blob: aefc668e6b5d79e65873e973275d5f0beb7b10d3 [file] [log] [blame]
/*
* Copyright 2008 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
* Jerome Glisse
*/
#include <drm/drmP.h>
#include <drm/amdgpu_drm.h>
#include "amdgpu.h"
#include "amdgpu_trace.h"
/*
* GPUVM
* GPUVM is similar to the legacy gart on older asics, however
* rather than there being a single global gart table
* for the entire GPU, there are multiple VM page tables active
* at any given time. The VM page tables can contain a mix
* vram pages and system memory pages and system memory pages
* can be mapped as snooped (cached system pages) or unsnooped
* (uncached system pages).
* Each VM has an ID associated with it and there is a page table
* associated with each VMID. When execting a command buffer,
* the kernel tells the the ring what VMID to use for that command
* buffer. VMIDs are allocated dynamically as commands are submitted.
* The userspace drivers maintain their own address space and the kernel
* sets up their pages tables accordingly when they submit their
* command buffers and a VMID is assigned.
* Cayman/Trinity support up to 8 active VMs at any given time;
* SI supports 16.
*/
/**
* amdgpu_vm_num_pde - return the number of page directory entries
*
* @adev: amdgpu_device pointer
*
* Calculate the number of page directory entries (cayman+).
*/
static unsigned amdgpu_vm_num_pdes(struct amdgpu_device *adev)
{
return adev->vm_manager.max_pfn >> amdgpu_vm_block_size;
}
/**
* amdgpu_vm_directory_size - returns the size of the page directory in bytes
*
* @adev: amdgpu_device pointer
*
* Calculate the size of the page directory in bytes (cayman+).
*/
static unsigned amdgpu_vm_directory_size(struct amdgpu_device *adev)
{
return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_pdes(adev) * 8);
}
/**
* amdgpu_vm_get_pd_bo - add the VM PD to a validation list
*
* @vm: vm providing the BOs
* @validated: head of validation list
* @entry: entry to add
*
* Add the page directory to the list of BOs to
* validate for command submission.
*/
void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
struct list_head *validated,
struct amdgpu_bo_list_entry *entry)
{
entry->robj = vm->page_directory;
entry->prefered_domains = AMDGPU_GEM_DOMAIN_VRAM;
entry->allowed_domains = AMDGPU_GEM_DOMAIN_VRAM;
entry->priority = 0;
entry->tv.bo = &vm->page_directory->tbo;
entry->tv.shared = true;
list_add(&entry->tv.head, validated);
}
/**
* amdgpu_vm_get_bos - add the vm BOs to a duplicates list
*
* @vm: vm providing the BOs
* @duplicates: head of duplicates list
*
* Add the page directory to the BO duplicates list
* for command submission.
*/
void amdgpu_vm_get_pt_bos(struct amdgpu_vm *vm, struct list_head *duplicates)
{
unsigned i;
/* add the vm page table to the list */
for (i = 0; i <= vm->max_pde_used; ++i) {
struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry;
if (!entry->robj)
continue;
list_add(&entry->tv.head, duplicates);
}
}
/**
* amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail
*
* @adev: amdgpu device instance
* @vm: vm providing the BOs
*
* Move the PT BOs to the tail of the LRU.
*/
void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev,
struct amdgpu_vm *vm)
{
struct ttm_bo_global *glob = adev->mman.bdev.glob;
unsigned i;
spin_lock(&glob->lru_lock);
for (i = 0; i <= vm->max_pde_used; ++i) {
struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry;
if (!entry->robj)
continue;
ttm_bo_move_to_lru_tail(&entry->robj->tbo);
}
spin_unlock(&glob->lru_lock);
}
/**
* amdgpu_vm_grab_id - allocate the next free VMID
*
* @vm: vm to allocate id for
* @ring: ring we want to submit job to
* @sync: sync object where we add dependencies
*
* Allocate an id for the vm, adding fences to the sync obj as necessary.
*
* Global mutex must be locked!
*/
int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
struct amdgpu_sync *sync)
{
struct fence *best[AMDGPU_MAX_RINGS] = {};
struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx];
struct amdgpu_device *adev = ring->adev;
unsigned choices[2] = {};
unsigned i;
/* check if the id is still valid */
if (vm_id->id) {
unsigned id = vm_id->id;
long owner;
owner = atomic_long_read(&adev->vm_manager.ids[id].owner);
if (owner == (long)vm) {
trace_amdgpu_vm_grab_id(vm_id->id, ring->idx);
return 0;
}
}
/* we definately need to flush */
vm_id->pd_gpu_addr = ~0ll;
/* skip over VMID 0, since it is the system VM */
for (i = 1; i < adev->vm_manager.nvm; ++i) {
struct fence *fence = adev->vm_manager.ids[i].active;
struct amdgpu_ring *fring;
if (fence == NULL) {
/* found a free one */
vm_id->id = i;
trace_amdgpu_vm_grab_id(i, ring->idx);
return 0;
}
fring = amdgpu_ring_from_fence(fence);
if (best[fring->idx] == NULL ||
fence_is_later(best[fring->idx], fence)) {
best[fring->idx] = fence;
choices[fring == ring ? 0 : 1] = i;
}
}
for (i = 0; i < 2; ++i) {
if (choices[i]) {
struct fence *fence;
fence = adev->vm_manager.ids[choices[i]].active;
vm_id->id = choices[i];
trace_amdgpu_vm_grab_id(choices[i], ring->idx);
return amdgpu_sync_fence(ring->adev, sync, fence);
}
}
/* should never happen */
BUG();
return -EINVAL;
}
/**
* amdgpu_vm_flush - hardware flush the vm
*
* @ring: ring to use for flush
* @vm: vm we want to flush
* @updates: last vm update that we waited for
*
* Flush the vm (cayman+).
*
* Global and local mutex must be locked!
*/
void amdgpu_vm_flush(struct amdgpu_ring *ring,
struct amdgpu_vm *vm,
struct fence *updates)
{
uint64_t pd_addr = amdgpu_bo_gpu_offset(vm->page_directory);
struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx];
struct fence *flushed_updates = vm_id->flushed_updates;
bool is_later;
if (!flushed_updates)
is_later = true;
else if (!updates)
is_later = false;
else
is_later = fence_is_later(updates, flushed_updates);
if (pd_addr != vm_id->pd_gpu_addr || is_later) {
trace_amdgpu_vm_flush(pd_addr, ring->idx, vm_id->id);
if (is_later) {
vm_id->flushed_updates = fence_get(updates);
fence_put(flushed_updates);
}
vm_id->pd_gpu_addr = pd_addr;
amdgpu_ring_emit_vm_flush(ring, vm_id->id, vm_id->pd_gpu_addr);
}
}
/**
* amdgpu_vm_fence - remember fence for vm
*
* @adev: amdgpu_device pointer
* @vm: vm we want to fence
* @fence: fence to remember
*
* Fence the vm (cayman+).
* Set the fence used to protect page table and id.
*
* Global and local mutex must be locked!
*/
void amdgpu_vm_fence(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
struct fence *fence)
{
struct amdgpu_ring *ring = amdgpu_ring_from_fence(fence);
unsigned vm_id = vm->ids[ring->idx].id;
fence_put(adev->vm_manager.ids[vm_id].active);
adev->vm_manager.ids[vm_id].active = fence_get(fence);
atomic_long_set(&adev->vm_manager.ids[vm_id].owner, (long)vm);
}
/**
* amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
*
* @vm: requested vm
* @bo: requested buffer object
*
* Find @bo inside the requested vm (cayman+).
* Search inside the @bos vm list for the requested vm
* Returns the found bo_va or NULL if none is found
*
* Object has to be reserved!
*/
struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
struct amdgpu_bo *bo)
{
struct amdgpu_bo_va *bo_va;
list_for_each_entry(bo_va, &bo->va, bo_list) {
if (bo_va->vm == vm) {
return bo_va;
}
}
return NULL;
}
/**
* amdgpu_vm_update_pages - helper to call the right asic function
*
* @adev: amdgpu_device pointer
* @ib: indirect buffer to fill with commands
* @pe: addr of the page entry
* @addr: dst addr to write into pe
* @count: number of page entries to update
* @incr: increase next addr by incr bytes
* @flags: hw access flags
* @gtt_flags: GTT hw access flags
*
* Traces the parameters and calls the right asic functions
* to setup the page table using the DMA.
*/
static void amdgpu_vm_update_pages(struct amdgpu_device *adev,
struct amdgpu_ib *ib,
uint64_t pe, uint64_t addr,
unsigned count, uint32_t incr,
uint32_t flags, uint32_t gtt_flags)
{
trace_amdgpu_vm_set_page(pe, addr, count, incr, flags);
if ((flags & AMDGPU_PTE_SYSTEM) && (flags == gtt_flags)) {
uint64_t src = adev->gart.table_addr + (addr >> 12) * 8;
amdgpu_vm_copy_pte(adev, ib, pe, src, count);
} else if ((flags & AMDGPU_PTE_SYSTEM) || (count < 3)) {
amdgpu_vm_write_pte(adev, ib, pe, addr,
count, incr, flags);
} else {
amdgpu_vm_set_pte_pde(adev, ib, pe, addr,
count, incr, flags);
}
}
int amdgpu_vm_free_job(struct amdgpu_job *job)
{
int i;
for (i = 0; i < job->num_ibs; i++)
amdgpu_ib_free(job->adev, &job->ibs[i]);
kfree(job->ibs);
return 0;
}
/**
* amdgpu_vm_clear_bo - initially clear the page dir/table
*
* @adev: amdgpu_device pointer
* @bo: bo to clear
*
* need to reserve bo first before calling it.
*/
static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
struct amdgpu_bo *bo)
{
struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
struct fence *fence = NULL;
struct amdgpu_ib *ib;
unsigned entries;
uint64_t addr;
int r;
r = reservation_object_reserve_shared(bo->tbo.resv);
if (r)
return r;
r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
if (r)
goto error;
addr = amdgpu_bo_gpu_offset(bo);
entries = amdgpu_bo_size(bo) / 8;
ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
if (!ib)
goto error;
r = amdgpu_ib_get(ring, NULL, entries * 2 + 64, ib);
if (r)
goto error_free;
ib->length_dw = 0;
amdgpu_vm_update_pages(adev, ib, addr, 0, entries, 0, 0, 0);
amdgpu_vm_pad_ib(adev, ib);
WARN_ON(ib->length_dw > 64);
r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
&amdgpu_vm_free_job,
AMDGPU_FENCE_OWNER_VM,
&fence);
if (!r)
amdgpu_bo_fence(bo, fence, true);
fence_put(fence);
if (amdgpu_enable_scheduler)
return 0;
error_free:
amdgpu_ib_free(adev, ib);
kfree(ib);
error:
return r;
}
/**
* amdgpu_vm_map_gart - get the physical address of a gart page
*
* @adev: amdgpu_device pointer
* @addr: the unmapped addr
*
* Look up the physical address of the page that the pte resolves
* to (cayman+).
* Returns the physical address of the page.
*/
uint64_t amdgpu_vm_map_gart(struct amdgpu_device *adev, uint64_t addr)
{
uint64_t result;
/* page table offset */
result = adev->gart.pages_addr[addr >> PAGE_SHIFT];
/* in case cpu page size != gpu page size*/
result |= addr & (~PAGE_MASK);
return result;
}
/**
* amdgpu_vm_update_pdes - make sure that page directory is valid
*
* @adev: amdgpu_device pointer
* @vm: requested vm
* @start: start of GPU address range
* @end: end of GPU address range
*
* Allocates new page tables if necessary
* and updates the page directory (cayman+).
* Returns 0 for success, error for failure.
*
* Global and local mutex must be locked!
*/
int amdgpu_vm_update_page_directory(struct amdgpu_device *adev,
struct amdgpu_vm *vm)
{
struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
struct amdgpu_bo *pd = vm->page_directory;
uint64_t pd_addr = amdgpu_bo_gpu_offset(pd);
uint32_t incr = AMDGPU_VM_PTE_COUNT * 8;
uint64_t last_pde = ~0, last_pt = ~0;
unsigned count = 0, pt_idx, ndw;
struct amdgpu_ib *ib;
struct fence *fence = NULL;
int r;
/* padding, etc. */
ndw = 64;
/* assume the worst case */
ndw += vm->max_pde_used * 6;
/* update too big for an IB */
if (ndw > 0xfffff)
return -ENOMEM;
ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
if (!ib)
return -ENOMEM;
r = amdgpu_ib_get(ring, NULL, ndw * 4, ib);
if (r) {
kfree(ib);
return r;
}
ib->length_dw = 0;
/* walk over the address space and update the page directory */
for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
struct amdgpu_bo *bo = vm->page_tables[pt_idx].entry.robj;
uint64_t pde, pt;
if (bo == NULL)
continue;
pt = amdgpu_bo_gpu_offset(bo);
if (vm->page_tables[pt_idx].addr == pt)
continue;
vm->page_tables[pt_idx].addr = pt;
pde = pd_addr + pt_idx * 8;
if (((last_pde + 8 * count) != pde) ||
((last_pt + incr * count) != pt)) {
if (count) {
amdgpu_vm_update_pages(adev, ib, last_pde,
last_pt, count, incr,
AMDGPU_PTE_VALID, 0);
}
count = 1;
last_pde = pde;
last_pt = pt;
} else {
++count;
}
}
if (count)
amdgpu_vm_update_pages(adev, ib, last_pde, last_pt, count,
incr, AMDGPU_PTE_VALID, 0);
if (ib->length_dw != 0) {
amdgpu_vm_pad_ib(adev, ib);
amdgpu_sync_resv(adev, &ib->sync, pd->tbo.resv, AMDGPU_FENCE_OWNER_VM);
WARN_ON(ib->length_dw > ndw);
r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
&amdgpu_vm_free_job,
AMDGPU_FENCE_OWNER_VM,
&fence);
if (r)
goto error_free;
amdgpu_bo_fence(pd, fence, true);
fence_put(vm->page_directory_fence);
vm->page_directory_fence = fence_get(fence);
fence_put(fence);
}
if (!amdgpu_enable_scheduler || ib->length_dw == 0) {
amdgpu_ib_free(adev, ib);
kfree(ib);
}
return 0;
error_free:
amdgpu_ib_free(adev, ib);
kfree(ib);
return r;
}
/**
* amdgpu_vm_frag_ptes - add fragment information to PTEs
*
* @adev: amdgpu_device pointer
* @ib: IB for the update
* @pe_start: first PTE to handle
* @pe_end: last PTE to handle
* @addr: addr those PTEs should point to
* @flags: hw mapping flags
* @gtt_flags: GTT hw mapping flags
*
* Global and local mutex must be locked!
*/
static void amdgpu_vm_frag_ptes(struct amdgpu_device *adev,
struct amdgpu_ib *ib,
uint64_t pe_start, uint64_t pe_end,
uint64_t addr, uint32_t flags,
uint32_t gtt_flags)
{
/**
* The MC L1 TLB supports variable sized pages, based on a fragment
* field in the PTE. When this field is set to a non-zero value, page
* granularity is increased from 4KB to (1 << (12 + frag)). The PTE
* flags are considered valid for all PTEs within the fragment range
* and corresponding mappings are assumed to be physically contiguous.
*
* The L1 TLB can store a single PTE for the whole fragment,
* significantly increasing the space available for translation
* caching. This leads to large improvements in throughput when the
* TLB is under pressure.
*
* The L2 TLB distributes small and large fragments into two
* asymmetric partitions. The large fragment cache is significantly
* larger. Thus, we try to use large fragments wherever possible.
* Userspace can support this by aligning virtual base address and
* allocation size to the fragment size.
*/
/* SI and newer are optimized for 64KB */
uint64_t frag_flags = AMDGPU_PTE_FRAG_64KB;
uint64_t frag_align = 0x80;
uint64_t frag_start = ALIGN(pe_start, frag_align);
uint64_t frag_end = pe_end & ~(frag_align - 1);
unsigned count;
/* system pages are non continuously */
if ((flags & AMDGPU_PTE_SYSTEM) || !(flags & AMDGPU_PTE_VALID) ||
(frag_start >= frag_end)) {
count = (pe_end - pe_start) / 8;
amdgpu_vm_update_pages(adev, ib, pe_start, addr, count,
AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
return;
}
/* handle the 4K area at the beginning */
if (pe_start != frag_start) {
count = (frag_start - pe_start) / 8;
amdgpu_vm_update_pages(adev, ib, pe_start, addr, count,
AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
addr += AMDGPU_GPU_PAGE_SIZE * count;
}
/* handle the area in the middle */
count = (frag_end - frag_start) / 8;
amdgpu_vm_update_pages(adev, ib, frag_start, addr, count,
AMDGPU_GPU_PAGE_SIZE, flags | frag_flags,
gtt_flags);
/* handle the 4K area at the end */
if (frag_end != pe_end) {
addr += AMDGPU_GPU_PAGE_SIZE * count;
count = (pe_end - frag_end) / 8;
amdgpu_vm_update_pages(adev, ib, frag_end, addr, count,
AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
}
}
/**
* amdgpu_vm_update_ptes - make sure that page tables are valid
*
* @adev: amdgpu_device pointer
* @vm: requested vm
* @start: start of GPU address range
* @end: end of GPU address range
* @dst: destination address to map to
* @flags: mapping flags
*
* Update the page tables in the range @start - @end (cayman+).
*
* Global and local mutex must be locked!
*/
static int amdgpu_vm_update_ptes(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
struct amdgpu_ib *ib,
uint64_t start, uint64_t end,
uint64_t dst, uint32_t flags,
uint32_t gtt_flags)
{
uint64_t mask = AMDGPU_VM_PTE_COUNT - 1;
uint64_t last_pte = ~0, last_dst = ~0;
void *owner = AMDGPU_FENCE_OWNER_VM;
unsigned count = 0;
uint64_t addr;
/* sync to everything on unmapping */
if (!(flags & AMDGPU_PTE_VALID))
owner = AMDGPU_FENCE_OWNER_UNDEFINED;
/* walk over the address space and update the page tables */
for (addr = start; addr < end; ) {
uint64_t pt_idx = addr >> amdgpu_vm_block_size;
struct amdgpu_bo *pt = vm->page_tables[pt_idx].entry.robj;
unsigned nptes;
uint64_t pte;
int r;
amdgpu_sync_resv(adev, &ib->sync, pt->tbo.resv, owner);
r = reservation_object_reserve_shared(pt->tbo.resv);
if (r)
return r;
if ((addr & ~mask) == (end & ~mask))
nptes = end - addr;
else
nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
pte = amdgpu_bo_gpu_offset(pt);
pte += (addr & mask) * 8;
if ((last_pte + 8 * count) != pte) {
if (count) {
amdgpu_vm_frag_ptes(adev, ib, last_pte,
last_pte + 8 * count,
last_dst, flags,
gtt_flags);
}
count = nptes;
last_pte = pte;
last_dst = dst;
} else {
count += nptes;
}
addr += nptes;
dst += nptes * AMDGPU_GPU_PAGE_SIZE;
}
if (count) {
amdgpu_vm_frag_ptes(adev, ib, last_pte,
last_pte + 8 * count,
last_dst, flags, gtt_flags);
}
return 0;
}
/**
* amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
*
* @adev: amdgpu_device pointer
* @vm: requested vm
* @mapping: mapped range and flags to use for the update
* @addr: addr to set the area to
* @gtt_flags: flags as they are used for GTT
* @fence: optional resulting fence
*
* Fill in the page table entries for @mapping.
* Returns 0 for success, -EINVAL for failure.
*
* Object have to be reserved and mutex must be locked!
*/
static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
struct amdgpu_bo_va_mapping *mapping,
uint64_t addr, uint32_t gtt_flags,
struct fence **fence)
{
struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
unsigned nptes, ncmds, ndw;
uint32_t flags = gtt_flags;
struct amdgpu_ib *ib;
struct fence *f = NULL;
int r;
/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
* but in case of something, we filter the flags in first place
*/
if (!(mapping->flags & AMDGPU_PTE_READABLE))
flags &= ~AMDGPU_PTE_READABLE;
if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
flags &= ~AMDGPU_PTE_WRITEABLE;
trace_amdgpu_vm_bo_update(mapping);
nptes = mapping->it.last - mapping->it.start + 1;
/*
* reserve space for one command every (1 << BLOCK_SIZE)
* entries or 2k dwords (whatever is smaller)
*/
ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1;
/* padding, etc. */
ndw = 64;
if ((flags & AMDGPU_PTE_SYSTEM) && (flags == gtt_flags)) {
/* only copy commands needed */
ndw += ncmds * 7;
} else if (flags & AMDGPU_PTE_SYSTEM) {
/* header for write data commands */
ndw += ncmds * 4;
/* body of write data command */
ndw += nptes * 2;
} else {
/* set page commands needed */
ndw += ncmds * 10;
/* two extra commands for begin/end of fragment */
ndw += 2 * 10;
}
/* update too big for an IB */
if (ndw > 0xfffff)
return -ENOMEM;
ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
if (!ib)
return -ENOMEM;
r = amdgpu_ib_get(ring, NULL, ndw * 4, ib);
if (r) {
kfree(ib);
return r;
}
ib->length_dw = 0;
r = amdgpu_vm_update_ptes(adev, vm, ib, mapping->it.start,
mapping->it.last + 1, addr + mapping->offset,
flags, gtt_flags);
if (r) {
amdgpu_ib_free(adev, ib);
kfree(ib);
return r;
}
amdgpu_vm_pad_ib(adev, ib);
WARN_ON(ib->length_dw > ndw);
r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
&amdgpu_vm_free_job,
AMDGPU_FENCE_OWNER_VM,
&f);
if (r)
goto error_free;
amdgpu_bo_fence(vm->page_directory, f, true);
if (fence) {
fence_put(*fence);
*fence = fence_get(f);
}
fence_put(f);
if (!amdgpu_enable_scheduler) {
amdgpu_ib_free(adev, ib);
kfree(ib);
}
return 0;
error_free:
amdgpu_ib_free(adev, ib);
kfree(ib);
return r;
}
/**
* amdgpu_vm_bo_update - update all BO mappings in the vm page table
*
* @adev: amdgpu_device pointer
* @bo_va: requested BO and VM object
* @mem: ttm mem
*
* Fill in the page table entries for @bo_va.
* Returns 0 for success, -EINVAL for failure.
*
* Object have to be reserved and mutex must be locked!
*/
int amdgpu_vm_bo_update(struct amdgpu_device *adev,
struct amdgpu_bo_va *bo_va,
struct ttm_mem_reg *mem)
{
struct amdgpu_vm *vm = bo_va->vm;
struct amdgpu_bo_va_mapping *mapping;
uint32_t flags;
uint64_t addr;
int r;
if (mem) {
addr = (u64)mem->start << PAGE_SHIFT;
if (mem->mem_type != TTM_PL_TT)
addr += adev->vm_manager.vram_base_offset;
} else {
addr = 0;
}
flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
spin_lock(&vm->status_lock);
if (!list_empty(&bo_va->vm_status))
list_splice_init(&bo_va->valids, &bo_va->invalids);
spin_unlock(&vm->status_lock);
list_for_each_entry(mapping, &bo_va->invalids, list) {
r = amdgpu_vm_bo_update_mapping(adev, vm, mapping, addr,
flags, &bo_va->last_pt_update);
if (r)
return r;
}
if (trace_amdgpu_vm_bo_mapping_enabled()) {
list_for_each_entry(mapping, &bo_va->valids, list)
trace_amdgpu_vm_bo_mapping(mapping);
list_for_each_entry(mapping, &bo_va->invalids, list)
trace_amdgpu_vm_bo_mapping(mapping);
}
spin_lock(&vm->status_lock);
list_splice_init(&bo_va->invalids, &bo_va->valids);
list_del_init(&bo_va->vm_status);
if (!mem)
list_add(&bo_va->vm_status, &vm->cleared);
spin_unlock(&vm->status_lock);
return 0;
}
/**
* amdgpu_vm_clear_freed - clear freed BOs in the PT
*
* @adev: amdgpu_device pointer
* @vm: requested vm
*
* Make sure all freed BOs are cleared in the PT.
* Returns 0 for success.
*
* PTs have to be reserved and mutex must be locked!
*/
int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
struct amdgpu_vm *vm)
{
struct amdgpu_bo_va_mapping *mapping;
int r;
spin_lock(&vm->freed_lock);
while (!list_empty(&vm->freed)) {
mapping = list_first_entry(&vm->freed,
struct amdgpu_bo_va_mapping, list);
list_del(&mapping->list);
spin_unlock(&vm->freed_lock);
r = amdgpu_vm_bo_update_mapping(adev, vm, mapping, 0, 0, NULL);
kfree(mapping);
if (r)
return r;
spin_lock(&vm->freed_lock);
}
spin_unlock(&vm->freed_lock);
return 0;
}
/**
* amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
*
* @adev: amdgpu_device pointer
* @vm: requested vm
*
* Make sure all invalidated BOs are cleared in the PT.
* Returns 0 for success.
*
* PTs have to be reserved and mutex must be locked!
*/
int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
struct amdgpu_vm *vm, struct amdgpu_sync *sync)
{
struct amdgpu_bo_va *bo_va = NULL;
int r = 0;
spin_lock(&vm->status_lock);
while (!list_empty(&vm->invalidated)) {
bo_va = list_first_entry(&vm->invalidated,
struct amdgpu_bo_va, vm_status);
spin_unlock(&vm->status_lock);
mutex_lock(&bo_va->mutex);
r = amdgpu_vm_bo_update(adev, bo_va, NULL);
mutex_unlock(&bo_va->mutex);
if (r)
return r;
spin_lock(&vm->status_lock);
}
spin_unlock(&vm->status_lock);
if (bo_va)
r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
return r;
}
/**
* amdgpu_vm_bo_add - add a bo to a specific vm
*
* @adev: amdgpu_device pointer
* @vm: requested vm
* @bo: amdgpu buffer object
*
* Add @bo into the requested vm (cayman+).
* Add @bo to the list of bos associated with the vm
* Returns newly added bo_va or NULL for failure
*
* Object has to be reserved!
*/
struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
struct amdgpu_bo *bo)
{
struct amdgpu_bo_va *bo_va;
bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
if (bo_va == NULL) {
return NULL;
}
bo_va->vm = vm;
bo_va->bo = bo;
bo_va->ref_count = 1;
INIT_LIST_HEAD(&bo_va->bo_list);
INIT_LIST_HEAD(&bo_va->valids);
INIT_LIST_HEAD(&bo_va->invalids);
INIT_LIST_HEAD(&bo_va->vm_status);
mutex_init(&bo_va->mutex);
list_add_tail(&bo_va->bo_list, &bo->va);
return bo_va;
}
/**
* amdgpu_vm_bo_map - map bo inside a vm
*
* @adev: amdgpu_device pointer
* @bo_va: bo_va to store the address
* @saddr: where to map the BO
* @offset: requested offset in the BO
* @flags: attributes of pages (read/write/valid/etc.)
*
* Add a mapping of the BO at the specefied addr into the VM.
* Returns 0 for success, error for failure.
*
* Object has to be reserved and unreserved outside!
*/
int amdgpu_vm_bo_map(struct amdgpu_device *adev,
struct amdgpu_bo_va *bo_va,
uint64_t saddr, uint64_t offset,
uint64_t size, uint32_t flags)
{
struct amdgpu_bo_va_mapping *mapping;
struct amdgpu_vm *vm = bo_va->vm;
struct interval_tree_node *it;
unsigned last_pfn, pt_idx;
uint64_t eaddr;
int r;
/* validate the parameters */
if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
size == 0 || size & AMDGPU_GPU_PAGE_MASK)
return -EINVAL;
/* make sure object fit at this offset */
eaddr = saddr + size - 1;
if ((saddr >= eaddr) || (offset + size > amdgpu_bo_size(bo_va->bo)))
return -EINVAL;
last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
if (last_pfn >= adev->vm_manager.max_pfn) {
dev_err(adev->dev, "va above limit (0x%08X >= 0x%08X)\n",
last_pfn, adev->vm_manager.max_pfn);
return -EINVAL;
}
saddr /= AMDGPU_GPU_PAGE_SIZE;
eaddr /= AMDGPU_GPU_PAGE_SIZE;
spin_lock(&vm->it_lock);
it = interval_tree_iter_first(&vm->va, saddr, eaddr);
spin_unlock(&vm->it_lock);
if (it) {
struct amdgpu_bo_va_mapping *tmp;
tmp = container_of(it, struct amdgpu_bo_va_mapping, it);
/* bo and tmp overlap, invalid addr */
dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
"0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr,
tmp->it.start, tmp->it.last + 1);
r = -EINVAL;
goto error;
}
mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
if (!mapping) {
r = -ENOMEM;
goto error;
}
INIT_LIST_HEAD(&mapping->list);
mapping->it.start = saddr;
mapping->it.last = eaddr;
mapping->offset = offset;
mapping->flags = flags;
mutex_lock(&bo_va->mutex);
list_add(&mapping->list, &bo_va->invalids);
mutex_unlock(&bo_va->mutex);
spin_lock(&vm->it_lock);
interval_tree_insert(&mapping->it, &vm->va);
spin_unlock(&vm->it_lock);
trace_amdgpu_vm_bo_map(bo_va, mapping);
/* Make sure the page tables are allocated */
saddr >>= amdgpu_vm_block_size;
eaddr >>= amdgpu_vm_block_size;
BUG_ON(eaddr >= amdgpu_vm_num_pdes(adev));
if (eaddr > vm->max_pde_used)
vm->max_pde_used = eaddr;
/* walk over the address space and allocate the page tables */
for (pt_idx = saddr; pt_idx <= eaddr; ++pt_idx) {
struct reservation_object *resv = vm->page_directory->tbo.resv;
struct amdgpu_bo_list_entry *entry;
struct amdgpu_bo *pt;
entry = &vm->page_tables[pt_idx].entry;
if (entry->robj)
continue;
r = amdgpu_bo_create(adev, AMDGPU_VM_PTE_COUNT * 8,
AMDGPU_GPU_PAGE_SIZE, true,
AMDGPU_GEM_DOMAIN_VRAM,
AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
NULL, resv, &pt);
if (r)
goto error_free;
/* Keep a reference to the page table to avoid freeing
* them up in the wrong order.
*/
pt->parent = amdgpu_bo_ref(vm->page_directory);
r = amdgpu_vm_clear_bo(adev, pt);
if (r) {
amdgpu_bo_unref(&pt);
goto error_free;
}
entry->robj = pt;
entry->prefered_domains = AMDGPU_GEM_DOMAIN_VRAM;
entry->allowed_domains = AMDGPU_GEM_DOMAIN_VRAM;
entry->priority = 0;
entry->tv.bo = &entry->robj->tbo;
entry->tv.shared = true;
vm->page_tables[pt_idx].addr = 0;
}
return 0;
error_free:
list_del(&mapping->list);
spin_lock(&vm->it_lock);
interval_tree_remove(&mapping->it, &vm->va);
spin_unlock(&vm->it_lock);
trace_amdgpu_vm_bo_unmap(bo_va, mapping);
kfree(mapping);
error:
return r;
}
/**
* amdgpu_vm_bo_unmap - remove bo mapping from vm
*
* @adev: amdgpu_device pointer
* @bo_va: bo_va to remove the address from
* @saddr: where to the BO is mapped
*
* Remove a mapping of the BO at the specefied addr from the VM.
* Returns 0 for success, error for failure.
*
* Object has to be reserved and unreserved outside!
*/
int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
struct amdgpu_bo_va *bo_va,
uint64_t saddr)
{
struct amdgpu_bo_va_mapping *mapping;
struct amdgpu_vm *vm = bo_va->vm;
bool valid = true;
saddr /= AMDGPU_GPU_PAGE_SIZE;
mutex_lock(&bo_va->mutex);
list_for_each_entry(mapping, &bo_va->valids, list) {
if (mapping->it.start == saddr)
break;
}
if (&mapping->list == &bo_va->valids) {
valid = false;
list_for_each_entry(mapping, &bo_va->invalids, list) {
if (mapping->it.start == saddr)
break;
}
if (&mapping->list == &bo_va->invalids) {
mutex_unlock(&bo_va->mutex);
return -ENOENT;
}
}
mutex_unlock(&bo_va->mutex);
list_del(&mapping->list);
spin_lock(&vm->it_lock);
interval_tree_remove(&mapping->it, &vm->va);
spin_unlock(&vm->it_lock);
trace_amdgpu_vm_bo_unmap(bo_va, mapping);
if (valid) {
spin_lock(&vm->freed_lock);
list_add(&mapping->list, &vm->freed);
spin_unlock(&vm->freed_lock);
} else {
kfree(mapping);
}
return 0;
}
/**
* amdgpu_vm_bo_rmv - remove a bo to a specific vm
*
* @adev: amdgpu_device pointer
* @bo_va: requested bo_va
*
* Remove @bo_va->bo from the requested vm (cayman+).
*
* Object have to be reserved!
*/
void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
struct amdgpu_bo_va *bo_va)
{
struct amdgpu_bo_va_mapping *mapping, *next;
struct amdgpu_vm *vm = bo_va->vm;
list_del(&bo_va->bo_list);
spin_lock(&vm->status_lock);
list_del(&bo_va->vm_status);
spin_unlock(&vm->status_lock);
list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
list_del(&mapping->list);
spin_lock(&vm->it_lock);
interval_tree_remove(&mapping->it, &vm->va);
spin_unlock(&vm->it_lock);
trace_amdgpu_vm_bo_unmap(bo_va, mapping);
spin_lock(&vm->freed_lock);
list_add(&mapping->list, &vm->freed);
spin_unlock(&vm->freed_lock);
}
list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
list_del(&mapping->list);
spin_lock(&vm->it_lock);
interval_tree_remove(&mapping->it, &vm->va);
spin_unlock(&vm->it_lock);
kfree(mapping);
}
fence_put(bo_va->last_pt_update);
mutex_destroy(&bo_va->mutex);
kfree(bo_va);
}
/**
* amdgpu_vm_bo_invalidate - mark the bo as invalid
*
* @adev: amdgpu_device pointer
* @vm: requested vm
* @bo: amdgpu buffer object
*
* Mark @bo as invalid (cayman+).
*/
void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
struct amdgpu_bo *bo)
{
struct amdgpu_bo_va *bo_va;
list_for_each_entry(bo_va, &bo->va, bo_list) {
spin_lock(&bo_va->vm->status_lock);
if (list_empty(&bo_va->vm_status))
list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
spin_unlock(&bo_va->vm->status_lock);
}
}
/**
* amdgpu_vm_init - initialize a vm instance
*
* @adev: amdgpu_device pointer
* @vm: requested vm
*
* Init @vm fields (cayman+).
*/
int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
{
const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
AMDGPU_VM_PTE_COUNT * 8);
unsigned pd_size, pd_entries, pts_size;
int i, r;
for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
vm->ids[i].id = 0;
vm->ids[i].flushed_updates = NULL;
}
vm->va = RB_ROOT;
spin_lock_init(&vm->status_lock);
INIT_LIST_HEAD(&vm->invalidated);
INIT_LIST_HEAD(&vm->cleared);
INIT_LIST_HEAD(&vm->freed);
spin_lock_init(&vm->it_lock);
spin_lock_init(&vm->freed_lock);
pd_size = amdgpu_vm_directory_size(adev);
pd_entries = amdgpu_vm_num_pdes(adev);
/* allocate page table array */
pts_size = pd_entries * sizeof(struct amdgpu_vm_pt);
vm->page_tables = kzalloc(pts_size, GFP_KERNEL);
if (vm->page_tables == NULL) {
DRM_ERROR("Cannot allocate memory for page table array\n");
return -ENOMEM;
}
vm->page_directory_fence = NULL;
r = amdgpu_bo_create(adev, pd_size, align, true,
AMDGPU_GEM_DOMAIN_VRAM,
AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
NULL, NULL, &vm->page_directory);
if (r)
return r;
r = amdgpu_bo_reserve(vm->page_directory, false);
if (r) {
amdgpu_bo_unref(&vm->page_directory);
vm->page_directory = NULL;
return r;
}
r = amdgpu_vm_clear_bo(adev, vm->page_directory);
amdgpu_bo_unreserve(vm->page_directory);
if (r) {
amdgpu_bo_unref(&vm->page_directory);
vm->page_directory = NULL;
return r;
}
return 0;
}
/**
* amdgpu_vm_fini - tear down a vm instance
*
* @adev: amdgpu_device pointer
* @vm: requested vm
*
* Tear down @vm (cayman+).
* Unbind the VM and remove all bos from the vm bo list
*/
void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
{
struct amdgpu_bo_va_mapping *mapping, *tmp;
int i;
if (!RB_EMPTY_ROOT(&vm->va)) {
dev_err(adev->dev, "still active bo inside vm\n");
}
rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) {
list_del(&mapping->list);
interval_tree_remove(&mapping->it, &vm->va);
kfree(mapping);
}
list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
list_del(&mapping->list);
kfree(mapping);
}
for (i = 0; i < amdgpu_vm_num_pdes(adev); i++)
amdgpu_bo_unref(&vm->page_tables[i].entry.robj);
kfree(vm->page_tables);
amdgpu_bo_unref(&vm->page_directory);
fence_put(vm->page_directory_fence);
for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
unsigned id = vm->ids[i].id;
atomic_long_cmpxchg(&adev->vm_manager.ids[id].owner,
(long)vm, 0);
fence_put(vm->ids[i].flushed_updates);
}
}
/**
* amdgpu_vm_manager_fini - cleanup VM manager
*
* @adev: amdgpu_device pointer
*
* Cleanup the VM manager and free resources.
*/
void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
{
unsigned i;
for (i = 0; i < AMDGPU_NUM_VM; ++i)
fence_put(adev->vm_manager.ids[i].active);
}