blob: 83756223f8aa770b049f980f81fa5b640f697f72 [file] [log] [blame]
/******************************************************************************
* emulate.c
*
* Generic x86 (32-bit and 64-bit) instruction decoder and emulator.
*
* Copyright (c) 2005 Keir Fraser
*
* Linux coding style, mod r/m decoder, segment base fixes, real-mode
* privileged instructions:
*
* Copyright (C) 2006 Qumranet
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
*
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
* From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4
*/
#include <linux/kvm_host.h>
#include "kvm_cache_regs.h"
#include <linux/module.h>
#include <asm/kvm_emulate.h>
#include "x86.h"
#include "tss.h"
/*
* Operand types
*/
#define OpNone 0ull
#define OpImplicit 1ull /* No generic decode */
#define OpReg 2ull /* Register */
#define OpMem 3ull /* Memory */
#define OpAcc 4ull /* Accumulator: AL/AX/EAX/RAX */
#define OpDI 5ull /* ES:DI/EDI/RDI */
#define OpMem64 6ull /* Memory, 64-bit */
#define OpImmUByte 7ull /* Zero-extended 8-bit immediate */
#define OpDX 8ull /* DX register */
#define OpCL 9ull /* CL register (for shifts) */
#define OpImmByte 10ull /* 8-bit sign extended immediate */
#define OpOne 11ull /* Implied 1 */
#define OpImm 12ull /* Sign extended immediate */
#define OpMem16 13ull /* Memory operand (16-bit). */
#define OpMem32 14ull /* Memory operand (32-bit). */
#define OpImmU 15ull /* Immediate operand, zero extended */
#define OpSI 16ull /* SI/ESI/RSI */
#define OpImmFAddr 17ull /* Immediate far address */
#define OpMemFAddr 18ull /* Far address in memory */
#define OpImmU16 19ull /* Immediate operand, 16 bits, zero extended */
#define OpES 20ull /* ES */
#define OpCS 21ull /* CS */
#define OpSS 22ull /* SS */
#define OpDS 23ull /* DS */
#define OpFS 24ull /* FS */
#define OpGS 25ull /* GS */
#define OpMem8 26ull /* 8-bit zero extended memory operand */
#define OpBits 5 /* Width of operand field */
#define OpMask ((1ull << OpBits) - 1)
/*
* Opcode effective-address decode tables.
* Note that we only emulate instructions that have at least one memory
* operand (excluding implicit stack references). We assume that stack
* references and instruction fetches will never occur in special memory
* areas that require emulation. So, for example, 'mov <imm>,<reg>' need
* not be handled.
*/
/* Operand sizes: 8-bit operands or specified/overridden size. */
#define ByteOp (1<<0) /* 8-bit operands. */
/* Destination operand type. */
#define DstShift 1
#define ImplicitOps (OpImplicit << DstShift)
#define DstReg (OpReg << DstShift)
#define DstMem (OpMem << DstShift)
#define DstAcc (OpAcc << DstShift)
#define DstDI (OpDI << DstShift)
#define DstMem64 (OpMem64 << DstShift)
#define DstImmUByte (OpImmUByte << DstShift)
#define DstDX (OpDX << DstShift)
#define DstMask (OpMask << DstShift)
/* Source operand type. */
#define SrcShift 6
#define SrcNone (OpNone << SrcShift)
#define SrcReg (OpReg << SrcShift)
#define SrcMem (OpMem << SrcShift)
#define SrcMem16 (OpMem16 << SrcShift)
#define SrcMem32 (OpMem32 << SrcShift)
#define SrcImm (OpImm << SrcShift)
#define SrcImmByte (OpImmByte << SrcShift)
#define SrcOne (OpOne << SrcShift)
#define SrcImmUByte (OpImmUByte << SrcShift)
#define SrcImmU (OpImmU << SrcShift)
#define SrcSI (OpSI << SrcShift)
#define SrcImmFAddr (OpImmFAddr << SrcShift)
#define SrcMemFAddr (OpMemFAddr << SrcShift)
#define SrcAcc (OpAcc << SrcShift)
#define SrcImmU16 (OpImmU16 << SrcShift)
#define SrcDX (OpDX << SrcShift)
#define SrcMem8 (OpMem8 << SrcShift)
#define SrcMask (OpMask << SrcShift)
#define BitOp (1<<11)
#define MemAbs (1<<12) /* Memory operand is absolute displacement */
#define String (1<<13) /* String instruction (rep capable) */
#define Stack (1<<14) /* Stack instruction (push/pop) */
#define GroupMask (7<<15) /* Opcode uses one of the group mechanisms */
#define Group (1<<15) /* Bits 3:5 of modrm byte extend opcode */
#define GroupDual (2<<15) /* Alternate decoding of mod == 3 */
#define Prefix (3<<15) /* Instruction varies with 66/f2/f3 prefix */
#define RMExt (4<<15) /* Opcode extension in ModRM r/m if mod == 3 */
#define Sse (1<<18) /* SSE Vector instruction */
/* Generic ModRM decode. */
#define ModRM (1<<19)
/* Destination is only written; never read. */
#define Mov (1<<20)
/* Misc flags */
#define Prot (1<<21) /* instruction generates #UD if not in prot-mode */
#define VendorSpecific (1<<22) /* Vendor specific instruction */
#define NoAccess (1<<23) /* Don't access memory (lea/invlpg/verr etc) */
#define Op3264 (1<<24) /* Operand is 64b in long mode, 32b otherwise */
#define Undefined (1<<25) /* No Such Instruction */
#define Lock (1<<26) /* lock prefix is allowed for the instruction */
#define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */
#define No64 (1<<28)
#define PageTable (1 << 29) /* instruction used to write page table */
/* Source 2 operand type */
#define Src2Shift (30)
#define Src2None (OpNone << Src2Shift)
#define Src2CL (OpCL << Src2Shift)
#define Src2ImmByte (OpImmByte << Src2Shift)
#define Src2One (OpOne << Src2Shift)
#define Src2Imm (OpImm << Src2Shift)
#define Src2ES (OpES << Src2Shift)
#define Src2CS (OpCS << Src2Shift)
#define Src2SS (OpSS << Src2Shift)
#define Src2DS (OpDS << Src2Shift)
#define Src2FS (OpFS << Src2Shift)
#define Src2GS (OpGS << Src2Shift)
#define Src2Mask (OpMask << Src2Shift)
#define X2(x...) x, x
#define X3(x...) X2(x), x
#define X4(x...) X2(x), X2(x)
#define X5(x...) X4(x), x
#define X6(x...) X4(x), X2(x)
#define X7(x...) X4(x), X3(x)
#define X8(x...) X4(x), X4(x)
#define X16(x...) X8(x), X8(x)
struct opcode {
u64 flags : 56;
u64 intercept : 8;
union {
int (*execute)(struct x86_emulate_ctxt *ctxt);
struct opcode *group;
struct group_dual *gdual;
struct gprefix *gprefix;
} u;
int (*check_perm)(struct x86_emulate_ctxt *ctxt);
};
struct group_dual {
struct opcode mod012[8];
struct opcode mod3[8];
};
struct gprefix {
struct opcode pfx_no;
struct opcode pfx_66;
struct opcode pfx_f2;
struct opcode pfx_f3;
};
/* EFLAGS bit definitions. */
#define EFLG_ID (1<<21)
#define EFLG_VIP (1<<20)
#define EFLG_VIF (1<<19)
#define EFLG_AC (1<<18)
#define EFLG_VM (1<<17)
#define EFLG_RF (1<<16)
#define EFLG_IOPL (3<<12)
#define EFLG_NT (1<<14)
#define EFLG_OF (1<<11)
#define EFLG_DF (1<<10)
#define EFLG_IF (1<<9)
#define EFLG_TF (1<<8)
#define EFLG_SF (1<<7)
#define EFLG_ZF (1<<6)
#define EFLG_AF (1<<4)
#define EFLG_PF (1<<2)
#define EFLG_CF (1<<0)
#define EFLG_RESERVED_ZEROS_MASK 0xffc0802a
#define EFLG_RESERVED_ONE_MASK 2
/*
* Instruction emulation:
* Most instructions are emulated directly via a fragment of inline assembly
* code. This allows us to save/restore EFLAGS and thus very easily pick up
* any modified flags.
*/
#if defined(CONFIG_X86_64)
#define _LO32 "k" /* force 32-bit operand */
#define _STK "%%rsp" /* stack pointer */
#elif defined(__i386__)
#define _LO32 "" /* force 32-bit operand */
#define _STK "%%esp" /* stack pointer */
#endif
/*
* These EFLAGS bits are restored from saved value during emulation, and
* any changes are written back to the saved value after emulation.
*/
#define EFLAGS_MASK (EFLG_OF|EFLG_SF|EFLG_ZF|EFLG_AF|EFLG_PF|EFLG_CF)
/* Before executing instruction: restore necessary bits in EFLAGS. */
#define _PRE_EFLAGS(_sav, _msk, _tmp) \
/* EFLAGS = (_sav & _msk) | (EFLAGS & ~_msk); _sav &= ~_msk; */ \
"movl %"_sav",%"_LO32 _tmp"; " \
"push %"_tmp"; " \
"push %"_tmp"; " \
"movl %"_msk",%"_LO32 _tmp"; " \
"andl %"_LO32 _tmp",("_STK"); " \
"pushf; " \
"notl %"_LO32 _tmp"; " \
"andl %"_LO32 _tmp",("_STK"); " \
"andl %"_LO32 _tmp","__stringify(BITS_PER_LONG/4)"("_STK"); " \
"pop %"_tmp"; " \
"orl %"_LO32 _tmp",("_STK"); " \
"popf; " \
"pop %"_sav"; "
/* After executing instruction: write-back necessary bits in EFLAGS. */
#define _POST_EFLAGS(_sav, _msk, _tmp) \
/* _sav |= EFLAGS & _msk; */ \
"pushf; " \
"pop %"_tmp"; " \
"andl %"_msk",%"_LO32 _tmp"; " \
"orl %"_LO32 _tmp",%"_sav"; "
#ifdef CONFIG_X86_64
#define ON64(x) x
#else
#define ON64(x)
#endif
#define ____emulate_2op(ctxt, _op, _x, _y, _suffix, _dsttype) \
do { \
__asm__ __volatile__ ( \
_PRE_EFLAGS("0", "4", "2") \
_op _suffix " %"_x"3,%1; " \
_POST_EFLAGS("0", "4", "2") \
: "=m" ((ctxt)->eflags), \
"+q" (*(_dsttype*)&(ctxt)->dst.val), \
"=&r" (_tmp) \
: _y ((ctxt)->src.val), "i" (EFLAGS_MASK)); \
} while (0)
/* Raw emulation: instruction has two explicit operands. */
#define __emulate_2op_nobyte(ctxt,_op,_wx,_wy,_lx,_ly,_qx,_qy) \
do { \
unsigned long _tmp; \
\
switch ((ctxt)->dst.bytes) { \
case 2: \
____emulate_2op(ctxt,_op,_wx,_wy,"w",u16); \
break; \
case 4: \
____emulate_2op(ctxt,_op,_lx,_ly,"l",u32); \
break; \
case 8: \
ON64(____emulate_2op(ctxt,_op,_qx,_qy,"q",u64)); \
break; \
} \
} while (0)
#define __emulate_2op(ctxt,_op,_bx,_by,_wx,_wy,_lx,_ly,_qx,_qy) \
do { \
unsigned long _tmp; \
switch ((ctxt)->dst.bytes) { \
case 1: \
____emulate_2op(ctxt,_op,_bx,_by,"b",u8); \
break; \
default: \
__emulate_2op_nobyte(ctxt, _op, \
_wx, _wy, _lx, _ly, _qx, _qy); \
break; \
} \
} while (0)
/* Source operand is byte-sized and may be restricted to just %cl. */
#define emulate_2op_SrcB(ctxt, _op) \
__emulate_2op(ctxt, _op, "b", "c", "b", "c", "b", "c", "b", "c")
/* Source operand is byte, word, long or quad sized. */
#define emulate_2op_SrcV(ctxt, _op) \
__emulate_2op(ctxt, _op, "b", "q", "w", "r", _LO32, "r", "", "r")
/* Source operand is word, long or quad sized. */
#define emulate_2op_SrcV_nobyte(ctxt, _op) \
__emulate_2op_nobyte(ctxt, _op, "w", "r", _LO32, "r", "", "r")
/* Instruction has three operands and one operand is stored in ECX register */
#define __emulate_2op_cl(ctxt, _op, _suffix, _type) \
do { \
unsigned long _tmp; \
_type _clv = (ctxt)->src2.val; \
_type _srcv = (ctxt)->src.val; \
_type _dstv = (ctxt)->dst.val; \
\
__asm__ __volatile__ ( \
_PRE_EFLAGS("0", "5", "2") \
_op _suffix " %4,%1 \n" \
_POST_EFLAGS("0", "5", "2") \
: "=m" ((ctxt)->eflags), "+r" (_dstv), "=&r" (_tmp) \
: "c" (_clv) , "r" (_srcv), "i" (EFLAGS_MASK) \
); \
\
(ctxt)->src2.val = (unsigned long) _clv; \
(ctxt)->src2.val = (unsigned long) _srcv; \
(ctxt)->dst.val = (unsigned long) _dstv; \
} while (0)
#define emulate_2op_cl(ctxt, _op) \
do { \
switch ((ctxt)->dst.bytes) { \
case 2: \
__emulate_2op_cl(ctxt, _op, "w", u16); \
break; \
case 4: \
__emulate_2op_cl(ctxt, _op, "l", u32); \
break; \
case 8: \
ON64(__emulate_2op_cl(ctxt, _op, "q", ulong)); \
break; \
} \
} while (0)
#define __emulate_1op(ctxt, _op, _suffix) \
do { \
unsigned long _tmp; \
\
__asm__ __volatile__ ( \
_PRE_EFLAGS("0", "3", "2") \
_op _suffix " %1; " \
_POST_EFLAGS("0", "3", "2") \
: "=m" ((ctxt)->eflags), "+m" ((ctxt)->dst.val), \
"=&r" (_tmp) \
: "i" (EFLAGS_MASK)); \
} while (0)
/* Instruction has only one explicit operand (no source operand). */
#define emulate_1op(ctxt, _op) \
do { \
switch ((ctxt)->dst.bytes) { \
case 1: __emulate_1op(ctxt, _op, "b"); break; \
case 2: __emulate_1op(ctxt, _op, "w"); break; \
case 4: __emulate_1op(ctxt, _op, "l"); break; \
case 8: ON64(__emulate_1op(ctxt, _op, "q")); break; \
} \
} while (0)
#define __emulate_1op_rax_rdx(ctxt, _op, _suffix, _ex) \
do { \
unsigned long _tmp; \
ulong *rax = &(ctxt)->regs[VCPU_REGS_RAX]; \
ulong *rdx = &(ctxt)->regs[VCPU_REGS_RDX]; \
\
__asm__ __volatile__ ( \
_PRE_EFLAGS("0", "5", "1") \
"1: \n\t" \
_op _suffix " %6; " \
"2: \n\t" \
_POST_EFLAGS("0", "5", "1") \
".pushsection .fixup,\"ax\" \n\t" \
"3: movb $1, %4 \n\t" \
"jmp 2b \n\t" \
".popsection \n\t" \
_ASM_EXTABLE(1b, 3b) \
: "=m" ((ctxt)->eflags), "=&r" (_tmp), \
"+a" (*rax), "+d" (*rdx), "+qm"(_ex) \
: "i" (EFLAGS_MASK), "m" ((ctxt)->src.val), \
"a" (*rax), "d" (*rdx)); \
} while (0)
/* instruction has only one source operand, destination is implicit (e.g. mul, div, imul, idiv) */
#define emulate_1op_rax_rdx(ctxt, _op, _ex) \
do { \
switch((ctxt)->src.bytes) { \
case 1: \
__emulate_1op_rax_rdx(ctxt, _op, "b", _ex); \
break; \
case 2: \
__emulate_1op_rax_rdx(ctxt, _op, "w", _ex); \
break; \
case 4: \
__emulate_1op_rax_rdx(ctxt, _op, "l", _ex); \
break; \
case 8: ON64( \
__emulate_1op_rax_rdx(ctxt, _op, "q", _ex)); \
break; \
} \
} while (0)
static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt,
enum x86_intercept intercept,
enum x86_intercept_stage stage)
{
struct x86_instruction_info info = {
.intercept = intercept,
.rep_prefix = ctxt->rep_prefix,
.modrm_mod = ctxt->modrm_mod,
.modrm_reg = ctxt->modrm_reg,
.modrm_rm = ctxt->modrm_rm,
.src_val = ctxt->src.val64,
.src_bytes = ctxt->src.bytes,
.dst_bytes = ctxt->dst.bytes,
.ad_bytes = ctxt->ad_bytes,
.next_rip = ctxt->eip,
};
return ctxt->ops->intercept(ctxt, &info, stage);
}
static inline unsigned long ad_mask(struct x86_emulate_ctxt *ctxt)
{
return (1UL << (ctxt->ad_bytes << 3)) - 1;
}
/* Access/update address held in a register, based on addressing mode. */
static inline unsigned long
address_mask(struct x86_emulate_ctxt *ctxt, unsigned long reg)
{
if (ctxt->ad_bytes == sizeof(unsigned long))
return reg;
else
return reg & ad_mask(ctxt);
}
static inline unsigned long
register_address(struct x86_emulate_ctxt *ctxt, unsigned long reg)
{
return address_mask(ctxt, reg);
}
static inline void
register_address_increment(struct x86_emulate_ctxt *ctxt, unsigned long *reg, int inc)
{
if (ctxt->ad_bytes == sizeof(unsigned long))
*reg += inc;
else
*reg = (*reg & ~ad_mask(ctxt)) | ((*reg + inc) & ad_mask(ctxt));
}
static inline void jmp_rel(struct x86_emulate_ctxt *ctxt, int rel)
{
register_address_increment(ctxt, &ctxt->_eip, rel);
}
static u32 desc_limit_scaled(struct desc_struct *desc)
{
u32 limit = get_desc_limit(desc);
return desc->g ? (limit << 12) | 0xfff : limit;
}
static void set_seg_override(struct x86_emulate_ctxt *ctxt, int seg)
{
ctxt->has_seg_override = true;
ctxt->seg_override = seg;
}
static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg)
{
if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS)
return 0;
return ctxt->ops->get_cached_segment_base(ctxt, seg);
}
static unsigned seg_override(struct x86_emulate_ctxt *ctxt)
{
if (!ctxt->has_seg_override)
return 0;
return ctxt->seg_override;
}
static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec,
u32 error, bool valid)
{
ctxt->exception.vector = vec;
ctxt->exception.error_code = error;
ctxt->exception.error_code_valid = valid;
return X86EMUL_PROPAGATE_FAULT;
}
static int emulate_db(struct x86_emulate_ctxt *ctxt)
{
return emulate_exception(ctxt, DB_VECTOR, 0, false);
}
static int emulate_gp(struct x86_emulate_ctxt *ctxt, int err)
{
return emulate_exception(ctxt, GP_VECTOR, err, true);
}
static int emulate_ss(struct x86_emulate_ctxt *ctxt, int err)
{
return emulate_exception(ctxt, SS_VECTOR, err, true);
}
static int emulate_ud(struct x86_emulate_ctxt *ctxt)
{
return emulate_exception(ctxt, UD_VECTOR, 0, false);
}
static int emulate_ts(struct x86_emulate_ctxt *ctxt, int err)
{
return emulate_exception(ctxt, TS_VECTOR, err, true);
}
static int emulate_de(struct x86_emulate_ctxt *ctxt)
{
return emulate_exception(ctxt, DE_VECTOR, 0, false);
}
static int emulate_nm(struct x86_emulate_ctxt *ctxt)
{
return emulate_exception(ctxt, NM_VECTOR, 0, false);
}
static u16 get_segment_selector(struct x86_emulate_ctxt *ctxt, unsigned seg)
{
u16 selector;
struct desc_struct desc;
ctxt->ops->get_segment(ctxt, &selector, &desc, NULL, seg);
return selector;
}
static void set_segment_selector(struct x86_emulate_ctxt *ctxt, u16 selector,
unsigned seg)
{
u16 dummy;
u32 base3;
struct desc_struct desc;
ctxt->ops->get_segment(ctxt, &dummy, &desc, &base3, seg);
ctxt->ops->set_segment(ctxt, selector, &desc, base3, seg);
}
static int __linearize(struct x86_emulate_ctxt *ctxt,
struct segmented_address addr,
unsigned size, bool write, bool fetch,
ulong *linear)
{
struct desc_struct desc;
bool usable;
ulong la;
u32 lim;
u16 sel;
unsigned cpl, rpl;
la = seg_base(ctxt, addr.seg) + addr.ea;
switch (ctxt->mode) {
case X86EMUL_MODE_REAL:
break;
case X86EMUL_MODE_PROT64:
if (((signed long)la << 16) >> 16 != la)
return emulate_gp(ctxt, 0);
break;
default:
usable = ctxt->ops->get_segment(ctxt, &sel, &desc, NULL,
addr.seg);
if (!usable)
goto bad;
/* code segment or read-only data segment */
if (((desc.type & 8) || !(desc.type & 2)) && write)
goto bad;
/* unreadable code segment */
if (!fetch && (desc.type & 8) && !(desc.type & 2))
goto bad;
lim = desc_limit_scaled(&desc);
if ((desc.type & 8) || !(desc.type & 4)) {
/* expand-up segment */
if (addr.ea > lim || (u32)(addr.ea + size - 1) > lim)
goto bad;
} else {
/* exapand-down segment */
if (addr.ea <= lim || (u32)(addr.ea + size - 1) <= lim)
goto bad;
lim = desc.d ? 0xffffffff : 0xffff;
if (addr.ea > lim || (u32)(addr.ea + size - 1) > lim)
goto bad;
}
cpl = ctxt->ops->cpl(ctxt);
rpl = sel & 3;
cpl = max(cpl, rpl);
if (!(desc.type & 8)) {
/* data segment */
if (cpl > desc.dpl)
goto bad;
} else if ((desc.type & 8) && !(desc.type & 4)) {
/* nonconforming code segment */
if (cpl != desc.dpl)
goto bad;
} else if ((desc.type & 8) && (desc.type & 4)) {
/* conforming code segment */
if (cpl < desc.dpl)
goto bad;
}
break;
}
if (fetch ? ctxt->mode != X86EMUL_MODE_PROT64 : ctxt->ad_bytes != 8)
la &= (u32)-1;
*linear = la;
return X86EMUL_CONTINUE;
bad:
if (addr.seg == VCPU_SREG_SS)
return emulate_ss(ctxt, addr.seg);
else
return emulate_gp(ctxt, addr.seg);
}
static int linearize(struct x86_emulate_ctxt *ctxt,
struct segmented_address addr,
unsigned size, bool write,
ulong *linear)
{
return __linearize(ctxt, addr, size, write, false, linear);
}
static int segmented_read_std(struct x86_emulate_ctxt *ctxt,
struct segmented_address addr,
void *data,
unsigned size)
{
int rc;
ulong linear;
rc = linearize(ctxt, addr, size, false, &linear);
if (rc != X86EMUL_CONTINUE)
return rc;
return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception);
}
/*
* Fetch the next byte of the instruction being emulated which is pointed to
* by ctxt->_eip, then increment ctxt->_eip.
*
* Also prefetch the remaining bytes of the instruction without crossing page
* boundary if they are not in fetch_cache yet.
*/
static int do_insn_fetch_byte(struct x86_emulate_ctxt *ctxt, u8 *dest)
{
struct fetch_cache *fc = &ctxt->fetch;
int rc;
int size, cur_size;
if (ctxt->_eip == fc->end) {
unsigned long linear;
struct segmented_address addr = { .seg = VCPU_SREG_CS,
.ea = ctxt->_eip };
cur_size = fc->end - fc->start;
size = min(15UL - cur_size,
PAGE_SIZE - offset_in_page(ctxt->_eip));
rc = __linearize(ctxt, addr, size, false, true, &linear);
if (unlikely(rc != X86EMUL_CONTINUE))
return rc;
rc = ctxt->ops->fetch(ctxt, linear, fc->data + cur_size,
size, &ctxt->exception);
if (unlikely(rc != X86EMUL_CONTINUE))
return rc;
fc->end += size;
}
*dest = fc->data[ctxt->_eip - fc->start];
ctxt->_eip++;
return X86EMUL_CONTINUE;
}
static int do_insn_fetch(struct x86_emulate_ctxt *ctxt,
void *dest, unsigned size)
{
int rc;
/* x86 instructions are limited to 15 bytes. */
if (unlikely(ctxt->_eip + size - ctxt->eip > 15))
return X86EMUL_UNHANDLEABLE;
while (size--) {
rc = do_insn_fetch_byte(ctxt, dest++);
if (rc != X86EMUL_CONTINUE)
return rc;
}
return X86EMUL_CONTINUE;
}
/* Fetch next part of the instruction being emulated. */
#define insn_fetch(_type, _ctxt) \
({ unsigned long _x; \
rc = do_insn_fetch(_ctxt, &_x, sizeof(_type)); \
if (rc != X86EMUL_CONTINUE) \
goto done; \
(_type)_x; \
})
#define insn_fetch_arr(_arr, _size, _ctxt) \
({ rc = do_insn_fetch(_ctxt, _arr, (_size)); \
if (rc != X86EMUL_CONTINUE) \
goto done; \
})
/*
* Given the 'reg' portion of a ModRM byte, and a register block, return a
* pointer into the block that addresses the relevant register.
* @highbyte_regs specifies whether to decode AH,CH,DH,BH.
*/
static void *decode_register(u8 modrm_reg, unsigned long *regs,
int highbyte_regs)
{
void *p;
p = &regs[modrm_reg];
if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8)
p = (unsigned char *)&regs[modrm_reg & 3] + 1;
return p;
}
static int read_descriptor(struct x86_emulate_ctxt *ctxt,
struct segmented_address addr,
u16 *size, unsigned long *address, int op_bytes)
{
int rc;
if (op_bytes == 2)
op_bytes = 3;
*address = 0;
rc = segmented_read_std(ctxt, addr, size, 2);
if (rc != X86EMUL_CONTINUE)
return rc;
addr.ea += 2;
rc = segmented_read_std(ctxt, addr, address, op_bytes);
return rc;
}
static int test_cc(unsigned int condition, unsigned int flags)
{
int rc = 0;
switch ((condition & 15) >> 1) {
case 0: /* o */
rc |= (flags & EFLG_OF);
break;
case 1: /* b/c/nae */
rc |= (flags & EFLG_CF);
break;
case 2: /* z/e */
rc |= (flags & EFLG_ZF);
break;
case 3: /* be/na */
rc |= (flags & (EFLG_CF|EFLG_ZF));
break;
case 4: /* s */
rc |= (flags & EFLG_SF);
break;
case 5: /* p/pe */
rc |= (flags & EFLG_PF);
break;
case 7: /* le/ng */
rc |= (flags & EFLG_ZF);
/* fall through */
case 6: /* l/nge */
rc |= (!(flags & EFLG_SF) != !(flags & EFLG_OF));
break;
}
/* Odd condition identifiers (lsb == 1) have inverted sense. */
return (!!rc ^ (condition & 1));
}
static void fetch_register_operand(struct operand *op)
{
switch (op->bytes) {
case 1:
op->val = *(u8 *)op->addr.reg;
break;
case 2:
op->val = *(u16 *)op->addr.reg;
break;
case 4:
op->val = *(u32 *)op->addr.reg;
break;
case 8:
op->val = *(u64 *)op->addr.reg;
break;
}
}
static void read_sse_reg(struct x86_emulate_ctxt *ctxt, sse128_t *data, int reg)
{
ctxt->ops->get_fpu(ctxt);
switch (reg) {
case 0: asm("movdqu %%xmm0, %0" : "=m"(*data)); break;
case 1: asm("movdqu %%xmm1, %0" : "=m"(*data)); break;
case 2: asm("movdqu %%xmm2, %0" : "=m"(*data)); break;
case 3: asm("movdqu %%xmm3, %0" : "=m"(*data)); break;
case 4: asm("movdqu %%xmm4, %0" : "=m"(*data)); break;
case 5: asm("movdqu %%xmm5, %0" : "=m"(*data)); break;
case 6: asm("movdqu %%xmm6, %0" : "=m"(*data)); break;
case 7: asm("movdqu %%xmm7, %0" : "=m"(*data)); break;
#ifdef CONFIG_X86_64
case 8: asm("movdqu %%xmm8, %0" : "=m"(*data)); break;
case 9: asm("movdqu %%xmm9, %0" : "=m"(*data)); break;
case 10: asm("movdqu %%xmm10, %0" : "=m"(*data)); break;
case 11: asm("movdqu %%xmm11, %0" : "=m"(*data)); break;
case 12: asm("movdqu %%xmm12, %0" : "=m"(*data)); break;
case 13: asm("movdqu %%xmm13, %0" : "=m"(*data)); break;
case 14: asm("movdqu %%xmm14, %0" : "=m"(*data)); break;
case 15: asm("movdqu %%xmm15, %0" : "=m"(*data)); break;
#endif
default: BUG();
}
ctxt->ops->put_fpu(ctxt);
}
static void write_sse_reg(struct x86_emulate_ctxt *ctxt, sse128_t *data,
int reg)
{
ctxt->ops->get_fpu(ctxt);
switch (reg) {
case 0: asm("movdqu %0, %%xmm0" : : "m"(*data)); break;
case 1: asm("movdqu %0, %%xmm1" : : "m"(*data)); break;
case 2: asm("movdqu %0, %%xmm2" : : "m"(*data)); break;
case 3: asm("movdqu %0, %%xmm3" : : "m"(*data)); break;
case 4: asm("movdqu %0, %%xmm4" : : "m"(*data)); break;
case 5: asm("movdqu %0, %%xmm5" : : "m"(*data)); break;
case 6: asm("movdqu %0, %%xmm6" : : "m"(*data)); break;
case 7: asm("movdqu %0, %%xmm7" : : "m"(*data)); break;
#ifdef CONFIG_X86_64
case 8: asm("movdqu %0, %%xmm8" : : "m"(*data)); break;
case 9: asm("movdqu %0, %%xmm9" : : "m"(*data)); break;
case 10: asm("movdqu %0, %%xmm10" : : "m"(*data)); break;
case 11: asm("movdqu %0, %%xmm11" : : "m"(*data)); break;
case 12: asm("movdqu %0, %%xmm12" : : "m"(*data)); break;
case 13: asm("movdqu %0, %%xmm13" : : "m"(*data)); break;
case 14: asm("movdqu %0, %%xmm14" : : "m"(*data)); break;
case 15: asm("movdqu %0, %%xmm15" : : "m"(*data)); break;
#endif
default: BUG();
}
ctxt->ops->put_fpu(ctxt);
}
static void decode_register_operand(struct x86_emulate_ctxt *ctxt,
struct operand *op)
{
unsigned reg = ctxt->modrm_reg;
int highbyte_regs = ctxt->rex_prefix == 0;
if (!(ctxt->d & ModRM))
reg = (ctxt->b & 7) | ((ctxt->rex_prefix & 1) << 3);
if (ctxt->d & Sse) {
op->type = OP_XMM;
op->bytes = 16;
op->addr.xmm = reg;
read_sse_reg(ctxt, &op->vec_val, reg);
return;
}
op->type = OP_REG;
if (ctxt->d & ByteOp) {
op->addr.reg = decode_register(reg, ctxt->regs, highbyte_regs);
op->bytes = 1;
} else {
op->addr.reg = decode_register(reg, ctxt->regs, 0);
op->bytes = ctxt->op_bytes;
}
fetch_register_operand(op);
op->orig_val = op->val;
}
static int decode_modrm(struct x86_emulate_ctxt *ctxt,
struct operand *op)
{
u8 sib;
int index_reg = 0, base_reg = 0, scale;
int rc = X86EMUL_CONTINUE;
ulong modrm_ea = 0;
if (ctxt->rex_prefix) {
ctxt->modrm_reg = (ctxt->rex_prefix & 4) << 1; /* REX.R */
index_reg = (ctxt->rex_prefix & 2) << 2; /* REX.X */
ctxt->modrm_rm = base_reg = (ctxt->rex_prefix & 1) << 3; /* REG.B */
}
ctxt->modrm = insn_fetch(u8, ctxt);
ctxt->modrm_mod |= (ctxt->modrm & 0xc0) >> 6;
ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3;
ctxt->modrm_rm |= (ctxt->modrm & 0x07);
ctxt->modrm_seg = VCPU_SREG_DS;
if (ctxt->modrm_mod == 3) {
op->type = OP_REG;
op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
op->addr.reg = decode_register(ctxt->modrm_rm,
ctxt->regs, ctxt->d & ByteOp);
if (ctxt->d & Sse) {
op->type = OP_XMM;
op->bytes = 16;
op->addr.xmm = ctxt->modrm_rm;
read_sse_reg(ctxt, &op->vec_val, ctxt->modrm_rm);
return rc;
}
fetch_register_operand(op);
return rc;
}
op->type = OP_MEM;
if (ctxt->ad_bytes == 2) {
unsigned bx = ctxt->regs[VCPU_REGS_RBX];
unsigned bp = ctxt->regs[VCPU_REGS_RBP];
unsigned si = ctxt->regs[VCPU_REGS_RSI];
unsigned di = ctxt->regs[VCPU_REGS_RDI];
/* 16-bit ModR/M decode. */
switch (ctxt->modrm_mod) {
case 0:
if (ctxt->modrm_rm == 6)
modrm_ea += insn_fetch(u16, ctxt);
break;
case 1:
modrm_ea += insn_fetch(s8, ctxt);
break;
case 2:
modrm_ea += insn_fetch(u16, ctxt);
break;
}
switch (ctxt->modrm_rm) {
case 0:
modrm_ea += bx + si;
break;
case 1:
modrm_ea += bx + di;
break;
case 2:
modrm_ea += bp + si;
break;
case 3:
modrm_ea += bp + di;
break;
case 4:
modrm_ea += si;
break;
case 5:
modrm_ea += di;
break;
case 6:
if (ctxt->modrm_mod != 0)
modrm_ea += bp;
break;
case 7:
modrm_ea += bx;
break;
}
if (ctxt->modrm_rm == 2 || ctxt->modrm_rm == 3 ||
(ctxt->modrm_rm == 6 && ctxt->modrm_mod != 0))
ctxt->modrm_seg = VCPU_SREG_SS;
modrm_ea = (u16)modrm_ea;
} else {
/* 32/64-bit ModR/M decode. */
if ((ctxt->modrm_rm & 7) == 4) {
sib = insn_fetch(u8, ctxt);
index_reg |= (sib >> 3) & 7;
base_reg |= sib & 7;
scale = sib >> 6;
if ((base_reg & 7) == 5 && ctxt->modrm_mod == 0)
modrm_ea += insn_fetch(s32, ctxt);
else
modrm_ea += ctxt->regs[base_reg];
if (index_reg != 4)
modrm_ea += ctxt->regs[index_reg] << scale;
} else if ((ctxt->modrm_rm & 7) == 5 && ctxt->modrm_mod == 0) {
if (ctxt->mode == X86EMUL_MODE_PROT64)
ctxt->rip_relative = 1;
} else
modrm_ea += ctxt->regs[ctxt->modrm_rm];
switch (ctxt->modrm_mod) {
case 0:
if (ctxt->modrm_rm == 5)
modrm_ea += insn_fetch(s32, ctxt);
break;
case 1:
modrm_ea += insn_fetch(s8, ctxt);
break;
case 2:
modrm_ea += insn_fetch(s32, ctxt);
break;
}
}
op->addr.mem.ea = modrm_ea;
done:
return rc;
}
static int decode_abs(struct x86_emulate_ctxt *ctxt,
struct operand *op)
{
int rc = X86EMUL_CONTINUE;
op->type = OP_MEM;
switch (ctxt->ad_bytes) {
case 2:
op->addr.mem.ea = insn_fetch(u16, ctxt);
break;
case 4:
op->addr.mem.ea = insn_fetch(u32, ctxt);
break;
case 8:
op->addr.mem.ea = insn_fetch(u64, ctxt);
break;
}
done:
return rc;
}
static void fetch_bit_operand(struct x86_emulate_ctxt *ctxt)
{
long sv = 0, mask;
if (ctxt->dst.type == OP_MEM && ctxt->src.type == OP_REG) {
mask = ~(ctxt->dst.bytes * 8 - 1);
if (ctxt->src.bytes == 2)
sv = (s16)ctxt->src.val & (s16)mask;
else if (ctxt->src.bytes == 4)
sv = (s32)ctxt->src.val & (s32)mask;
ctxt->dst.addr.mem.ea += (sv >> 3);
}
/* only subword offset */
ctxt->src.val &= (ctxt->dst.bytes << 3) - 1;
}
static int read_emulated(struct x86_emulate_ctxt *ctxt,
unsigned long addr, void *dest, unsigned size)
{
int rc;
struct read_cache *mc = &ctxt->mem_read;
while (size) {
int n = min(size, 8u);
size -= n;
if (mc->pos < mc->end)
goto read_cached;
rc = ctxt->ops->read_emulated(ctxt, addr, mc->data + mc->end, n,
&ctxt->exception);
if (rc != X86EMUL_CONTINUE)
return rc;
mc->end += n;
read_cached:
memcpy(dest, mc->data + mc->pos, n);
mc->pos += n;
dest += n;
addr += n;
}
return X86EMUL_CONTINUE;
}
static int segmented_read(struct x86_emulate_ctxt *ctxt,
struct segmented_address addr,
void *data,
unsigned size)
{
int rc;
ulong linear;
rc = linearize(ctxt, addr, size, false, &linear);
if (rc != X86EMUL_CONTINUE)
return rc;
return read_emulated(ctxt, linear, data, size);
}
static int segmented_write(struct x86_emulate_ctxt *ctxt,
struct segmented_address addr,
const void *data,
unsigned size)
{
int rc;
ulong linear;
rc = linearize(ctxt, addr, size, true, &linear);
if (rc != X86EMUL_CONTINUE)
return rc;
return ctxt->ops->write_emulated(ctxt, linear, data, size,
&ctxt->exception);
}
static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt,
struct segmented_address addr,
const void *orig_data, const void *data,
unsigned size)
{
int rc;
ulong linear;
rc = linearize(ctxt, addr, size, true, &linear);
if (rc != X86EMUL_CONTINUE)
return rc;
return ctxt->ops->cmpxchg_emulated(ctxt, linear, orig_data, data,
size, &ctxt->exception);
}
static int pio_in_emulated(struct x86_emulate_ctxt *ctxt,
unsigned int size, unsigned short port,
void *dest)
{
struct read_cache *rc = &ctxt->io_read;
if (rc->pos == rc->end) { /* refill pio read ahead */
unsigned int in_page, n;
unsigned int count = ctxt->rep_prefix ?
address_mask(ctxt, ctxt->regs[VCPU_REGS_RCX]) : 1;
in_page = (ctxt->eflags & EFLG_DF) ?
offset_in_page(ctxt->regs[VCPU_REGS_RDI]) :
PAGE_SIZE - offset_in_page(ctxt->regs[VCPU_REGS_RDI]);
n = min(min(in_page, (unsigned int)sizeof(rc->data)) / size,
count);
if (n == 0)
n = 1;
rc->pos = rc->end = 0;
if (!ctxt->ops->pio_in_emulated(ctxt, size, port, rc->data, n))
return 0;
rc->end = n * size;
}
memcpy(dest, rc->data + rc->pos, size);
rc->pos += size;
return 1;
}
static int read_interrupt_descriptor(struct x86_emulate_ctxt *ctxt,
u16 index, struct desc_struct *desc)
{
struct desc_ptr dt;
ulong addr;
ctxt->ops->get_idt(ctxt, &dt);
if (dt.size < index * 8 + 7)
return emulate_gp(ctxt, index << 3 | 0x2);
addr = dt.address + index * 8;
return ctxt->ops->read_std(ctxt, addr, desc, sizeof *desc,
&ctxt->exception);
}
static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt,
u16 selector, struct desc_ptr *dt)
{
struct x86_emulate_ops *ops = ctxt->ops;
if (selector & 1 << 2) {
struct desc_struct desc;
u16 sel;
memset (dt, 0, sizeof *dt);
if (!ops->get_segment(ctxt, &sel, &desc, NULL, VCPU_SREG_LDTR))
return;
dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */
dt->address = get_desc_base(&desc);
} else
ops->get_gdt(ctxt, dt);
}
/* allowed just for 8 bytes segments */
static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt,
u16 selector, struct desc_struct *desc)
{
struct desc_ptr dt;
u16 index = selector >> 3;
ulong addr;
get_descriptor_table_ptr(ctxt, selector, &dt);
if (dt.size < index * 8 + 7)
return emulate_gp(ctxt, selector & 0xfffc);
addr = dt.address + index * 8;
return ctxt->ops->read_std(ctxt, addr, desc, sizeof *desc,
&ctxt->exception);
}
/* allowed just for 8 bytes segments */
static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt,
u16 selector, struct desc_struct *desc)
{
struct desc_ptr dt;
u16 index = selector >> 3;
ulong addr;
get_descriptor_table_ptr(ctxt, selector, &dt);
if (dt.size < index * 8 + 7)
return emulate_gp(ctxt, selector & 0xfffc);
addr = dt.address + index * 8;
return ctxt->ops->write_std(ctxt, addr, desc, sizeof *desc,
&ctxt->exception);
}
/* Does not support long mode */
static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
u16 selector, int seg)
{
struct desc_struct seg_desc;
u8 dpl, rpl, cpl;
unsigned err_vec = GP_VECTOR;
u32 err_code = 0;
bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
int ret;
memset(&seg_desc, 0, sizeof seg_desc);
if ((seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86)
|| ctxt->mode == X86EMUL_MODE_REAL) {
/* set real mode segment descriptor */
set_desc_base(&seg_desc, selector << 4);
set_desc_limit(&seg_desc, 0xffff);
seg_desc.type = 3;
seg_desc.p = 1;
seg_desc.s = 1;
if (ctxt->mode == X86EMUL_MODE_VM86)
seg_desc.dpl = 3;
goto load;
}
/* NULL selector is not valid for TR, CS and SS */
if ((seg == VCPU_SREG_CS || seg == VCPU_SREG_SS || seg == VCPU_SREG_TR)
&& null_selector)
goto exception;
/* TR should be in GDT only */
if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
goto exception;
if (null_selector) /* for NULL selector skip all following checks */
goto load;
ret = read_segment_descriptor(ctxt, selector, &seg_desc);
if (ret != X86EMUL_CONTINUE)
return ret;
err_code = selector & 0xfffc;
err_vec = GP_VECTOR;
/* can't load system descriptor into segment selecor */
if (seg <= VCPU_SREG_GS && !seg_desc.s)
goto exception;
if (!seg_desc.p) {
err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
goto exception;
}
rpl = selector & 3;
dpl = seg_desc.dpl;
cpl = ctxt->ops->cpl(ctxt);
switch (seg) {
case VCPU_SREG_SS:
/*
* segment is not a writable data segment or segment
* selector's RPL != CPL or segment selector's RPL != CPL
*/
if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl)
goto exception;
break;
case VCPU_SREG_CS:
if (!(seg_desc.type & 8))
goto exception;
if (seg_desc.type & 4) {
/* conforming */
if (dpl > cpl)
goto exception;
} else {
/* nonconforming */
if (rpl > cpl || dpl != cpl)
goto exception;
}
/* CS(RPL) <- CPL */
selector = (selector & 0xfffc) | cpl;
break;
case VCPU_SREG_TR:
if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9))
goto exception;
break;
case VCPU_SREG_LDTR:
if (seg_desc.s || seg_desc.type != 2)
goto exception;
break;
default: /* DS, ES, FS, or GS */
/*
* segment is not a data or readable code segment or
* ((segment is a data or nonconforming code segment)
* and (both RPL and CPL > DPL))
*/
if ((seg_desc.type & 0xa) == 0x8 ||
(((seg_desc.type & 0xc) != 0xc) &&
(rpl > dpl && cpl > dpl)))
goto exception;
break;
}
if (seg_desc.s) {
/* mark segment as accessed */
seg_desc.type |= 1;
ret = write_segment_descriptor(ctxt, selector, &seg_desc);
if (ret != X86EMUL_CONTINUE)
return ret;
}
load:
ctxt->ops->set_segment(ctxt, selector, &seg_desc, 0, seg);
return X86EMUL_CONTINUE;
exception:
emulate_exception(ctxt, err_vec, err_code, true);
return X86EMUL_PROPAGATE_FAULT;
}
static void write_register_operand(struct operand *op)
{
/* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */
switch (op->bytes) {
case 1:
*(u8 *)op->addr.reg = (u8)op->val;
break;
case 2:
*(u16 *)op->addr.reg = (u16)op->val;
break;
case 4:
*op->addr.reg = (u32)op->val;
break; /* 64b: zero-extend */
case 8:
*op->addr.reg = op->val;
break;
}
}
static int writeback(struct x86_emulate_ctxt *ctxt)
{
int rc;
switch (ctxt->dst.type) {
case OP_REG:
write_register_operand(&ctxt->dst);
break;
case OP_MEM:
if (ctxt->lock_prefix)
rc = segmented_cmpxchg(ctxt,
ctxt->dst.addr.mem,
&ctxt->dst.orig_val,
&ctxt->dst.val,
ctxt->dst.bytes);
else
rc = segmented_write(ctxt,
ctxt->dst.addr.mem,
&ctxt->dst.val,
ctxt->dst.bytes);
if (rc != X86EMUL_CONTINUE)
return rc;
break;
case OP_XMM:
write_sse_reg(ctxt, &ctxt->dst.vec_val, ctxt->dst.addr.xmm);
break;
case OP_NONE:
/* no writeback */
break;
default:
break;
}
return X86EMUL_CONTINUE;
}
static int em_push(struct x86_emulate_ctxt *ctxt)
{
struct segmented_address addr;
register_address_increment(ctxt, &ctxt->regs[VCPU_REGS_RSP], -ctxt->op_bytes);
addr.ea = register_address(ctxt, ctxt->regs[VCPU_REGS_RSP]);
addr.seg = VCPU_SREG_SS;
/* Disable writeback. */
ctxt->dst.type = OP_NONE;
return segmented_write(ctxt, addr, &ctxt->src.val, ctxt->op_bytes);
}
static int emulate_pop(struct x86_emulate_ctxt *ctxt,
void *dest, int len)
{
int rc;
struct segmented_address addr;
addr.ea = register_address(ctxt, ctxt->regs[VCPU_REGS_RSP]);
addr.seg = VCPU_SREG_SS;
rc = segmented_read(ctxt, addr, dest, len);
if (rc != X86EMUL_CONTINUE)
return rc;
register_address_increment(ctxt, &ctxt->regs[VCPU_REGS_RSP], len);
return rc;
}
static int em_pop(struct x86_emulate_ctxt *ctxt)
{
return emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes);
}
static int emulate_popf(struct x86_emulate_ctxt *ctxt,
void *dest, int len)
{
int rc;
unsigned long val, change_mask;
int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
int cpl = ctxt->ops->cpl(ctxt);
rc = emulate_pop(ctxt, &val, len);
if (rc != X86EMUL_CONTINUE)
return rc;
change_mask = EFLG_CF | EFLG_PF | EFLG_AF | EFLG_ZF | EFLG_SF | EFLG_OF
| EFLG_TF | EFLG_DF | EFLG_NT | EFLG_RF | EFLG_AC | EFLG_ID;
switch(ctxt->mode) {
case X86EMUL_MODE_PROT64:
case X86EMUL_MODE_PROT32:
case X86EMUL_MODE_PROT16:
if (cpl == 0)
change_mask |= EFLG_IOPL;
if (cpl <= iopl)
change_mask |= EFLG_IF;
break;
case X86EMUL_MODE_VM86:
if (iopl < 3)
return emulate_gp(ctxt, 0);
change_mask |= EFLG_IF;
break;
default: /* real mode */
change_mask |= (EFLG_IOPL | EFLG_IF);
break;
}
*(unsigned long *)dest =
(ctxt->eflags & ~change_mask) | (val & change_mask);
return rc;
}
static int em_popf(struct x86_emulate_ctxt *ctxt)
{
ctxt->dst.type = OP_REG;
ctxt->dst.addr.reg = &ctxt->eflags;
ctxt->dst.bytes = ctxt->op_bytes;
return emulate_popf(ctxt, &ctxt->dst.val, ctxt->op_bytes);
}
static int em_push_sreg(struct x86_emulate_ctxt *ctxt)
{
int seg = ctxt->src2.val;
ctxt->src.val = get_segment_selector(ctxt, seg);
return em_push(ctxt);
}
static int em_pop_sreg(struct x86_emulate_ctxt *ctxt)
{
int seg = ctxt->src2.val;
unsigned long selector;
int rc;
rc = emulate_pop(ctxt, &selector, ctxt->op_bytes);
if (rc != X86EMUL_CONTINUE)
return rc;
rc = load_segment_descriptor(ctxt, (u16)selector, seg);
return rc;
}
static int em_pusha(struct x86_emulate_ctxt *ctxt)
{
unsigned long old_esp = ctxt->regs[VCPU_REGS_RSP];
int rc = X86EMUL_CONTINUE;
int reg = VCPU_REGS_RAX;
while (reg <= VCPU_REGS_RDI) {
(reg == VCPU_REGS_RSP) ?
(ctxt->src.val = old_esp) : (ctxt->src.val = ctxt->regs[reg]);
rc = em_push(ctxt);
if (rc != X86EMUL_CONTINUE)
return rc;
++reg;
}
return rc;
}
static int em_pushf(struct x86_emulate_ctxt *ctxt)
{
ctxt->src.val = (unsigned long)ctxt->eflags;
return em_push(ctxt);
}
static int em_popa(struct x86_emulate_ctxt *ctxt)
{
int rc = X86EMUL_CONTINUE;
int reg = VCPU_REGS_RDI;
while (reg >= VCPU_REGS_RAX) {
if (reg == VCPU_REGS_RSP) {
register_address_increment(ctxt, &ctxt->regs[VCPU_REGS_RSP],
ctxt->op_bytes);
--reg;
}
rc = emulate_pop(ctxt, &ctxt->regs[reg], ctxt->op_bytes);
if (rc != X86EMUL_CONTINUE)
break;
--reg;
}
return rc;
}
int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
{
struct x86_emulate_ops *ops = ctxt->ops;
int rc;
struct desc_ptr dt;
gva_t cs_addr;
gva_t eip_addr;
u16 cs, eip;
/* TODO: Add limit checks */
ctxt->src.val = ctxt->eflags;
rc = em_push(ctxt);
if (rc != X86EMUL_CONTINUE)
return rc;
ctxt->eflags &= ~(EFLG_IF | EFLG_TF | EFLG_AC);
ctxt->src.val = get_segment_selector(ctxt, VCPU_SREG_CS);
rc = em_push(ctxt);
if (rc != X86EMUL_CONTINUE)
return rc;
ctxt->src.val = ctxt->_eip;
rc = em_push(ctxt);
if (rc != X86EMUL_CONTINUE)
return rc;
ops->get_idt(ctxt, &dt);
eip_addr = dt.address + (irq << 2);
cs_addr = dt.address + (irq << 2) + 2;
rc = ops->read_std(ctxt, cs_addr, &cs, 2, &ctxt->exception);
if (rc != X86EMUL_CONTINUE)
return rc;
rc = ops->read_std(ctxt, eip_addr, &eip, 2, &ctxt->exception);
if (rc != X86EMUL_CONTINUE)
return rc;
rc = load_segment_descriptor(ctxt, cs, VCPU_SREG_CS);
if (rc != X86EMUL_CONTINUE)
return rc;
ctxt->_eip = eip;
return rc;
}
static int emulate_int(struct x86_emulate_ctxt *ctxt, int irq)
{
switch(ctxt->mode) {
case X86EMUL_MODE_REAL:
return emulate_int_real(ctxt, irq);
case X86EMUL_MODE_VM86:
case X86EMUL_MODE_PROT16:
case X86EMUL_MODE_PROT32:
case X86EMUL_MODE_PROT64:
default:
/* Protected mode interrupts unimplemented yet */
return X86EMUL_UNHANDLEABLE;
}
}
static int emulate_iret_real(struct x86_emulate_ctxt *ctxt)
{
int rc = X86EMUL_CONTINUE;
unsigned long temp_eip = 0;
unsigned long temp_eflags = 0;
unsigned long cs = 0;
unsigned long mask = EFLG_CF | EFLG_PF | EFLG_AF | EFLG_ZF | EFLG_SF | EFLG_TF |
EFLG_IF | EFLG_DF | EFLG_OF | EFLG_IOPL | EFLG_NT | EFLG_RF |
EFLG_AC | EFLG_ID | (1 << 1); /* Last one is the reserved bit */
unsigned long vm86_mask = EFLG_VM | EFLG_VIF | EFLG_VIP;
/* TODO: Add stack limit check */
rc = emulate_pop(ctxt, &temp_eip, ctxt->op_bytes);
if (rc != X86EMUL_CONTINUE)
return rc;
if (temp_eip & ~0xffff)
return emulate_gp(ctxt, 0);
rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
if (rc != X86EMUL_CONTINUE)
return rc;
rc = emulate_pop(ctxt, &temp_eflags, ctxt->op_bytes);
if (rc != X86EMUL_CONTINUE)
return rc;
rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS);
if (rc != X86EMUL_CONTINUE)
return rc;
ctxt->_eip = temp_eip;
if (ctxt->op_bytes == 4)
ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask));
else if (ctxt->op_bytes == 2) {
ctxt->eflags &= ~0xffff;
ctxt->eflags |= temp_eflags;
}
ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */
ctxt->eflags |= EFLG_RESERVED_ONE_MASK;
return rc;
}
static int em_iret(struct x86_emulate_ctxt *ctxt)
{
switch(ctxt->mode) {
case X86EMUL_MODE_REAL:
return emulate_iret_real(ctxt);
case X86EMUL_MODE_VM86:
case X86EMUL_MODE_PROT16:
case X86EMUL_MODE_PROT32:
case X86EMUL_MODE_PROT64:
default:
/* iret from protected mode unimplemented yet */
return X86EMUL_UNHANDLEABLE;
}
}
static int em_jmp_far(struct x86_emulate_ctxt *ctxt)
{
int rc;
unsigned short sel;
memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
rc = load_segment_descriptor(ctxt, sel, VCPU_SREG_CS);
if (rc != X86EMUL_CONTINUE)
return rc;
ctxt->_eip = 0;
memcpy(&ctxt->_eip, ctxt->src.valptr, ctxt->op_bytes);
return X86EMUL_CONTINUE;
}
static int em_grp2(struct x86_emulate_ctxt *ctxt)
{
switch (ctxt->modrm_reg) {
case 0: /* rol */
emulate_2op_SrcB(ctxt, "rol");
break;
case 1: /* ror */
emulate_2op_SrcB(ctxt, "ror");
break;
case 2: /* rcl */
emulate_2op_SrcB(ctxt, "rcl");
break;
case 3: /* rcr */
emulate_2op_SrcB(ctxt, "rcr");
break;
case 4: /* sal/shl */
case 6: /* sal/shl */
emulate_2op_SrcB(ctxt, "sal");
break;
case 5: /* shr */
emulate_2op_SrcB(ctxt, "shr");
break;
case 7: /* sar */
emulate_2op_SrcB(ctxt, "sar");
break;
}
return X86EMUL_CONTINUE;
}
static int em_not(struct x86_emulate_ctxt *ctxt)
{
ctxt->dst.val = ~ctxt->dst.val;
return X86EMUL_CONTINUE;
}
static int em_neg(struct x86_emulate_ctxt *ctxt)
{
emulate_1op(ctxt, "neg");
return X86EMUL_CONTINUE;
}
static int em_mul_ex(struct x86_emulate_ctxt *ctxt)
{
u8 ex = 0;
emulate_1op_rax_rdx(ctxt, "mul", ex);
return X86EMUL_CONTINUE;
}
static int em_imul_ex(struct x86_emulate_ctxt *ctxt)
{
u8 ex = 0;
emulate_1op_rax_rdx(ctxt, "imul", ex);
return X86EMUL_CONTINUE;
}
static int em_div_ex(struct x86_emulate_ctxt *ctxt)
{
u8 de = 0;
emulate_1op_rax_rdx(ctxt, "div", de);
if (de)
return emulate_de(ctxt);
return X86EMUL_CONTINUE;
}
static int em_idiv_ex(struct x86_emulate_ctxt *ctxt)
{
u8 de = 0;
emulate_1op_rax_rdx(ctxt, "idiv", de);
if (de)
return emulate_de(ctxt);
return X86EMUL_CONTINUE;
}
static int em_grp45(struct x86_emulate_ctxt *ctxt)
{
int rc = X86EMUL_CONTINUE;
switch (ctxt->modrm_reg) {
case 0: /* inc */
emulate_1op(ctxt, "inc");
break;
case 1: /* dec */
emulate_1op(ctxt, "dec");
break;
case 2: /* call near abs */ {
long int old_eip;
old_eip = ctxt->_eip;
ctxt->_eip = ctxt->src.val;
ctxt->src.val = old_eip;
rc = em_push(ctxt);
break;
}
case 4: /* jmp abs */
ctxt->_eip = ctxt->src.val;
break;
case 5: /* jmp far */
rc = em_jmp_far(ctxt);
break;
case 6: /* push */
rc = em_push(ctxt);
break;
}
return rc;
}
static int em_cmpxchg8b(struct x86_emulate_ctxt *ctxt)
{
u64 old = ctxt->dst.orig_val64;
if (((u32) (old >> 0) != (u32) ctxt->regs[VCPU_REGS_RAX]) ||
((u32) (old >> 32) != (u32) ctxt->regs[VCPU_REGS_RDX])) {
ctxt->regs[VCPU_REGS_RAX] = (u32) (old >> 0);
ctxt->regs[VCPU_REGS_RDX] = (u32) (old >> 32);
ctxt->eflags &= ~EFLG_ZF;
} else {
ctxt->dst.val64 = ((u64)ctxt->regs[VCPU_REGS_RCX] << 32) |
(u32) ctxt->regs[VCPU_REGS_RBX];
ctxt->eflags |= EFLG_ZF;
}
return X86EMUL_CONTINUE;
}
static int em_ret(struct x86_emulate_ctxt *ctxt)
{
ctxt->dst.type = OP_REG;
ctxt->dst.addr.reg = &ctxt->_eip;
ctxt->dst.bytes = ctxt->op_bytes;
return em_pop(ctxt);
}
static int em_ret_far(struct x86_emulate_ctxt *ctxt)
{
int rc;
unsigned long cs;
rc = emulate_pop(ctxt, &ctxt->_eip, ctxt->op_bytes);
if (rc != X86EMUL_CONTINUE)
return rc;
if (ctxt->op_bytes == 4)
ctxt->_eip = (u32)ctxt->_eip;
rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
if (rc != X86EMUL_CONTINUE)
return rc;
rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS);
return rc;
}
static int em_cmpxchg(struct x86_emulate_ctxt *ctxt)
{
/* Save real source value, then compare EAX against destination. */
ctxt->src.orig_val = ctxt->src.val;
ctxt->src.val = ctxt->regs[VCPU_REGS_RAX];
emulate_2op_SrcV(ctxt, "cmp");
if (ctxt->eflags & EFLG_ZF) {
/* Success: write back to memory. */
ctxt->dst.val = ctxt->src.orig_val;
} else {
/* Failure: write the value we saw to EAX. */
ctxt->dst.type = OP_REG;
ctxt->dst.addr.reg = (unsigned long *)&ctxt->regs[VCPU_REGS_RAX];
}
return X86EMUL_CONTINUE;
}
static int em_lseg(struct x86_emulate_ctxt *ctxt)
{
int seg = ctxt->src2.val;
unsigned short sel;
int rc;
memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
rc = load_segment_descriptor(ctxt, sel, seg);
if (rc != X86EMUL_CONTINUE)
return rc;
ctxt->dst.val = ctxt->src.val;
return rc;
}
static void
setup_syscalls_segments(struct x86_emulate_ctxt *ctxt,
struct desc_struct *cs, struct desc_struct *ss)
{
u16 selector;
memset(cs, 0, sizeof(struct desc_struct));
ctxt->ops->get_segment(ctxt, &selector, cs, NULL, VCPU_SREG_CS);
memset(ss, 0, sizeof(struct desc_struct));
cs->l = 0; /* will be adjusted later */
set_desc_base(cs, 0); /* flat segment */
cs->g = 1; /* 4kb granularity */
set_desc_limit(cs, 0xfffff); /* 4GB limit */
cs->type = 0x0b; /* Read, Execute, Accessed */
cs->s = 1;
cs->dpl = 0; /* will be adjusted later */
cs->p = 1;
cs->d = 1;
set_desc_base(ss, 0); /* flat segment */
set_desc_limit(ss, 0xfffff); /* 4GB limit */
ss->g = 1; /* 4kb granularity */
ss->s = 1;
ss->type = 0x03; /* Read/Write, Accessed */
ss->d = 1; /* 32bit stack segment */
ss->dpl = 0;
ss->p = 1;
}
static bool vendor_intel(struct x86_emulate_ctxt *ctxt)
{
u32 eax, ebx, ecx, edx;
eax = ecx = 0;
return ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx)
&& ebx == X86EMUL_CPUID_VENDOR_GenuineIntel_ebx
&& ecx == X86EMUL_CPUID_VENDOR_GenuineIntel_ecx
&& edx == X86EMUL_CPUID_VENDOR_GenuineIntel_edx;
}
static bool em_syscall_is_enabled(struct x86_emulate_ctxt *ctxt)
{
struct x86_emulate_ops *ops = ctxt->ops;
u32 eax, ebx, ecx, edx;
/*
* syscall should always be enabled in longmode - so only become
* vendor specific (cpuid) if other modes are active...
*/
if (ctxt->mode == X86EMUL_MODE_PROT64)
return true;
eax = 0x00000000;
ecx = 0x00000000;
if (ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx)) {
/*
* Intel ("GenuineIntel")
* remark: Intel CPUs only support "syscall" in 64bit
* longmode. Also an 64bit guest with a
* 32bit compat-app running will #UD !! While this
* behaviour can be fixed (by emulating) into AMD
* response - CPUs of AMD can't behave like Intel.
*/
if (ebx == X86EMUL_CPUID_VENDOR_GenuineIntel_ebx &&
ecx == X86EMUL_CPUID_VENDOR_GenuineIntel_ecx &&
edx == X86EMUL_CPUID_VENDOR_GenuineIntel_edx)
return false;
/* AMD ("AuthenticAMD") */
if (ebx == X86EMUL_CPUID_VENDOR_AuthenticAMD_ebx &&
ecx == X86EMUL_CPUID_VENDOR_AuthenticAMD_ecx &&
edx == X86EMUL_CPUID_VENDOR_AuthenticAMD_edx)
return true;
/* AMD ("AMDisbetter!") */
if (ebx == X86EMUL_CPUID_VENDOR_AMDisbetterI_ebx &&
ecx == X86EMUL_CPUID_VENDOR_AMDisbetterI_ecx &&
edx == X86EMUL_CPUID_VENDOR_AMDisbetterI_edx)
return true;
}
/* default: (not Intel, not AMD), apply Intel's stricter rules... */
return false;
}
static int em_syscall(struct x86_emulate_ctxt *ctxt)
{
struct x86_emulate_ops *ops = ctxt->ops;
struct desc_struct cs, ss;
u64 msr_data;
u16 cs_sel, ss_sel;
u64 efer = 0;
/* syscall is not available in real mode */
if (ctxt->mode == X86EMUL_MODE_REAL ||
ctxt->mode == X86EMUL_MODE_VM86)
return emulate_ud(ctxt);
if (!(em_syscall_is_enabled(ctxt)))
return emulate_ud(ctxt);
ops->get_msr(ctxt, MSR_EFER, &efer);
setup_syscalls_segments(ctxt, &cs, &ss);
if (!(efer & EFER_SCE))
return emulate_ud(ctxt);
ops->get_msr(ctxt, MSR_STAR, &msr_data);
msr_data >>= 32;
cs_sel = (u16)(msr_data & 0xfffc);
ss_sel = (u16)(msr_data + 8);
if (efer & EFER_LMA) {
cs.d = 0;
cs.l = 1;
}
ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
ctxt->regs[VCPU_REGS_RCX] = ctxt->_eip;
if (efer & EFER_LMA) {
#ifdef CONFIG_X86_64
ctxt->regs[VCPU_REGS_R11] = ctxt->eflags & ~EFLG_RF;
ops->get_msr(ctxt,
ctxt->mode == X86EMUL_MODE_PROT64 ?
MSR_LSTAR : MSR_CSTAR, &msr_data);
ctxt->_eip = msr_data;
ops->get_msr(ctxt, MSR_SYSCALL_MASK, &msr_data);
ctxt->eflags &= ~(msr_data | EFLG_RF);
#endif
} else {
/* legacy mode */
ops->get_msr(ctxt, MSR_STAR, &msr_data);
ctxt->_eip = (u32)msr_data;
ctxt->eflags &= ~(EFLG_VM | EFLG_IF | EFLG_RF);
}
return X86EMUL_CONTINUE;
}
static int em_sysenter(struct x86_emulate_ctxt *ctxt)
{
struct x86_emulate_ops *ops = ctxt->ops;
struct desc_struct cs, ss;
u64 msr_data;
u16 cs_sel, ss_sel;
u64 efer = 0;
ops->get_msr(ctxt, MSR_EFER, &efer);
/* inject #GP if in real mode */
if (ctxt->mode == X86EMUL_MODE_REAL)
return emulate_gp(ctxt, 0);
/*
* Not recognized on AMD in compat mode (but is recognized in legacy
* mode).
*/
if ((ctxt->mode == X86EMUL_MODE_PROT32) && (efer & EFER_LMA)
&& !vendor_intel(ctxt))
return emulate_ud(ctxt);
/* XXX sysenter/sysexit have not been tested in 64bit mode.
* Therefore, we inject an #UD.
*/
if (ctxt->mode == X86EMUL_MODE_PROT64)
return emulate_ud(ctxt);
setup_syscalls_segments(ctxt, &cs, &ss);
ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
switch (ctxt->mode) {
case X86EMUL_MODE_PROT32:
if ((msr_data & 0xfffc) == 0x0)
return emulate_gp(ctxt, 0);
break;
case X86EMUL_MODE_PROT64:
if (msr_data == 0x0)
return emulate_gp(ctxt, 0);
break;
}
ctxt->eflags &= ~(EFLG_VM | EFLG_IF | EFLG_RF);
cs_sel = (u16)msr_data;
cs_sel &= ~SELECTOR_RPL_MASK;
ss_sel = cs_sel + 8;
ss_sel &= ~SELECTOR_RPL_MASK;
if (ctxt->mode == X86EMUL_MODE_PROT64 || (efer & EFER_LMA)) {
cs.d = 0;
cs.l = 1;
}
ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
ops->get_msr(ctxt, MSR_IA32_SYSENTER_EIP, &msr_data);
ctxt->_eip = msr_data;
ops->get_msr(ctxt, MSR_IA32_SYSENTER_ESP, &msr_data);
ctxt->regs[VCPU_REGS_RSP] = msr_data;
return X86EMUL_CONTINUE;
}
static int em_sysexit(struct x86_emulate_ctxt *ctxt)
{
struct x86_emulate_ops *ops = ctxt->ops;
struct desc_struct cs, ss;
u64 msr_data;
int usermode;
u16 cs_sel = 0, ss_sel = 0;
/* inject #GP if in real mode or Virtual 8086 mode */
if (ctxt->mode == X86EMUL_MODE_REAL ||
ctxt->mode == X86EMUL_MODE_VM86)
return emulate_gp(ctxt, 0);
setup_syscalls_segments(ctxt, &cs, &ss);
if ((ctxt->rex_prefix & 0x8) != 0x0)
usermode = X86EMUL_MODE_PROT64;
else
usermode = X86EMUL_MODE_PROT32;
cs.dpl = 3;
ss.dpl = 3;
ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
switch (usermode) {
case X86EMUL_MODE_PROT32:
cs_sel = (u16)(msr_data + 16);
if ((msr_data & 0xfffc) == 0x0)
return emulate_gp(ctxt, 0);
ss_sel = (u16)(msr_data + 24);
break;
case X86EMUL_MODE_PROT64:
cs_sel = (u16)(msr_data + 32);
if (msr_data == 0x0)
return emulate_gp(ctxt, 0);
ss_sel = cs_sel + 8;
cs.d = 0;
cs.l = 1;
break;
}
cs_sel |= SELECTOR_RPL_MASK;
ss_sel |= SELECTOR_RPL_MASK;
ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
ctxt->_eip = ctxt->regs[VCPU_REGS_RDX];
ctxt->regs[VCPU_REGS_RSP] = ctxt->regs[VCPU_REGS_RCX];
return X86EMUL_CONTINUE;
}
static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt)
{
int iopl;
if (ctxt->mode == X86EMUL_MODE_REAL)
return false;
if (ctxt->mode == X86EMUL_MODE_VM86)
return true;
iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
return ctxt->ops->cpl(ctxt) > iopl;
}
static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt,
u16 port, u16 len)
{
struct x86_emulate_ops *ops = ctxt->ops;
struct desc_struct tr_seg;
u32 base3;
int r;
u16 tr, io_bitmap_ptr, perm, bit_idx = port & 0x7;
unsigned mask = (1 << len) - 1;
unsigned long base;
ops->get_segment(ctxt, &tr, &tr_seg, &base3, VCPU_SREG_TR);
if (!tr_seg.p)
return false;
if (desc_limit_scaled(&tr_seg) < 103)
return false;
base = get_desc_base(&tr_seg);
#ifdef CONFIG_X86_64
base |= ((u64)base3) << 32;
#endif
r = ops->read_std(ctxt, base + 102, &io_bitmap_ptr, 2, NULL);
if (r != X86EMUL_CONTINUE)
return false;
if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg))
return false;
r = ops->read_std(ctxt, base + io_bitmap_ptr + port/8, &perm, 2, NULL);
if (r != X86EMUL_CONTINUE)
return false;
if ((perm >> bit_idx) & mask)
return false;
return true;
}
static bool emulator_io_permited(struct x86_emulate_ctxt *ctxt,
u16 port, u16 len)
{
if (ctxt->perm_ok)
return true;
if (emulator_bad_iopl(ctxt))
if (!emulator_io_port_access_allowed(ctxt, port, len))
return false;
ctxt->perm_ok = true;
return true;
}
static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt,
struct tss_segment_16 *tss)
{
tss->ip = ctxt->_eip;
tss->flag = ctxt->eflags;
tss->ax = ctxt->regs[VCPU_REGS_RAX];
tss->cx = ctxt->regs[VCPU_REGS_RCX];
tss->dx = ctxt->regs[VCPU_REGS_RDX];
tss->bx = ctxt->regs[VCPU_REGS_RBX];
tss->sp = ctxt->regs[VCPU_REGS_RSP];
tss->bp = ctxt->regs[VCPU_REGS_RBP];
tss->si = ctxt->regs[VCPU_REGS_RSI];
tss->di = ctxt->regs[VCPU_REGS_RDI];
tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
tss->ldt = get_segment_selector(ctxt, VCPU_SREG_LDTR);
}
static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
struct tss_segment_16 *tss)
{
int ret;
ctxt->_eip = tss->ip;
ctxt->eflags = tss->flag | 2;
ctxt->regs[VCPU_REGS_RAX] = tss->ax;
ctxt->regs[VCPU_REGS_RCX] = tss->cx;
ctxt->regs[VCPU_REGS_RDX] = tss->dx;
ctxt->regs[VCPU_REGS_RBX] = tss->bx;
ctxt->regs[VCPU_REGS_RSP] = tss->sp;
ctxt->regs[VCPU_REGS_RBP] = tss->bp;
ctxt->regs[VCPU_REGS_RSI] = tss->si;
ctxt->regs[VCPU_REGS_RDI] = tss->di;
/*
* SDM says that segment selectors are loaded before segment
* descriptors
*/
set_segment_selector(ctxt, tss->ldt, VCPU_SREG_LDTR);
set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
/*
* Now load segment descriptors. If fault happenes at this stage
* it is handled in a context of new task
*/
ret = load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR);
if (ret != X86EMUL_CONTINUE)
return ret;
ret = load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES);
if (ret != X86EMUL_CONTINUE)
return ret;
ret = load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS);
if (ret != X86EMUL_CONTINUE)
return ret;
ret = load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS);
if (ret != X86EMUL_CONTINUE)
return ret;
ret = load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS);
if (ret != X86EMUL_CONTINUE)
return ret;
return X86EMUL_CONTINUE;
}
static int task_switch_16(struct x86_emulate_ctxt *ctxt,
u16 tss_selector, u16 old_tss_sel,
ulong old_tss_base, struct desc_struct *new_desc)
{
struct x86_emulate_ops *ops = ctxt->ops;
struct tss_segment_16 tss_seg;
int ret;
u32 new_tss_base = get_desc_base(new_desc);
ret = ops->read_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
&ctxt->exception);
if (ret != X86EMUL_CONTINUE)
/* FIXME: need to provide precise fault address */
return ret;
save_state_to_tss16(ctxt, &tss_seg);
ret = ops->write_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
&ctxt->exception);
if (ret != X86EMUL_CONTINUE)
/* FIXME: need to provide precise fault address */
return ret;
ret = ops->read_std(ctxt, new_tss_base, &tss_seg, sizeof tss_seg,
&ctxt->exception);
if (ret != X86EMUL_CONTINUE)
/* FIXME: need to provide precise fault address */
return ret;
if (old_tss_sel != 0xffff) {
tss_seg.prev_task_link = old_tss_sel;
ret = ops->write_std(ctxt, new_tss_base,
&tss_seg.prev_task_link,
sizeof tss_seg.prev_task_link,
&ctxt->exception);
if (ret != X86EMUL_CONTINUE)
/* FIXME: need to provide precise fault address */
return ret;
}
return load_state_from_tss16(ctxt, &tss_seg);
}
static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt,
struct tss_segment_32 *tss)
{
tss->cr3 = ctxt->ops->get_cr(ctxt, 3);
tss->eip = ctxt->_eip;
tss->eflags = ctxt->eflags;
tss->eax = ctxt->regs[VCPU_REGS_RAX];
tss->ecx = ctxt->regs[VCPU_REGS_RCX];
tss->edx = ctxt->regs[VCPU_REGS_RDX];
tss->ebx = ctxt->regs[VCPU_REGS_RBX];
tss->esp = ctxt->regs[VCPU_REGS_RSP];
tss->ebp = ctxt->regs[VCPU_REGS_RBP];
tss->esi = ctxt->regs[VCPU_REGS_RSI];
tss->edi = ctxt->regs[VCPU_REGS_RDI];
tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
tss->fs = get_segment_selector(ctxt, VCPU_SREG_FS);
tss->gs = get_segment_selector(ctxt, VCPU_SREG_GS);
tss->ldt_selector = get_segment_selector(ctxt, VCPU_SREG_LDTR);
}
static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
struct tss_segment_32 *tss)
{
int ret;
if (ctxt->ops->set_cr(ctxt, 3, tss->cr3))
return emulate_gp(ctxt, 0);
ctxt->_eip = tss->eip;
ctxt->eflags = tss->eflags | 2;
/* General purpose registers */
ctxt->regs[VCPU_REGS_RAX] = tss->eax;
ctxt->regs[VCPU_REGS_RCX] = tss->ecx;
ctxt->regs[VCPU_REGS_RDX] = tss->edx;
ctxt->regs[VCPU_REGS_RBX] = tss->ebx;
ctxt->regs[VCPU_REGS_RSP] = tss->esp;
ctxt->regs[VCPU_REGS_RBP] = tss->ebp;
ctxt->regs[VCPU_REGS_RSI] = tss->esi;
ctxt->regs[VCPU_REGS_RDI] = tss->edi;
/*
* SDM says that segment selectors are loaded before segment
* descriptors
*/
set_segment_selector(ctxt, tss->ldt_selector, VCPU_SREG_LDTR);
set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
set_segment_selector(ctxt, tss->fs, VCPU_SREG_FS);
set_segment_selector(ctxt, tss->gs, VCPU_SREG_GS);
/*
* If we're switching between Protected Mode and VM86, we need to make
* sure to update the mode before loading the segment descriptors so
* that the selectors are interpreted correctly.
*
* Need to get rflags to the vcpu struct immediately because it
* influences the CPL which is checked at least when loading the segment
* descriptors and when pushing an error code to the new kernel stack.
*
* TODO Introduce a separate ctxt->ops->set_cpl callback
*/
if (ctxt->eflags & X86_EFLAGS_VM)
ctxt->mode = X86EMUL_MODE_VM86;
else
ctxt->mode = X86EMUL_MODE_PROT32;
ctxt->ops->set_rflags(ctxt, ctxt->eflags);
/*
* Now load segment descriptors. If fault happenes at this stage
* it is handled in a context of new task
*/
ret = load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR);
if (ret != X86EMUL_CONTINUE)
return ret;
ret = load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES);
if (ret != X86EMUL_CONTINUE)
return ret;
ret = load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS);
if (ret != X86EMUL_CONTINUE)
return ret;
ret = load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS);
if (ret != X86EMUL_CONTINUE)
return ret;
ret = load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS);
if (ret != X86EMUL_CONTINUE)
return ret;
ret = load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS);
if (ret != X86EMUL_CONTINUE)
return ret;
ret = load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS);
if (ret != X86EMUL_CONTINUE)
return ret;
return X86EMUL_CONTINUE;
}
static int task_switch_32(struct x86_emulate_ctxt *ctxt,
u16 tss_selector, u16 old_tss_sel,
ulong old_tss_base, struct desc_struct *new_desc)
{
struct x86_emulate_ops *ops = ctxt->ops;
struct tss_segment_32 tss_seg;
int ret;
u32 new_tss_base = get_desc_base(new_desc);
ret = ops->read_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
&ctxt->exception);
if (ret != X86EMUL_CONTINUE)
/* FIXME: need to provide precise fault address */
return ret;
save_state_to_tss32(ctxt, &tss_seg);
ret = ops->write_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
&ctxt->exception);
if (ret != X86EMUL_CONTINUE)
/* FIXME: need to provide precise fault address */
return ret;
ret = ops->read_std(ctxt, new_tss_base, &tss_seg, sizeof tss_seg,
&ctxt->exception);
if (ret != X86EMUL_CONTINUE)
/* FIXME: need to provide precise fault address */
return ret;
if (old_tss_sel != 0xffff) {
tss_seg.prev_task_link = old_tss_sel;
ret = ops->write_std(ctxt, new_tss_base,
&tss_seg.prev_task_link,
sizeof tss_seg.prev_task_link,
&ctxt->exception);
if (ret != X86EMUL_CONTINUE)
/* FIXME: need to provide precise fault address */
return ret;
}
return load_state_from_tss32(ctxt, &tss_seg);
}
static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
u16 tss_selector, int idt_index, int reason,
bool has_error_code, u32 error_code)
{
struct x86_emulate_ops *ops = ctxt->ops;
struct desc_struct curr_tss_desc, next_tss_desc;
int ret;
u16 old_tss_sel = get_segment_selector(ctxt, VCPU_SREG_TR);
ulong old_tss_base =
ops->get_cached_segment_base(ctxt, VCPU_SREG_TR);
u32 desc_limit;
/* FIXME: old_tss_base == ~0 ? */
ret = read_segment_descriptor(ctxt, tss_selector, &next_tss_desc);
if (ret != X86EMUL_CONTINUE)
return ret;
ret = read_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc);
if (ret != X86EMUL_CONTINUE)
return ret;
/* FIXME: check that next_tss_desc is tss */
/*
* Check privileges. The three cases are task switch caused by...
*
* 1. jmp/call/int to task gate: Check against DPL of the task gate
* 2. Exception/IRQ/iret: No check is performed
* 3. jmp/call to TSS: Check agains DPL of the TSS
*/
if (reason == TASK_SWITCH_GATE) {
if (idt_index != -1) {
/* Software interrupts */
struct desc_struct task_gate_desc;
int dpl;
ret = read_interrupt_descriptor(ctxt, idt_index,
&task_gate_desc);
if (ret != X86EMUL_CONTINUE)
return ret;
dpl = task_gate_desc.dpl;
if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl)
return emulate_gp(ctxt, (idt_index << 3) | 0x2);
}
} else if (reason != TASK_SWITCH_IRET) {
int dpl = next_tss_desc.dpl;
if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl)
return emulate_gp(ctxt, tss_selector);
}
desc_limit = desc_limit_scaled(&next_tss_desc);
if (!next_tss_desc.p ||
((desc_limit < 0x67 && (next_tss_desc.type & 8)) ||
desc_limit < 0x2b)) {
emulate_ts(ctxt, tss_selector & 0xfffc);
return X86EMUL_PROPAGATE_FAULT;
}
if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */
write_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc);
}
if (reason == TASK_SWITCH_IRET)
ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT;
/* set back link to prev task only if NT bit is set in eflags
note that old_tss_sel is not used afetr this point */
if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
old_tss_sel = 0xffff;
if (next_tss_desc.type & 8)
ret = task_switch_32(ctxt, tss_selector, old_tss_sel,
old_tss_base, &next_tss_desc);
else
ret = task_switch_16(ctxt, tss_selector, old_tss_sel,
old_tss_base, &next_tss_desc);
if (ret != X86EMUL_CONTINUE)
return ret;
if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE)
ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT;
if (reason != TASK_SWITCH_IRET) {
next_tss_desc.type |= (1 << 1); /* set busy flag */
write_segment_descriptor(ctxt, tss_selector, &next_tss_desc);
}
ops->set_cr(ctxt, 0, ops->get_cr(ctxt, 0) | X86_CR0_TS);
ops->set_segment(ctxt, tss_selector, &next_tss_desc, 0, VCPU_SREG_TR);
if (has_error_code) {
ctxt->op_bytes = ctxt->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2;
ctxt->lock_prefix = 0;
ctxt->src.val = (unsigned long) error_code;
ret = em_push(ctxt);
}
return ret;
}
int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
u16 tss_selector, int idt_index, int reason,
bool has_error_code, u32 error_code)
{
int rc;
ctxt->_eip = ctxt->eip;
ctxt->dst.type = OP_NONE;
rc = emulator_do_task_switch(ctxt, tss_selector, idt_index, reason,
has_error_code, error_code);
if (rc == X86EMUL_CONTINUE)
ctxt->eip = ctxt->_eip;
return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
}
static void string_addr_inc(struct x86_emulate_ctxt *ctxt, unsigned seg,
int reg, struct operand *op)
{
int df = (ctxt->eflags & EFLG_DF) ? -1 : 1;
register_address_increment(ctxt, &ctxt->regs[reg], df * op->bytes);
op->addr.mem.ea = register_address(ctxt, ctxt->regs[reg]);
op->addr.mem.seg = seg;
}
static int em_das(struct x86_emulate_ctxt *ctxt)
{
u8 al, old_al;
bool af, cf, old_cf;
cf = ctxt->eflags & X86_EFLAGS_CF;
al = ctxt->dst.val;
old_al = al;
old_cf = cf;
cf = false;
af = ctxt->eflags & X86_EFLAGS_AF;
if ((al & 0x0f) > 9 || af) {
al -= 6;
cf = old_cf | (al >= 250);
af = true;
} else {
af = false;
}
if (old_al > 0x99 || old_cf) {
al -= 0x60;
cf = true;
}
ctxt->dst.val = al;
/* Set PF, ZF, SF */
ctxt->src.type = OP_IMM;
ctxt->src.val = 0;
ctxt->src.bytes = 1;
emulate_2op_SrcV(ctxt, "or");
ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF);
if (cf)
ctxt->eflags |= X86_EFLAGS_CF;
if (af)
ctxt->eflags |= X86_EFLAGS_AF;
return X86EMUL_CONTINUE;
}
static int em_call(struct x86_emulate_ctxt *ctxt)
{
long rel = ctxt->src.val;
ctxt->src.val = (unsigned long)ctxt->_eip;
jmp_rel(ctxt, rel);
return em_push(ctxt);
}
static int em_call_far(struct x86_emulate_ctxt *ctxt)
{
u16 sel, old_cs;
ulong old_eip;
int rc;
old_cs = get_segment_selector(ctxt, VCPU_SREG_CS);
old_eip = ctxt->_eip;
memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
if (load_segment_descriptor(ctxt, sel, VCPU_SREG_CS))
return X86EMUL_CONTINUE;
ctxt->_eip = 0;
memcpy(&ctxt->_eip, ctxt->src.valptr, ctxt->op_bytes);
ctxt->src.val = old_cs;
rc = em_push(ctxt);
if (rc != X86EMUL_CONTINUE)
return rc;
ctxt->src.val = old_eip;
return em_push(ctxt);
}
static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt)
{
int rc;
ctxt->dst.type = OP_REG;
ctxt->dst.addr.reg = &ctxt->_eip;
ctxt->dst.bytes = ctxt->op_bytes;
rc = emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes);
if (rc != X86EMUL_CONTINUE)
return rc;
register_address_increment(ctxt, &ctxt->regs[VCPU_REGS_RSP], ctxt->src.val);
return X86EMUL_CONTINUE;
}
static int em_add(struct x86_emulate_ctxt *ctxt)
{
emulate_2op_SrcV(ctxt, "add");
return X86EMUL_CONTINUE;
}
static int em_or(struct x86_emulate_ctxt *ctxt)
{
emulate_2op_SrcV(ctxt, "or");
return X86EMUL_CONTINUE;
}
static int em_adc(struct x86_emulate_ctxt *ctxt)
{
emulate_2op_SrcV(ctxt, "adc");
return X86EMUL_CONTINUE;
}
static int em_sbb(struct x86_emulate_ctxt *ctxt)
{
emulate_2op_SrcV(ctxt, "sbb");
return X86EMUL_CONTINUE;
}
static int em_and(struct x86_emulate_ctxt *ctxt)
{
emulate_2op_SrcV(ctxt, "and");
return X86EMUL_CONTINUE;
}
static int em_sub(struct x86_emulate_ctxt *ctxt)
{
emulate_2op_SrcV(ctxt, "sub");
return X86EMUL_CONTINUE;
}
static int em_xor(struct x86_emulate_ctxt *ctxt)
{
emulate_2op_SrcV(ctxt, "xor");
return X86EMUL_CONTINUE;
}
static int em_cmp(struct x86_emulate_ctxt *ctxt)
{
emulate_2op_SrcV(ctxt, "cmp");
/* Disable writeback. */
ctxt->dst.type = OP_NONE;
return X86EMUL_CONTINUE;
}
static int em_test(struct x86_emulate_ctxt *ctxt)
{
emulate_2op_SrcV(ctxt, "test");
/* Disable writeback. */
ctxt->dst.type = OP_NONE;
return X86EMUL_CONTINUE;
}
static int em_xchg(struct x86_emulate_ctxt *ctxt)
{
/* Write back the register source. */
ctxt->src.val = ctxt->dst.val;
write_register_operand(&ctxt->src);
/* Write back the memory destination with implicit LOCK prefix. */
ctxt->dst.val = ctxt->src.orig_val;
ctxt->lock_prefix = 1;
return X86EMUL_CONTINUE;
}
static int em_imul(struct x86_emulate_ctxt *ctxt)
{
emulate_2op_SrcV_nobyte(ctxt, "imul");
return X86EMUL_CONTINUE;
}
static int em_imul_3op(struct x86_emulate_ctxt *ctxt)
{
ctxt->dst.val = ctxt->src2.val;
return em_imul(ctxt);
}
static int em_cwd(struct x86_emulate_ctxt *ctxt)
{
ctxt->dst.type = OP_REG;
ctxt->dst.bytes = ctxt->src.bytes;
ctxt->dst.addr.reg = &ctxt->regs[VCPU_REGS_RDX];
ctxt->dst.val = ~((ctxt->src.val >> (ctxt->src.bytes * 8 - 1)) - 1);
return X86EMUL_CONTINUE;
}
static int em_rdtsc(struct x86_emulate_ctxt *ctxt)
{
u64 tsc = 0;
ctxt->ops->get_msr(ctxt, MSR_IA32_TSC, &tsc);
ctxt->regs[VCPU_REGS_RAX] = (u32)tsc;
ctxt->regs[VCPU_REGS_RDX] = tsc >> 32;
return X86EMUL_CONTINUE;
}
static int em_rdpmc(struct x86_emulate_ctxt *ctxt)
{
u64 pmc;
if (ctxt->ops->read_pmc(ctxt, ctxt->regs[VCPU_REGS_RCX], &pmc))
return emulate_gp(ctxt, 0);
ctxt->regs[VCPU_REGS_RAX] = (u32)pmc;
ctxt->regs[VCPU_REGS_RDX] = pmc >> 32;
return X86EMUL_CONTINUE;
}
static int em_mov(struct x86_emulate_ctxt *ctxt)
{
ctxt->dst.val = ctxt->src.val;
return X86EMUL_CONTINUE;
}