloc(rx_ring->recv_lookaside,
GFP_ATOMIC | GFP_DMA);
if (!rfd) {
dev_err(&adapter->pdev->dev,
"Couldn't alloc RFD out of kmem_cache\n");
status = -ENOMEM;
continue;
}
rfd->skb = NULL;
/* Add this RFD to the recv_list */
list_add_tail(&rfd->list_node, &rx_ring->recv_list);
/* Increment both the available RFD's, and the total RFD's. */
rx_ring->num_ready_recv++;
numrfd++;
}
if (numrfd > NIC_MIN_NUM_RFD)
status = 0;
rx_ring->num_rfd = numrfd;
if (status != 0) {
kmem_cache_free(rx_ring->recv_lookaside, rfd);
dev_err(&adapter->pdev->dev,
"Allocation problems in et131x_init_recv\n");
}
return status;
}
/**
* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate.
* @adapter: pointer to our adapter structure
*/
static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
{
struct phy_device *phydev = adapter->phydev;
if (!phydev)
return;
/* For version B silicon, we do not use the RxDMA timer for 10 and 100
* Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
*/
if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
writel(0, &adapter->regs->rxdma.max_pkt_time);
writel(1, &adapter->regs->rxdma.num_pkt_done);
}
}
/**
* NICReturnRFD - Recycle a RFD and put it back onto the receive list
* @adapter: pointer to our adapter
* @rfd: pointer to the RFD
*/
static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
{
struct rx_ring *rx_local = &adapter->rx_ring;
struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
u16 buff_index = rfd->bufferindex;
u8 ring_index = rfd->ringindex;
unsigned long flags;
/* We don't use any of the OOB data besides status. Otherwise, we
* need to clean up OOB data
*/
if (
#ifdef USE_FBR0
(ring_index == 0 && buff_index < rx_local->fbr[1]->num_entries) ||
#endif
(ring_index == 1 && buff_index < rx_local->fbr[0]->num_entries)) {
spin_lock_irqsave(&adapter->fbr_lock, flags);
if (ring_index == 1) {
struct fbr_desc *next = (struct fbr_desc *)
(rx_local->fbr[0]->ring_virtaddr) +
INDEX10(rx_local->fbr[0]->local_full);
/* Handle the Free Buffer Ring advancement here. Write
* the PA / Buffer Index for the returned buffer into
* the oldest (next to be freed)FBR entry
*/
next->addr_hi = rx_local->fbr[0]->bus_high[buff_index];
next->addr_lo = rx_local->fbr[0]->bus_low[buff_index];
next->word2 = buff_index;
writel(bump_free_buff_ring(
&rx_local->fbr[0]->local_full,
rx_local->fbr[0]->num_entries - 1),
&rx_dma->fbr1_full_offset);
}
#ifdef USE_FBR0
else {
struct fbr_desc *next = (struct fbr_desc *)
rx_local->fbr[1]->ring_virtaddr +
INDEX10(rx_local->fbr[1]->local_full);
/* Handle the Free Buffer Ring advancement here. Write
* the PA / Buffer Index for the returned buffer into
* the oldest (next to be freed) FBR entry
*/
next->addr_hi = rx_local->fbr[1]->bus_high[buff_index];
next->addr_lo = rx_local->fbr[1]->bus_low[buff_index];
next->word2 = buff_index;
writel(bump_free_buff_ring(
&rx_local->fbr[1]->local_full,
rx_local->fbr[1]->num_entries - 1),
&rx_dma->fbr0_full_offset);
}
#endif
spin_unlock_irqrestore(&adapter->fbr_lock, flags);
} else {
dev_err(&adapter->pdev->dev,
"%s illegal Buffer Index returned\n", __func__);
}
/* The processing on this RFD is done, so put it back on the tail of
* our list
*/
spin_lock_irqsave(&adapter->rcv_lock, flags);
list_add_tail(&rfd->list_node, &rx_local->recv_list);
rx_local->num_ready_recv++;
spin_unlock_irqrestore(&adapter->rcv_lock, flags);
WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
}
/**
* nic_rx_pkts - Checks the hardware for available packets
* @adapter: pointer to our adapter
*
* Returns rfd, a pointer to our MPRFD.
*
* Checks the hardware for available packets, using completion ring
* If packets are available, it gets an RFD from the recv_list, attaches
* the packet to it, puts the RFD in the RecvPendList, and also returns
* the pointer to the RFD.
*/
static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
{
struct rx_ring *rx_local = &adapter->rx_ring;
struct rx_status_block *status;
struct pkt_stat_desc *psr;
struct rfd *rfd;
u32 i;
u8 *buf;
unsigned long flags;
struct list_head *element;
u8 ring_index;
u16 buff_index;
u32 len;
u32 word0;
u32 word1;
/* RX Status block is written by the DMA engine prior to every
* interrupt. It contains the next to be used entry in the Packet
* Status Ring, and also the two Free Buffer rings.
*/
status = rx_local->rx_status_block;
word1 = status->word1 >> 16; /* Get the useful bits */
/* Check the PSR and wrap bits do not match */
if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
/* Looks like this ring is not updated yet */
return NULL;
/* The packet status ring indicates that data is available. */
psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
(rx_local->local_psr_full & 0xFFF);
/* Grab any information that is required once the PSR is
* advanced, since we can no longer rely on the memory being
* accurate
*/
len = psr->word1 & 0xFFFF;
ring_index = (psr->word1 >> 26) & 0x03;
buff_index = (psr->word1 >> 16) & 0x3FF;
word0 = psr->word0;
/* Indicate that we have used this PSR entry. */
/* FIXME wrap 12 */
add_12bit(&rx_local->local_psr_full, 1);
if (
(rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
/* Clear psr full and toggle the wrap bit */
rx_local->local_psr_full &= ~0xFFF;
rx_local->local_psr_full ^= 0x1000;
}
writel(rx_local->local_psr_full,
&adapter->regs->rxdma.psr_full_offset);
#ifndef USE_FBR0
if (ring_index != 1)
return NULL;
#endif
#ifdef USE_FBR0
if (ring_index > 1 ||
(ring_index == 0 &&
buff_index > rx_local->fbr[1]->num_entries - 1) ||
(ring_index == 1 &&
buff_index > rx_local->fbr[0]->num_entries - 1))
#else
if (ring_index != 1 || buff_index > rx_local->fbr[0]->num_entries - 1)
#endif
{
/* Illegal buffer or ring index cannot be used by S/W*/
dev_err(&adapter->pdev->dev,
"NICRxPkts PSR Entry %d indicates "
"length of %d and/or bad bi(%d)\n",
rx_local->local_psr_full & 0xFFF,
len, buff_index);
return NULL;
}
/* Get and fill the RFD. */
spin_lock_irqsave(&adapter->rcv_lock, flags);
rfd = NULL;
element = rx_local->recv_list.next;
rfd = (struct rfd *) list_entry(element, struct rfd, list_node);
if (rfd == NULL) {
spin_unlock_irqrestore(&adapter->rcv_lock, flags);
return NULL;
}
list_del(&rfd->list_node);
rx_local->num_ready_recv--;
spin_unlock_irqrestore(&adapter->rcv_lock, flags);
rfd->bufferindex = buff_index;
rfd->ringindex = ring_index;
/* In V1 silicon, there is a bug which screws up filtering of
* runt packets. Therefore runt packet filtering is disabled
* in the MAC and the packets are dropped here. They are
* also counted here.
*/
if (len < (NIC_MIN_PACKET_SIZE + 4)) {
adapter->stats.rx_other_errs++;
len = 0;
}
if (len) {
/* Determine if this is a multicast packet coming in */
if ((word0 & ALCATEL_MULTICAST_PKT) &&
!(word0 & ALCATEL_BROADCAST_PKT)) {
/* Promiscuous mode and Multicast mode are
* not mutually exclusive as was first
* thought. I guess Promiscuous is just
* considered a super-set of the other
* filters. Generally filter is 0x2b when in
* promiscuous mode.
*/
if ((adapter->packet_filter &
ET131X_PACKET_TYPE_MULTICAST)
&& !(adapter->packet_filter &
ET131X_PACKET_TYPE_PROMISCUOUS)
&& !(adapter->packet_filter &
ET131X_PACKET_TYPE_ALL_MULTICAST)) {
/*
* Note - ring_index for fbr[] array is reversed
* 1 for FBR0 etc
*/
buf = rx_local->fbr[(ring_index == 0 ? 1 : 0)]->
virt[buff_index];
/* Loop through our list to see if the
* destination address of this packet
* matches one in our list.
*/
for (i = 0; i < adapter->multicast_addr_count;
i++) {
if (buf[0] ==
adapter->multicast_list[i][0]
&& buf[1] ==
adapter->multicast_list[i][1]
&& buf[2] ==
adapter->multicast_list[i][2]
&& buf[3] ==
adapter->multicast_list[i][3]
&& buf[4] ==
adapter->multicast_list[i][4]
&& buf[5] ==
adapter->multicast_list[i][5]) {
break;
}
}
/* If our index is equal to the number
* of Multicast address we have, then
* this means we did not find this
* packet's matching address in our
* list. Set the len to zero,
* so we free our RFD when we return
* from this function.
*/
if (i == adapter->multicast_addr_count)
len = 0;
}
if (len > 0)
adapter->stats.multicast_pkts_rcvd++;
} else if (word0 & ALCATEL_BROADCAST_PKT)
adapter->stats.broadcast_pkts_rcvd++;
else
/* Not sure what this counter measures in
* promiscuous mode. Perhaps we should check
* the MAC address to see if it is directed
* to us in promiscuous mode.
*/
adapter->stats.unicast_pkts_rcvd++;
}
if (len > 0) {
struct sk_buff *skb = NULL;
/*rfd->len = len - 4; */
rfd->len = len;
skb = dev_alloc_skb(rfd->len + 2);
if (!skb) {
dev_err(&adapter->pdev->dev,
"Couldn't alloc an SKB for Rx\n");
return NULL;
}
adapter->net_stats.rx_bytes += rfd->len;
/*
* Note - ring_index for fbr[] array is reversed,
* 1 for FBR0 etc
*/
memcpy(skb_put(skb, rfd->len),
rx_local->fbr[(ring_index == 0 ? 1 : 0)]->virt[buff_index],
rfd->len);
skb->dev = adapter->netdev;
skb->protocol = eth_type_trans(skb, adapter->netdev);
skb->ip_summed = CHECKSUM_NONE;
netif_rx(skb);
} else {
rfd->len = 0;
}
nic_return_rfd(adapter, rfd);
return rfd;
}
/**
* et131x_handle_recv_interrupt - Interrupt handler for receive processing
* @adapter: pointer to our adapter
*
* Assumption, Rcv spinlock has been acquired.
*/
static void et131x_handle_recv_interrupt(struct et131x_adapter *adapter)
{
struct rfd *rfd = NULL;
u32 count = 0;
bool done = true;
/* Process up to available RFD's */
while (count < NUM_PACKETS_HANDLED) {
if (list_empty(&adapter->rx_ring.recv_list)) {
WARN_ON(adapter->rx_ring.num_ready_recv != 0);
done = false;
break;
}
rfd = nic_rx_pkts(adapter);
if (rfd == NULL)
break;
/* Do not receive any packets until a filter has been set.
* Do not receive any packets until we have link.
* If length is zero, return the RFD in order to advance the
* Free buffer ring.
*/
if (!adapter->packet_filter ||
!netif_carrier_ok(adapter->netdev) ||
rfd->len == 0)
continue;
/* Increment the number of packets we received */
adapter->net_stats.rx_packets++;
/* Set the status on the packet, either resources or success */
if (adapter->rx_ring.num_ready_recv < RFD_LOW_WATER_MARK) {
dev_warn(&adapter->pdev->dev,
"RFD's are running out\n");
}
count++;
}
if (count == NUM_PACKETS_HANDLED || !done) {
adapter->rx_ring.unfinished_receives = true;
writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
&adapter->regs->global.watchdog_timer);
} else
/* Watchdog timer will disable itself if appropriate. */
adapter->rx_ring.unfinished_receives = false;
}
/**
* et131x_tx_dma_memory_alloc
* @adapter: pointer to our private adapter structure
*
* Returns 0 on success and errno on failure (as defined in errno.h).
*
* Allocates memory that will be visible both to the device and to the CPU.
* The OS will pass us packets, pointers to which we will insert in the Tx
* Descriptor queue. The device will read this queue to find the packets in
* memory. The device will update the "status" in memory each time it xmits a
* packet.
*/
static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
{
int desc_size = 0;
struct tx_ring *tx_ring = &adapter->tx_ring;
/* Allocate memory for the TCB's (Transmit Control Block) */
adapter->tx_ring.tcb_ring =
kcalloc(NUM_TCB, sizeof(struct tcb), GFP_ATOMIC | GFP_DMA);
if (!adapter->tx_ring.tcb_ring) {
dev_err(&adapter->pdev->dev, "Cannot alloc memory for TCBs\n");
return -ENOMEM;
}
/* Allocate enough memory for the Tx descriptor ring, and allocate
* some extra so that the ring can be aligned on a 4k boundary.
*/
desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX) + 4096 - 1;
tx_ring->tx_desc_ring =
(struct tx_desc *) dma_alloc_coherent(&adapter->pdev->dev,
desc_size,
&tx_ring->tx_desc_ring_pa,
GFP_KERNEL);
if (!adapter->tx_ring.tx_desc_ring) {
dev_err(&adapter->pdev->dev,
"Cannot alloc memory for Tx Ring\n");
return -ENOMEM;
}
/* Save physical address
*
* NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
* ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
* are ever returned, make sure the high part is retrieved here before
* storing the adjusted address.
*/
/* Allocate memory for the Tx status block */
tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
sizeof(u32),
&tx_ring->tx_status_pa,
GFP_KERNEL);
if (!adapter->tx_ring.tx_status_pa) {
dev_err(&adapter->pdev->dev,