blob: e4a0c033b5b257d39141ec39ae71249fd44d1db2 [file] [log] [blame]
/*
* Copyright © 2009 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <linux/i2c.h>
#include <linux/pm_runtime.h>
#include <drm/drmP.h>
#include "psb_fb.h"
#include "psb_drv.h"
#include "psb_intel_drv.h"
#include "psb_intel_reg.h"
#include "psb_intel_display.h"
#include "psb_powermgmt.h"
struct psb_intel_range_t {
int min, max;
};
struct mrst_limit_t {
struct psb_intel_range_t dot, m, p1;
};
struct mrst_clock_t {
/* derived values */
int dot;
int m;
int p1;
};
#define MRST_LIMIT_LVDS_100L 0
#define MRST_LIMIT_LVDS_83 1
#define MRST_LIMIT_LVDS_100 2
#define MRST_DOT_MIN 19750
#define MRST_DOT_MAX 120000
#define MRST_M_MIN_100L 20
#define MRST_M_MIN_100 10
#define MRST_M_MIN_83 12
#define MRST_M_MAX_100L 34
#define MRST_M_MAX_100 17
#define MRST_M_MAX_83 20
#define MRST_P1_MIN 2
#define MRST_P1_MAX_0 7
#define MRST_P1_MAX_1 8
static const struct mrst_limit_t mrst_limits[] = {
{ /* MRST_LIMIT_LVDS_100L */
.dot = {.min = MRST_DOT_MIN, .max = MRST_DOT_MAX},
.m = {.min = MRST_M_MIN_100L, .max = MRST_M_MAX_100L},
.p1 = {.min = MRST_P1_MIN, .max = MRST_P1_MAX_1},
},
{ /* MRST_LIMIT_LVDS_83L */
.dot = {.min = MRST_DOT_MIN, .max = MRST_DOT_MAX},
.m = {.min = MRST_M_MIN_83, .max = MRST_M_MAX_83},
.p1 = {.min = MRST_P1_MIN, .max = MRST_P1_MAX_0},
},
{ /* MRST_LIMIT_LVDS_100 */
.dot = {.min = MRST_DOT_MIN, .max = MRST_DOT_MAX},
.m = {.min = MRST_M_MIN_100, .max = MRST_M_MAX_100},
.p1 = {.min = MRST_P1_MIN, .max = MRST_P1_MAX_1},
},
};
#define MRST_M_MIN 10
static const u32 mrst_m_converts[] = {
0x2B, 0x15, 0x2A, 0x35, 0x1A, 0x0D, 0x26, 0x33, 0x19, 0x2C,
0x36, 0x3B, 0x1D, 0x2E, 0x37, 0x1B, 0x2D, 0x16, 0x0B, 0x25,
0x12, 0x09, 0x24, 0x32, 0x39, 0x1c,
};
static const struct mrst_limit_t *mrst_limit(struct drm_crtc *crtc)
{
const struct mrst_limit_t *limit = NULL;
struct drm_device *dev = crtc->dev;
DRM_DRIVER_PRIVATE_T *dev_priv = dev->dev_private;
if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)
|| psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_MIPI)) {
switch (dev_priv->core_freq) {
case 100:
limit = &mrst_limits[MRST_LIMIT_LVDS_100L];
break;
case 166:
limit = &mrst_limits[MRST_LIMIT_LVDS_83];
break;
case 200:
limit = &mrst_limits[MRST_LIMIT_LVDS_100];
break;
}
} else {
limit = NULL;
PSB_DEBUG_ENTRY("mrst_limit Wrong display type.\n");
}
return limit;
}
/** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
static void mrst_clock(int refclk, struct mrst_clock_t *clock)
{
clock->dot = (refclk * clock->m) / (14 * clock->p1);
}
void mrstPrintPll(char *prefix, struct mrst_clock_t *clock)
{
PSB_DEBUG_ENTRY("%s: dotclock = %d, m = %d, p1 = %d.\n",
prefix, clock->dot, clock->m, clock->p1);
}
/**
* Returns a set of divisors for the desired target clock with the given refclk,
* or FALSE. Divisor values are the actual divisors for
*/
static bool
mrstFindBestPLL(struct drm_crtc *crtc, int target, int refclk,
struct mrst_clock_t *best_clock)
{
struct mrst_clock_t clock;
const struct mrst_limit_t *limit = mrst_limit(crtc);
int err = target;
memset(best_clock, 0, sizeof(*best_clock));
for (clock.m = limit->m.min; clock.m <= limit->m.max; clock.m++) {
for (clock.p1 = limit->p1.min; clock.p1 <= limit->p1.max;
clock.p1++) {
int this_err;
mrst_clock(refclk, &clock);
this_err = abs(clock.dot - target);
if (this_err < err) {
*best_clock = clock;
err = this_err;
}
}
}
DRM_DEBUG("mrstFindBestPLL err = %d.\n", err);
return err != target;
}
/**
* Sets the power management mode of the pipe and plane.
*
* This code should probably grow support for turning the cursor off and back
* on appropriately at the same time as we're turning the pipe off/on.
*/
static void mrst_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct drm_device *dev = crtc->dev;
struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
int pipe = psb_intel_crtc->pipe;
int dpll_reg = (pipe == 0) ? MRST_DPLL_A : DPLL_B;
int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
int dspbase_reg = (pipe == 0) ? MRST_DSPABASE : DSPBBASE;
int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
u32 temp;
bool enabled;
PSB_DEBUG_ENTRY("mode = %d, pipe = %d\n", mode, pipe);
if (!gma_power_begin(dev, true))
return;
/* XXX: When our outputs are all unaware of DPMS modes other than off
* and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
*/
switch (mode) {
case DRM_MODE_DPMS_ON:
case DRM_MODE_DPMS_STANDBY:
case DRM_MODE_DPMS_SUSPEND:
/* Enable the DPLL */
temp = REG_READ(dpll_reg);
if ((temp & DPLL_VCO_ENABLE) == 0) {
REG_WRITE(dpll_reg, temp);
REG_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
udelay(150);
REG_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
REG_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
udelay(150);
REG_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
REG_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
udelay(150);
}
/* Enable the pipe */
temp = REG_READ(pipeconf_reg);
if ((temp & PIPEACONF_ENABLE) == 0)
REG_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
/* Enable the plane */
temp = REG_READ(dspcntr_reg);
if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
REG_WRITE(dspcntr_reg,
temp | DISPLAY_PLANE_ENABLE);
/* Flush the plane changes */
REG_WRITE(dspbase_reg, REG_READ(dspbase_reg));
}
psb_intel_crtc_load_lut(crtc);
/* Give the overlay scaler a chance to enable
if it's on this pipe */
/* psb_intel_crtc_dpms_video(crtc, true); TODO */
break;
case DRM_MODE_DPMS_OFF:
/* Give the overlay scaler a chance to disable
* if it's on this pipe */
/* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
/* Disable the VGA plane that we never use */
REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
/* Disable display plane */
temp = REG_READ(dspcntr_reg);
if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
REG_WRITE(dspcntr_reg,
temp & ~DISPLAY_PLANE_ENABLE);
/* Flush the plane changes */
REG_WRITE(dspbase_reg, REG_READ(dspbase_reg));
REG_READ(dspbase_reg);
}
/* Next, disable display pipes */
temp = REG_READ(pipeconf_reg);
if ((temp & PIPEACONF_ENABLE) != 0) {
REG_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
REG_READ(pipeconf_reg);
}
/* Wait for for the pipe disable to take effect. */
psb_intel_wait_for_vblank(dev);
temp = REG_READ(dpll_reg);
if ((temp & DPLL_VCO_ENABLE) != 0) {
REG_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
REG_READ(dpll_reg);
}
/* Wait for the clocks to turn off. */
udelay(150);
break;
}
enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
/*Set FIFO Watermarks*/
REG_WRITE(DSPARB, 0x3FFF);
REG_WRITE(DSPFW1, 0x3F88080A);
REG_WRITE(DSPFW2, 0x0b060808);
REG_WRITE(DSPFW3, 0x0);
REG_WRITE(DSPFW4, 0x08030404);
REG_WRITE(DSPFW5, 0x04040404);
REG_WRITE(DSPFW6, 0x78);
REG_WRITE(0x70400, REG_READ(0x70400) | 0x4000);
/* Must write Bit 14 of the Chicken Bit Register */
gma_power_end(dev);
}
/**
* Return the pipe currently connected to the panel fitter,
* or -1 if the panel fitter is not present or not in use
*/
static int mrst_panel_fitter_pipe(struct drm_device *dev)
{
u32 pfit_control;
pfit_control = REG_READ(PFIT_CONTROL);
/* See if the panel fitter is in use */
if ((pfit_control & PFIT_ENABLE) == 0)
return -1;
return (pfit_control >> 29) & 3;
}
static int mrst_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y,
struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
DRM_DRIVER_PRIVATE_T *dev_priv = dev->dev_private;
int pipe = psb_intel_crtc->pipe;
int fp_reg = (pipe == 0) ? MRST_FPA0 : FPB0;
int dpll_reg = (pipe == 0) ? MRST_DPLL_A : DPLL_B;
int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
int refclk = 0;
struct mrst_clock_t clock;
u32 dpll = 0, fp = 0, dspcntr, pipeconf;
bool ok, is_sdvo = false;
bool is_crt = false, is_lvds = false, is_tv = false;
bool is_mipi = false;
struct drm_mode_config *mode_config = &dev->mode_config;
struct psb_intel_output *psb_intel_output = NULL;
uint64_t scalingType = DRM_MODE_SCALE_FULLSCREEN;
struct drm_encoder *encoder;
PSB_DEBUG_ENTRY("pipe = 0x%x\n", pipe);
if (!gma_power_begin(dev, true))
return 0;
memcpy(&psb_intel_crtc->saved_mode,
mode,
sizeof(struct drm_display_mode));
memcpy(&psb_intel_crtc->saved_adjusted_mode,
adjusted_mode,
sizeof(struct drm_display_mode));
list_for_each_entry(encoder, &mode_config->encoder_list, head) {
if (encoder->crtc != crtc)
continue;
psb_intel_output = enc_to_psb_intel_output(encoder);
switch (psb_intel_output->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
break;
case INTEL_OUTPUT_SDVO:
is_sdvo = true;
break;
case INTEL_OUTPUT_TVOUT:
is_tv = true;
break;
case INTEL_OUTPUT_ANALOG:
is_crt = true;
break;
case INTEL_OUTPUT_MIPI:
is_mipi = true;
break;
}
}
/* Disable the VGA plane that we never use */
REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
/* Disable the panel fitter if it was on our pipe */
if (mrst_panel_fitter_pipe(dev) == pipe)
REG_WRITE(PFIT_CONTROL, 0);
REG_WRITE(pipesrc_reg,
((mode->crtc_hdisplay - 1) << 16) |
(mode->crtc_vdisplay - 1));
if (psb_intel_output)
drm_connector_property_get_value(&psb_intel_output->base,
dev->mode_config.scaling_mode_property, &scalingType);
if (scalingType == DRM_MODE_SCALE_NO_SCALE) {
/* Moorestown doesn't have register support for centering so
* we need to mess with the h/vblank and h/vsync start and
* ends to get centering */
int offsetX = 0, offsetY = 0;
offsetX = (adjusted_mode->crtc_hdisplay -
mode->crtc_hdisplay) / 2;
offsetY = (adjusted_mode->crtc_vdisplay -
mode->crtc_vdisplay) / 2;
REG_WRITE(htot_reg, (mode->crtc_hdisplay - 1) |
((adjusted_mode->crtc_htotal - 1) << 16));
REG_WRITE(vtot_reg, (mode->crtc_vdisplay - 1) |
((adjusted_mode->crtc_vtotal - 1) << 16));
REG_WRITE(hblank_reg,
(adjusted_mode->crtc_hblank_start - offsetX - 1) |
((adjusted_mode->crtc_hblank_end - offsetX - 1) << 16));
REG_WRITE(hsync_reg,
(adjusted_mode->crtc_hsync_start - offsetX - 1) |
((adjusted_mode->crtc_hsync_end - offsetX - 1) << 16));
REG_WRITE(vblank_reg,
(adjusted_mode->crtc_vblank_start - offsetY - 1) |
((adjusted_mode->crtc_vblank_end - offsetY - 1) << 16));
REG_WRITE(vsync_reg,
(adjusted_mode->crtc_vsync_start - offsetY - 1) |
((adjusted_mode->crtc_vsync_end - offsetY - 1) << 16));
} else {
REG_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
((adjusted_mode->crtc_htotal - 1) << 16));
REG_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
((adjusted_mode->crtc_vtotal - 1) << 16));
REG_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
((adjusted_mode->crtc_hblank_end - 1) << 16));
REG_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
((adjusted_mode->crtc_hsync_end - 1) << 16));
REG_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
((adjusted_mode->crtc_vblank_end - 1) << 16));
REG_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
((adjusted_mode->crtc_vsync_end - 1) << 16));
}
/* Flush the plane changes */
{
struct drm_crtc_helper_funcs *crtc_funcs =
crtc->helper_private;
crtc_funcs->mode_set_base(crtc, x, y, old_fb);
}
/* setup pipeconf */
pipeconf = REG_READ(pipeconf_reg);
/* Set up the display plane register */
dspcntr = REG_READ(dspcntr_reg);
dspcntr |= DISPPLANE_GAMMA_ENABLE;
if (pipe == 0)
dspcntr |= DISPPLANE_SEL_PIPE_A;
else
dspcntr |= DISPPLANE_SEL_PIPE_B;
dev_priv->dspcntr = dspcntr |= DISPLAY_PLANE_ENABLE;
dev_priv->pipeconf = pipeconf |= PIPEACONF_ENABLE;
if (is_mipi)
goto mrst_crtc_mode_set_exit;
refclk = dev_priv->core_freq * 1000;
dpll = 0; /*BIT16 = 0 for 100MHz reference */
ok = mrstFindBestPLL(crtc, adjusted_mode->clock, refclk, &clock);
if (!ok) {
PSB_DEBUG_ENTRY(
"mrstFindBestPLL fail in mrst_crtc_mode_set.\n");
} else {
PSB_DEBUG_ENTRY("mrst_crtc_mode_set pixel clock = %d,"
"m = %x, p1 = %x.\n", clock.dot, clock.m,
clock.p1);
}
fp = mrst_m_converts[(clock.m - MRST_M_MIN)] << 8;
dpll |= DPLL_VGA_MODE_DIS;
dpll |= DPLL_VCO_ENABLE;
if (is_lvds)
dpll |= DPLLA_MODE_LVDS;
else
dpll |= DPLLB_MODE_DAC_SERIAL;
if (is_sdvo) {
int sdvo_pixel_multiply =
adjusted_mode->clock / mode->clock;
dpll |= DPLL_DVO_HIGH_SPEED;
dpll |=
(sdvo_pixel_multiply -
1) << SDVO_MULTIPLIER_SHIFT_HIRES;
}
/* compute bitmask from p1 value */
dpll |= (1 << (clock.p1 - 2)) << 17;
dpll |= DPLL_VCO_ENABLE;
mrstPrintPll("chosen", &clock);
if (dpll & DPLL_VCO_ENABLE) {
REG_WRITE(fp_reg, fp);
REG_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
REG_READ(dpll_reg);
/* Check the DPLLA lock bit PIPEACONF[29] */
udelay(150);
}
REG_WRITE(fp_reg, fp);
REG_WRITE(dpll_reg, dpll);
REG_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
udelay(150);
/* write it again -- the BIOS does, after all */
REG_WRITE(dpll_reg, dpll);
REG_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
udelay(150);
REG_WRITE(pipeconf_reg, pipeconf);
REG_READ(pipeconf_reg);
psb_intel_wait_for_vblank(dev);
REG_WRITE(dspcntr_reg, dspcntr);
psb_intel_wait_for_vblank(dev);
mrst_crtc_mode_set_exit:
gma_power_end(dev);
return 0;
}
static bool mrst_crtc_mode_fixup(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
return true;
}
int mrst_pipe_set_base(struct drm_crtc *crtc,
int x, int y, struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
/* struct drm_i915_master_private *master_priv; */
struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
struct psb_framebuffer *psbfb = to_psb_fb(crtc->fb);
int pipe = psb_intel_crtc->pipe;
unsigned long start, offset;
/* FIXME: check if we need this surely MRST is pipe 0 only */
int dspbase = (pipe == 0 ? DSPALINOFF : DSPBBASE);
int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
u32 dspcntr;
int ret = 0;
PSB_DEBUG_ENTRY("\n");
/* no fb bound */
if (!crtc->fb) {
DRM_DEBUG("No FB bound\n");
return 0;
}
if (!gma_power_begin(dev, true))
return 0;
start = psbfb->gtt->offset;
offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
REG_WRITE(dspstride, crtc->fb->pitch);
dspcntr = REG_READ(dspcntr_reg);
dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
switch (crtc->fb->bits_per_pixel) {
case 8:
dspcntr |= DISPPLANE_8BPP;
break;
case 16:
if (crtc->fb->depth == 15)
dspcntr |= DISPPLANE_15_16BPP;
else
dspcntr |= DISPPLANE_16BPP;
break;
case 24:
case 32:
dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
break;
default:
DRM_ERROR("Unknown color depth\n");
ret = -EINVAL;
goto pipe_set_base_exit;
}
REG_WRITE(dspcntr_reg, dspcntr);
DRM_DEBUG("Writing base %08lX %08lX %d %d\n", start, offset, x, y);
if (0 /* FIXMEAC - check what PSB needs */) {
REG_WRITE(dspbase, offset);
REG_READ(dspbase);
REG_WRITE(dspsurf, start);
REG_READ(dspsurf);
} else {
REG_WRITE(dspbase, start + offset);
REG_READ(dspbase);
}
pipe_set_base_exit:
gma_power_end(dev);
return ret;
}
static void mrst_crtc_prepare(struct drm_crtc *crtc)
{
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
}
static void mrst_crtc_commit(struct drm_crtc *crtc)
{
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
}
const struct drm_crtc_helper_funcs mrst_helper_funcs = {
.dpms = mrst_crtc_dpms,
.mode_fixup = mrst_crtc_mode_fixup,
.mode_set = mrst_crtc_mode_set,
.mode_set_base = mrst_pipe_set_base,
.prepare = mrst_crtc_prepare,
.commit = mrst_crtc_commit,
};