blob: 76ff7bacd35b80e9d24df19e0ba0708a373fc8da [file] [log] [blame]
/*
* psb GEM interface
*
* Copyright (c) 2011, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*
* Authors: Alan Cox
*
* TODO:
* - we don't actually put GEM objects into the GART yet
* - we need to work out if the MMU is relevant as well (eg for
* accelerated operations on a GEM object)
* - cache coherency
*
* ie this is just an initial framework to get us going.
*/
#include <drm/drmP.h>
#include <drm/drm.h>
#include "psb_drm.h"
#include "psb_drv.h"
int psb_gem_init_object(struct drm_gem_object *obj)
{
return -EINVAL;
}
void psb_gem_free_object(struct drm_gem_object *obj)
{
struct gtt_range *gtt = container_of(obj, struct gtt_range, gem);
psb_gtt_free_range(obj->dev, gtt);
if (obj->map_list.map) {
/* Do things GEM should do for us */
struct drm_gem_mm *mm = obj->dev->mm_private;
struct drm_map_list *list = &obj->map_list;
drm_ht_remove_item(&mm->offset_hash, &list->hash);
drm_mm_put_block(list->file_offset_node);
kfree(list->map);
list->map = NULL;
}
drm_gem_object_release(obj);
}
int psb_gem_get_aperture(struct drm_device *dev, void *data,
struct drm_file *file)
{
return -EINVAL;
}
/**
* psb_gem_create_mmap_offset - invent an mmap offset
* @obj: our object
*
* This is basically doing by hand a pile of ugly crap which should
* be done automatically by the GEM library code but isn't
*/
static int psb_gem_create_mmap_offset(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
struct drm_gem_mm *mm = dev->mm_private;
struct drm_map_list *list;
struct drm_local_map *map;
int ret;
list = &obj->map_list;
list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
if (list->map == NULL)
return -ENOMEM;
map = list->map;
map->type = _DRM_GEM;
map->size = obj->size;
map->handle =obj;
list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
obj->size / PAGE_SIZE, 0, 0);
if (!list->file_offset_node) {
DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
ret = -ENOSPC;
goto free_it;
}
list->file_offset_node = drm_mm_get_block(list->file_offset_node,
obj->size / PAGE_SIZE, 0);
if (!list->file_offset_node) {
ret = -ENOMEM;
goto free_it;
}
list->hash.key = list->file_offset_node->start;
ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
if (ret) {
DRM_ERROR("failed to add to map hash\n");
goto free_mm;
}
return 0;
free_mm:
drm_mm_put_block(list->file_offset_node);
free_it:
kfree(list->map);
list->map = NULL;
return ret;
}
/**
* psb_gem_dumb_map_gtt - buffer mapping for dumb interface
* @file: our drm client file
* @dev: drm device
* @handle: GEM handle to the object (from dumb_create)
*
* Do the necessary setup to allow the mapping of the frame buffer
* into user memory. We don't have to do much here at the moment.
*/
int psb_gem_dumb_map_gtt(struct drm_file *file, struct drm_device *dev,
uint32_t handle, uint64_t *offset)
{
int ret = 0;
struct drm_gem_object *obj;
if (!(dev->driver->driver_features & DRIVER_GEM))
return -ENODEV;
mutex_lock(&dev->struct_mutex);
/* GEM does all our handle to object mapping */
obj = drm_gem_object_lookup(dev, file, handle);
if (obj == NULL) {
ret = -ENOENT;
goto unlock;
}
/* What validation is needed here ? */
/* Make it mmapable */
if (!obj->map_list.map) {
ret = psb_gem_create_mmap_offset(obj);
if (ret)
goto out;
}
/* GEM should really work out the hash offsets for us */
*offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
out:
drm_gem_object_unreference(obj);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
/**
* psb_gem_create - create a mappable object
* @file: the DRM file of the client
* @dev: our device
* @size: the size requested
* @handlep: returned handle (opaque number)
*
* Create a GEM object, fill in the boilerplate and attach a handle to
* it so that userspace can speak about it. This does the core work
* for the various methods that do/will create GEM objects for things
*/
static int psb_gem_create(struct drm_file *file,
struct drm_device *dev, uint64_t size, uint32_t *handlep)
{
struct gtt_range *r;
int ret;
u32 handle;
size = roundup(size, PAGE_SIZE);
/* Allocate our object - for now a direct gtt range which is not
stolen memory backed */
r = psb_gtt_alloc_range(dev, size, "gem", 0);
if (r == NULL)
return -ENOSPC;
/* Initialize the extra goodies GEM needs to do all the hard work */
if (drm_gem_object_init(dev, &r->gem, size) != 0) {
psb_gtt_free_range(dev, r);
/* GEM doesn't give an error code and we don't have an
EGEMSUCKS so make something up for now - FIXME */
return -ENOMEM;
}
/* Give the object a handle so we can carry it more easily */
ret = drm_gem_handle_create(file, &r->gem, &handle);
if (ret) {
drm_gem_object_release(&r->gem);
psb_gtt_free_range(dev, r);
return ret;
}
/* We have the initial and handle reference but need only one now */
drm_gem_object_unreference(&r->gem);
*handlep = handle;
return 0;
}
/**
* psb_gem_dumb_create - create a dumb buffer
* @drm_file: our client file
* @dev: our device
* @args: the requested arguments copied from userspace
*
* Allocate a buffer suitable for use for a frame buffer of the
* form described by user space. Give userspace a handle by which
* to reference it.
*/
int psb_gem_dumb_create(struct drm_file *file, struct drm_device *dev,
struct drm_mode_create_dumb *args)
{
args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
args->size = args->pitch * args->height;
return psb_gem_create(file, dev, args->size, &args->handle);
}
/**
* psb_gem_dumb_destroy - destroy a dumb buffer
* @file: client file
* @dev: our DRM device
* @handle: the object handle
*
* Destroy a handle that was created via psb_gem_dumb_create, at least
* we hope it was created that way. i915 seems to assume the caller
* does the checking but that might be worth review ! FIXME
*/
int psb_gem_dumb_destroy(struct drm_file *file, struct drm_device *dev,
uint32_t handle)
{
/* No special work needed, drop the reference and see what falls out */
return drm_gem_handle_delete(file, handle);
}
/**
* psb_gem_fault - pagefault handler for GEM objects
* @vma: the VMA of the GEM object
* @vmf: fault detail
*
* Invoked when a fault occurs on an mmap of a GEM managed area. GEM
* does most of the work for us including the actual map/unmap calls
* but we need to do the actual page work.
*
* This code eventually needs to handle faulting objects in and out
* of the GART and repacking it when we run out of space. We can put
* that off for now and for our simple uses
*
* The VMA was set up by GEM. In doing so it also ensured that the
* vma->vm_private_data points to the GEM object that is backing this
* mapping.
*
* To avoid aliasing and cache funnies we want to map the object
* through the GART. For the moment this is slightly hackish. It would
* be nicer if GEM provided mmap opened/closed hooks for us giving
* the object so that we could track things nicely. That needs changes
* to the core GEM code so must be tackled post staging
*
* FIXME
*/
int psb_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct drm_gem_object *obj;
struct gtt_range *r;
int ret;
unsigned long pfn;
pgoff_t page_offset;
struct drm_device *dev;
obj = vma->vm_private_data; /* GEM object */
dev = obj->dev;
r = container_of(obj, struct gtt_range, gem); /* Get the gtt range */
/* Make sure we don't parallel update on a fault, nor move or remove
something from beneath our feet */
mutex_lock(&dev->struct_mutex);
/* For now the mmap pins the object and it stays pinned. As things
stand that will do us no harm */
if (r->mmapping == 0) {
ret = psb_gtt_pin(r);
if (ret < 0) {
DRM_ERROR("gma500: pin failed: %d\n", ret);
goto fail;
}
r->mmapping = 1;
}
/* FIXME: Locking. We may also need to repack the GART sometimes */
/* Page relative to the VMA start */
page_offset = ((unsigned long) vmf->virtual_address - vma->vm_start)
>> PAGE_SHIFT;
/* Bus address of the page is gart + object offset + page offset */
/* Assumes gtt allocations are page aligned */
pfn = (r->resource.start >> PAGE_SHIFT) + page_offset;
pr_debug("Object GTT base at %p\n", (void *)(r->resource.start));
pr_debug("Inserting %p pfn %lx, pa %lx\n", vmf->virtual_address,
pfn, pfn << PAGE_SHIFT);
ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
fail:
mutex_unlock(&dev->struct_mutex);
switch (ret) {
case 0:
case -ERESTARTSYS:
case -EINTR:
return VM_FAULT_NOPAGE;
case -ENOMEM:
return VM_FAULT_OOM;
default:
return VM_FAULT_SIGBUS;
}
}