blob: 8b3c4e2ed7b865aab0636bf18c6d5b7d0138da0f [file] [log] [blame]
/*
* MUSB OTG driver peripheral support
*
* Copyright 2005 Mentor Graphics Corporation
* Copyright (C) 2005-2006 by Texas Instruments
* Copyright (C) 2006-2007 Nokia Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/smp.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/moduleparam.h>
#include <linux/stat.h>
#include <linux/dma-mapping.h>
#include "musb_core.h"
/* MUSB PERIPHERAL status 3-mar-2006:
*
* - EP0 seems solid. It passes both USBCV and usbtest control cases.
* Minor glitches:
*
* + remote wakeup to Linux hosts work, but saw USBCV failures;
* in one test run (operator error?)
* + endpoint halt tests -- in both usbtest and usbcv -- seem
* to break when dma is enabled ... is something wrongly
* clearing SENDSTALL?
*
* - Mass storage behaved ok when last tested. Network traffic patterns
* (with lots of short transfers etc) need retesting; they turn up the
* worst cases of the DMA, since short packets are typical but are not
* required.
*
* - TX/IN
* + both pio and dma behave in with network and g_zero tests
* + no cppi throughput issues other than no-hw-queueing
* + failed with FLAT_REG (DaVinci)
* + seems to behave with double buffering, PIO -and- CPPI
* + with gadgetfs + AIO, requests got lost?
*
* - RX/OUT
* + both pio and dma behave in with network and g_zero tests
* + dma is slow in typical case (short_not_ok is clear)
* + double buffering ok with PIO
* + double buffering *FAILS* with CPPI, wrong data bytes sometimes
* + request lossage observed with gadgetfs
*
* - ISO not tested ... might work, but only weakly isochronous
*
* - Gadget driver disabling of softconnect during bind() is ignored; so
* drivers can't hold off host requests until userspace is ready.
* (Workaround: they can turn it off later.)
*
* - PORTABILITY (assumes PIO works):
* + DaVinci, basically works with cppi dma
* + OMAP 2430, ditto with mentor dma
* + TUSB 6010, platform-specific dma in the works
*/
/* ----------------------------------------------------------------------- */
/*
* Immediately complete a request.
*
* @param request the request to complete
* @param status the status to complete the request with
* Context: controller locked, IRQs blocked.
*/
void musb_g_giveback(
struct musb_ep *ep,
struct usb_request *request,
int status)
__releases(ep->musb->lock)
__acquires(ep->musb->lock)
{
struct musb_request *req;
struct musb *musb;
int busy = ep->busy;
req = to_musb_request(request);
list_del(&request->list);
if (req->request.status == -EINPROGRESS)
req->request.status = status;
musb = req->musb;
ep->busy = 1;
spin_unlock(&musb->lock);
if (is_dma_capable()) {
if (req->mapped) {
dma_unmap_single(musb->controller,
req->request.dma,
req->request.length,
req->tx
? DMA_TO_DEVICE
: DMA_FROM_DEVICE);
req->request.dma = DMA_ADDR_INVALID;
req->mapped = 0;
} else if (req->request.dma != DMA_ADDR_INVALID)
dma_sync_single_for_cpu(musb->controller,
req->request.dma,
req->request.length,
req->tx
? DMA_TO_DEVICE
: DMA_FROM_DEVICE);
}
if (request->status == 0)
DBG(5, "%s done request %p, %d/%d\n",
ep->end_point.name, request,
req->request.actual, req->request.length);
else
DBG(2, "%s request %p, %d/%d fault %d\n",
ep->end_point.name, request,
req->request.actual, req->request.length,
request->status);
req->request.complete(&req->ep->end_point, &req->request);
spin_lock(&musb->lock);
ep->busy = busy;
}
/* ----------------------------------------------------------------------- */
/*
* Abort requests queued to an endpoint using the status. Synchronous.
* caller locked controller and blocked irqs, and selected this ep.
*/
static void nuke(struct musb_ep *ep, const int status)
{
struct musb_request *req = NULL;
void __iomem *epio = ep->musb->endpoints[ep->current_epnum].regs;
ep->busy = 1;
if (is_dma_capable() && ep->dma) {
struct dma_controller *c = ep->musb->dma_controller;
int value;
if (ep->is_in) {
/*
* The programming guide says that we must not clear
* the DMAMODE bit before DMAENAB, so we only
* clear it in the second write...
*/
musb_writew(epio, MUSB_TXCSR,
MUSB_TXCSR_DMAMODE | MUSB_TXCSR_FLUSHFIFO);
musb_writew(epio, MUSB_TXCSR,
0 | MUSB_TXCSR_FLUSHFIFO);
} else {
musb_writew(epio, MUSB_RXCSR,
0 | MUSB_RXCSR_FLUSHFIFO);
musb_writew(epio, MUSB_RXCSR,
0 | MUSB_RXCSR_FLUSHFIFO);
}
value = c->channel_abort(ep->dma);
DBG(value ? 1 : 6, "%s: abort DMA --> %d\n", ep->name, value);
c->channel_release(ep->dma);
ep->dma = NULL;
}
while (!list_empty(&(ep->req_list))) {
req = container_of(ep->req_list.next, struct musb_request,
request.list);
musb_g_giveback(ep, &req->request, status);
}
}
/* ----------------------------------------------------------------------- */
/* Data transfers - pure PIO, pure DMA, or mixed mode */
/*
* This assumes the separate CPPI engine is responding to DMA requests
* from the usb core ... sequenced a bit differently from mentor dma.
*/
static inline int max_ep_writesize(struct musb *musb, struct musb_ep *ep)
{
if (can_bulk_split(musb, ep->type))
return ep->hw_ep->max_packet_sz_tx;
else
return ep->packet_sz;
}
#ifdef CONFIG_USB_INVENTRA_DMA
/* Peripheral tx (IN) using Mentor DMA works as follows:
Only mode 0 is used for transfers <= wPktSize,
mode 1 is used for larger transfers,
One of the following happens:
- Host sends IN token which causes an endpoint interrupt
-> TxAvail
-> if DMA is currently busy, exit.
-> if queue is non-empty, txstate().
- Request is queued by the gadget driver.
-> if queue was previously empty, txstate()
txstate()
-> start
/\ -> setup DMA
| (data is transferred to the FIFO, then sent out when
| IN token(s) are recd from Host.
| -> DMA interrupt on completion
| calls TxAvail.
| -> stop DMA, ~DMAENAB,
| -> set TxPktRdy for last short pkt or zlp
| -> Complete Request
| -> Continue next request (call txstate)
|___________________________________|
* Non-Mentor DMA engines can of course work differently, such as by
* upleveling from irq-per-packet to irq-per-buffer.
*/
#endif
/*
* An endpoint is transmitting data. This can be called either from
* the IRQ routine or from ep.queue() to kickstart a request on an
* endpoint.
*
* Context: controller locked, IRQs blocked, endpoint selected
*/
static void txstate(struct musb *musb, struct musb_request *req)
{
u8 epnum = req->epnum;
struct musb_ep *musb_ep;
void __iomem *epio = musb->endpoints[epnum].regs;
struct usb_request *request;
u16 fifo_count = 0, csr;
int use_dma = 0;
musb_ep = req->ep;
/* we shouldn't get here while DMA is active ... but we do ... */
if (dma_channel_status(musb_ep->dma) == MUSB_DMA_STATUS_BUSY) {
DBG(4, "dma pending...\n");
return;
}
/* read TXCSR before */
csr = musb_readw(epio, MUSB_TXCSR);
request = &req->request;
fifo_count = min(max_ep_writesize(musb, musb_ep),
(int)(request->length - request->actual));
if (csr & MUSB_TXCSR_TXPKTRDY) {
DBG(5, "%s old packet still ready , txcsr %03x\n",
musb_ep->end_point.name, csr);
return;
}
if (csr & MUSB_TXCSR_P_SENDSTALL) {
DBG(5, "%s stalling, txcsr %03x\n",
musb_ep->end_point.name, csr);
return;
}
DBG(4, "hw_ep%d, maxpacket %d, fifo count %d, txcsr %03x\n",
epnum, musb_ep->packet_sz, fifo_count,
csr);
#ifndef CONFIG_MUSB_PIO_ONLY
if (is_dma_capable() && musb_ep->dma) {
struct dma_controller *c = musb->dma_controller;
use_dma = (request->dma != DMA_ADDR_INVALID);
/* MUSB_TXCSR_P_ISO is still set correctly */
#ifdef CONFIG_USB_INVENTRA_DMA
{
size_t request_size;
/* setup DMA, then program endpoint CSR */
request_size = min(request->length,
musb_ep->dma->max_len);
if (request_size < musb_ep->packet_sz)
musb_ep->dma->desired_mode = 0;
else
musb_ep->dma->desired_mode = 1;
use_dma = use_dma && c->channel_program(
musb_ep->dma, musb_ep->packet_sz,
musb_ep->dma->desired_mode,
request->dma, request_size);
if (use_dma) {
if (musb_ep->dma->desired_mode == 0) {
/*
* We must not clear the DMAMODE bit
* before the DMAENAB bit -- and the
* latter doesn't always get cleared
* before we get here...
*/
csr &= ~(MUSB_TXCSR_AUTOSET
| MUSB_TXCSR_DMAENAB);
musb_writew(epio, MUSB_TXCSR, csr
| MUSB_TXCSR_P_WZC_BITS);
csr &= ~MUSB_TXCSR_DMAMODE;
csr |= (MUSB_TXCSR_DMAENAB |
MUSB_TXCSR_MODE);
/* against programming guide */
} else
csr |= (MUSB_TXCSR_AUTOSET
| MUSB_TXCSR_DMAENAB
| MUSB_TXCSR_DMAMODE
| MUSB_TXCSR_MODE);
csr &= ~MUSB_TXCSR_P_UNDERRUN;
musb_writew(epio, MUSB_TXCSR, csr);
}
}
#elif defined(CONFIG_USB_TI_CPPI_DMA)
/* program endpoint CSR first, then setup DMA */
csr &= ~(MUSB_TXCSR_P_UNDERRUN | MUSB_TXCSR_TXPKTRDY);
csr |= MUSB_TXCSR_DMAENAB | MUSB_TXCSR_DMAMODE |
MUSB_TXCSR_MODE;
musb_writew(epio, MUSB_TXCSR,
(MUSB_TXCSR_P_WZC_BITS & ~MUSB_TXCSR_P_UNDERRUN)
| csr);
/* ensure writebuffer is empty */
csr = musb_readw(epio, MUSB_TXCSR);
/* NOTE host side sets DMAENAB later than this; both are
* OK since the transfer dma glue (between CPPI and Mentor
* fifos) just tells CPPI it could start. Data only moves
* to the USB TX fifo when both fifos are ready.
*/
/* "mode" is irrelevant here; handle terminating ZLPs like
* PIO does, since the hardware RNDIS mode seems unreliable
* except for the last-packet-is-already-short case.
*/
use_dma = use_dma && c->channel_program(
musb_ep->dma, musb_ep->packet_sz,
0,
request->dma,
request->length);
if (!use_dma) {
c->channel_release(musb_ep->dma);
musb_ep->dma = NULL;
csr &= ~MUSB_TXCSR_DMAENAB;
musb_writew(epio, MUSB_TXCSR, csr);
/* invariant: prequest->buf is non-null */
}
#elif defined(CONFIG_USB_TUSB_OMAP_DMA)
use_dma = use_dma && c->channel_program(
musb_ep->dma, musb_ep->packet_sz,
request->zero,
request->dma,
request->length);
#endif
}
#endif
if (!use_dma) {
musb_write_fifo(musb_ep->hw_ep, fifo_count,
(u8 *) (request->buf + request->actual));
request->actual += fifo_count;
csr |= MUSB_TXCSR_TXPKTRDY;
csr &= ~MUSB_TXCSR_P_UNDERRUN;
musb_writew(epio, MUSB_TXCSR, csr);
}
/* host may already have the data when this message shows... */
DBG(3, "%s TX/IN %s len %d/%d, txcsr %04x, fifo %d/%d\n",
musb_ep->end_point.name, use_dma ? "dma" : "pio",
request->actual, request->length,
musb_readw(epio, MUSB_TXCSR),
fifo_count,
musb_readw(epio, MUSB_TXMAXP));
}
/*
* FIFO state update (e.g. data ready).
* Called from IRQ, with controller locked.
*/
void musb_g_tx(struct musb *musb, u8 epnum)
{
u16 csr;
struct usb_request *request;
u8 __iomem *mbase = musb->mregs;
struct musb_ep *musb_ep = &musb->endpoints[epnum].ep_in;
void __iomem *epio = musb->endpoints[epnum].regs;
struct dma_channel *dma;
musb_ep_select(mbase, epnum);
request = next_request(musb_ep);
csr = musb_readw(epio, MUSB_TXCSR);
DBG(4, "<== %s, txcsr %04x\n", musb_ep->end_point.name, csr);
dma = is_dma_capable() ? musb_ep->dma : NULL;
do {
/* REVISIT for high bandwidth, MUSB_TXCSR_P_INCOMPTX
* probably rates reporting as a host error
*/
if (csr & MUSB_TXCSR_P_SENTSTALL) {
csr |= MUSB_TXCSR_P_WZC_BITS;
csr &= ~MUSB_TXCSR_P_SENTSTALL;
musb_writew(epio, MUSB_TXCSR, csr);
if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
dma->status = MUSB_DMA_STATUS_CORE_ABORT;
musb->dma_controller->channel_abort(dma);
}
if (request)
musb_g_giveback(musb_ep, request, -EPIPE);
break;
}
if (csr & MUSB_TXCSR_P_UNDERRUN) {
/* we NAKed, no big deal ... little reason to care */
csr |= MUSB_TXCSR_P_WZC_BITS;
csr &= ~(MUSB_TXCSR_P_UNDERRUN
| MUSB_TXCSR_TXPKTRDY);
musb_writew(epio, MUSB_TXCSR, csr);
DBG(20, "underrun on ep%d, req %p\n", epnum, request);
}
if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
/* SHOULD NOT HAPPEN ... has with cppi though, after
* changing SENDSTALL (and other cases); harmless?
*/
DBG(5, "%s dma still busy?\n", musb_ep->end_point.name);
break;
}
if (request) {
u8 is_dma = 0;
if (dma && (csr & MUSB_TXCSR_DMAENAB)) {
is_dma = 1;
csr |= MUSB_TXCSR_P_WZC_BITS;
csr &= ~(MUSB_TXCSR_DMAENAB
| MUSB_TXCSR_P_UNDERRUN
| MUSB_TXCSR_TXPKTRDY);
musb_writew(epio, MUSB_TXCSR, csr);
/* ensure writebuffer is empty */
csr = musb_readw(epio, MUSB_TXCSR);
request->actual += musb_ep->dma->actual_len;
DBG(4, "TXCSR%d %04x, dma off, "
"len %zu, req %p\n",
epnum, csr,
musb_ep->dma->actual_len,
request);
}
if (is_dma || request->actual == request->length) {
/* First, maybe a terminating short packet.
* Some DMA engines might handle this by
* themselves.
*/
if ((request->zero
&& request->length
&& (request->length
% musb_ep->packet_sz)
== 0)
#ifdef CONFIG_USB_INVENTRA_DMA
|| (is_dma &&
((!dma->desired_mode) ||
(request->actual &
(musb_ep->packet_sz - 1))))
#endif
) {
/* on dma completion, fifo may not
* be available yet ...
*/
if (csr & MUSB_TXCSR_TXPKTRDY)
break;
DBG(4, "sending zero pkt\n");
musb_writew(epio, MUSB_TXCSR,
MUSB_TXCSR_MODE
| MUSB_TXCSR_TXPKTRDY);
request->zero = 0;
}
/* ... or if not, then complete it */
musb_g_giveback(musb_ep, request, 0);
/* kickstart next transfer if appropriate;
* the packet that just completed might not
* be transmitted for hours or days.
* REVISIT for double buffering...
* FIXME revisit for stalls too...
*/
musb_ep_select(mbase, epnum);
csr = musb_readw(epio, MUSB_TXCSR);
if (csr & MUSB_TXCSR_FIFONOTEMPTY)
break;
request = musb_ep->desc
? next_request(musb_ep)
: NULL;
if (!request) {
DBG(4, "%s idle now\n",
musb_ep->end_point.name);
break;
}
}
txstate(musb, to_musb_request(request));
}
} while (0);
}
/* ------------------------------------------------------------ */
#ifdef CONFIG_USB_INVENTRA_DMA
/* Peripheral rx (OUT) using Mentor DMA works as follows:
- Only mode 0 is used.
- Request is queued by the gadget class driver.
-> if queue was previously empty, rxstate()
- Host sends OUT token which causes an endpoint interrupt
/\ -> RxReady
| -> if request queued, call rxstate
| /\ -> setup DMA
| | -> DMA interrupt on completion
| | -> RxReady
| | -> stop DMA
| | -> ack the read
| | -> if data recd = max expected
| | by the request, or host
| | sent a short packet,
| | complete the request,
| | and start the next one.
| |_____________________________________|
| else just wait for the host
| to send the next OUT token.
|__________________________________________________|
* Non-Mentor DMA engines can of course work differently.
*/
#endif
/*
* Context: controller locked, IRQs blocked, endpoint selected
*/
static void rxstate(struct musb *musb, struct musb_request *req)
{
u16 csr = 0;
const u8 epnum = req->epnum;
struct usb_request *request = &req->request;
struct musb_ep *musb_ep = &musb->endpoints[epnum].ep_out;
void __iomem *epio = musb->endpoints[epnum].regs;
unsigned fifo_count = 0;
u16 len = musb_ep->packet_sz;
csr = musb_readw(epio, MUSB_RXCSR);
if (is_cppi_enabled() && musb_ep->dma) {
struct dma_controller *c = musb->dma_controller;
struct dma_channel *channel = musb_ep->dma;
/* NOTE: CPPI won't actually stop advancing the DMA
* queue after short packet transfers, so this is almost
* always going to run as IRQ-per-packet DMA so that
* faults will be handled correctly.
*/
if (c->channel_program(channel,
musb_ep->packet_sz,
!request->short_not_ok,
request->dma + request->actual,
request->length - request->actual)) {
/* make sure that if an rxpkt arrived after the irq,
* the cppi engine will be ready to take it as soon
* as DMA is enabled
*/
csr &= ~(MUSB_RXCSR_AUTOCLEAR
| MUSB_RXCSR_DMAMODE);
csr |= MUSB_RXCSR_DMAENAB | MUSB_RXCSR_P_WZC_BITS;
musb_writew(epio, MUSB_RXCSR, csr);
return;
}
}
if (csr & MUSB_RXCSR_RXPKTRDY) {
len = musb_readw(epio, MUSB_RXCOUNT);
if (request->actual < request->length) {
#ifdef CONFIG_USB_INVENTRA_DMA
if (is_dma_capable() && musb_ep->dma) {
struct dma_controller *c;
struct dma_channel *channel;
int use_dma = 0;
c = musb->dma_controller;
channel = musb_ep->dma;
/* We use DMA Req mode 0 in rx_csr, and DMA controller operates in
* mode 0 only. So we do not get endpoint interrupts due to DMA
* completion. We only get interrupts from DMA controller.
*
* We could operate in DMA mode 1 if we knew the size of the tranfer
* in advance. For mass storage class, request->length = what the host
* sends, so that'd work. But for pretty much everything else,
* request->length is routinely more than what the host sends. For
* most these gadgets, end of is signified either by a short packet,
* or filling the last byte of the buffer. (Sending extra data in
* that last pckate should trigger an overflow fault.) But in mode 1,
* we don't get DMA completion interrrupt for short packets.
*
* Theoretically, we could enable DMAReq irq (MUSB_RXCSR_DMAMODE = 1),
* to get endpoint interrupt on every DMA req, but that didn't seem
* to work reliably.
*
* REVISIT an updated g_file_storage can set req->short_not_ok, which
* then becomes usable as a runtime "use mode 1" hint...
*/
csr |= MUSB_RXCSR_DMAENAB;
#ifdef USE_MODE1
csr |= MUSB_RXCSR_AUTOCLEAR;
/* csr |= MUSB_RXCSR_DMAMODE; */
/* this special sequence (enabling and then
* disabling MUSB_RXCSR_DMAMODE) is required
* to get DMAReq to activate
*/
musb_writew(epio, MUSB_RXCSR,
csr | MUSB_RXCSR_DMAMODE);
#endif
musb_writew(epio, MUSB_RXCSR, csr);
if (request->actual < request->length) {
int transfer_size = 0;
#ifdef USE_MODE1
transfer_size = min(request->length,
channel->max_len);
#else
transfer_size = len;
#endif
if (transfer_size <= musb_ep->packet_sz)
musb_ep->dma->desired_mode = 0;
else
musb_ep->dma->desired_mode = 1;
use_dma = c->channel_program(
channel,
musb_ep->packet_sz,
channel->desired_mode,
request->dma
+ request->actual,
transfer_size);
}
if (use_dma)
return;
}
#endif /* Mentor's DMA */
fifo_count = request->length - request->actual;
DBG(3, "%s OUT/RX pio fifo %d/%d, maxpacket %d\n",
musb_ep->end_point.name,
len, fifo_count,
musb_ep->packet_sz);
fifo_count = min_t(unsigned, len, fifo_count);
#ifdef CONFIG_USB_TUSB_OMAP_DMA
if (tusb_dma_omap() && musb_ep->dma) {
struct dma_controller *c = musb->dma_controller;
struct dma_channel *channel = musb_ep->dma;
u32 dma_addr = request->dma + request->actual;
int ret;
ret = c->channel_program(channel,
musb_ep->packet_sz,
channel->desired_mode,
dma_addr,
fifo_count);
if (ret)
return;
}
#endif
musb_read_fifo(musb_ep->hw_ep, fifo_count, (u8 *)
(request->buf + request->actual));
request->actual += fifo_count;
/* REVISIT if we left anything in the fifo, flush
* it and report -EOVERFLOW
*/
/* ack the read! */
csr |= MUSB_RXCSR_P_WZC_BITS;
csr &= ~MUSB_RXCSR_RXPKTRDY;
musb_writew(epio, MUSB_RXCSR, csr);
}
}
/* reach the end or short packet detected */
if (request->actual == request->length || len < musb_ep->packet_sz)
musb_g_giveback(musb_ep, request, 0);
}
/*
* Data ready for a request; called from IRQ
*/
void musb_g_rx(struct musb *musb, u8 epnum)
{
u16 csr;
struct usb_request *request;
void __iomem *mbase = musb->mregs;
struct musb_ep *musb_ep = &musb->endpoints[epnum].ep_out;
void __iomem *epio = musb->endpoints[epnum].regs;
struct dma_channel *dma;
musb_ep_select(mbase, epnum);
request = next_request(musb_ep);
csr = musb_readw(epio, MUSB_RXCSR);
dma = is_dma_capable() ? musb_ep->dma : NULL;
DBG(4, "<== %s, rxcsr %04x%s %p\n", musb_ep->end_point.name,
csr, dma ? " (dma)" : "", request);
if (csr & MUSB_RXCSR_P_SENTSTALL) {
if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
dma->status = MUSB_DMA_STATUS_CORE_ABORT;
(void) musb->dma_controller->channel_abort(dma);
request->actual += musb_ep->dma->actual_len;
}
csr |= MUSB_RXCSR_P_WZC_BITS;
csr &= ~MUSB_RXCSR_P_SENTSTALL;
musb_writew(epio, MUSB_RXCSR, csr);
if (request)
musb_g_giveback(musb_ep, request, -EPIPE);
goto done;
}
if (csr & MUSB_RXCSR_P_OVERRUN) {
/* csr |= MUSB_RXCSR_P_WZC_BITS; */
csr &= ~MUSB_RXCSR_P_OVERRUN;
musb_writew(epio, MUSB_RXCSR, csr);
DBG(3, "%s iso overrun on %p\n", musb_ep->name, request);
if (request && request->status == -EINPROGRESS)
request->status = -EOVERFLOW;
}
if (csr & MUSB_RXCSR_INCOMPRX) {
/* REVISIT not necessarily an error */
DBG(4, "%s, incomprx\n", musb_ep->end_point.name);
}
if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
/* "should not happen"; likely RXPKTRDY pending for DMA */
DBG((csr & MUSB_RXCSR_DMAENAB) ? 4 : 1,
"%s busy, csr %04x\n",
musb_ep->end_point.name, csr);
goto done;
}
if (dma && (csr & MUSB_RXCSR_DMAENAB)) {
csr &= ~(MUSB_RXCSR_AUTOCLEAR
| MUSB_RXCSR_DMAENAB
| MUSB_RXCSR_DMAMODE);
musb_writew(epio, MUSB_RXCSR,
MUSB_RXCSR_P_WZC_BITS | csr);
request->actual += musb_ep->dma->actual_len;
DBG(4, "RXCSR%d %04x, dma off, %04x, len %zu, req %p\n",
epnum, csr,
musb_readw(epio, MUSB_RXCSR),
musb_ep->dma->actual_len, request);
#if defined(CONFIG_USB_INVENTRA_DMA) || defined(CONFIG_USB_TUSB_OMAP_DMA)
/* Autoclear doesn't clear RxPktRdy for short packets */
if ((dma->desired_mode == 0)
|| (dma->actual_len
& (musb_ep->packet_sz - 1))) {
/* ack the read! */
csr &= ~MUSB_RXCSR_RXPKTRDY;
musb_writew(epio, MUSB_RXCSR, csr);
}
/* incomplete, and not short? wait for next IN packet */
if ((request->actual < request->length)
&& (musb_ep->dma->actual_len
== musb_ep->packet_sz))
goto done;
#endif
musb_g_giveback(musb_ep, request, 0);
request = next_request(musb_ep);
if (!request)
goto done;
/* don't start more i/o till the stall clears */
musb_ep_select(mbase, epnum);
csr = musb_readw(epio, MUSB_RXCSR);
if (csr & MUSB_RXCSR_P_SENDSTALL)
goto done;
}
/* analyze request if the ep is hot */
if (request)
rxstate(musb, to_musb_request(request));
else
DBG(3, "packet waiting for %s%s request\n",
musb_ep->desc ? "" : "inactive ",
musb_ep->end_point.name);
done:
return;
}
/* ------------------------------------------------------------ */
static int musb_gadget_enable(struct usb_ep *ep,
const struct usb_endpoint_descriptor *desc)
{
unsigned long flags;
struct musb_ep *musb_ep;
struct musb_hw_ep *hw_ep;
void __iomem *regs;
struct musb *musb;
void __iomem *mbase;
u8 epnum;
u16 csr;
unsigned tmp;
int status = -EINVAL;
if (!ep || !desc)
return -EINVAL;
musb_ep = to_musb_ep(ep);
hw_ep = musb_ep->hw_ep;
regs = hw_ep->regs;
musb = musb_ep->musb;
mbase = musb->mregs;
epnum = musb_ep->current_epnum;
spin_lock_irqsave(&musb->lock, flags);
if (musb_ep->desc) {
status = -EBUSY;
goto fail;
}
musb_ep->type = usb_endpoint_type(desc);
/* check direction and (later) maxpacket size against endpoint */
if (usb_endpoint_num(desc) != epnum)
goto fail;
/* REVISIT this rules out high bandwidth periodic transfers */
tmp = le16_to_cpu(desc->wMaxPacketSize);
if (tmp & ~0x07ff)
goto fail;
musb_ep->packet_sz = tmp;
/* enable the interrupts for the endpoint, set the endpoint
* packet size (or fail), set the mode, clear the fifo
*/
musb_ep_select(mbase, epnum);
if (usb_endpoint_dir_in(desc)) {
u16 int_txe = musb_readw(mbase, MUSB_INTRTXE);
if (hw_ep->is_shared_fifo)
musb_ep->is_in = 1;
if (!musb_ep->is_in)
goto fail;
if (tmp > hw_ep->max_packet_sz_tx)
goto fail;
int_txe |= (1 << epnum);
musb_writew(mbase, MUSB_INTRTXE, int_txe);
/* REVISIT if can_bulk_split(), use by updating "tmp";
* likewise high bandwidth periodic tx
*/
musb_writew(regs, MUSB_TXMAXP, tmp);
csr = MUSB_TXCSR_MODE | MUSB_TXCSR_CLRDATATOG;
if (musb_readw(regs, MUSB_TXCSR)
& MUSB_TXCSR_FIFONOTEMPTY)
csr |= MUSB_TXCSR_FLUSHFIFO;
if (musb_ep->type == USB_ENDPOINT_XFER_ISOC)
csr |= MUSB_TXCSR_P_ISO;
/* set twice in case of double buffering */
musb_writew(regs, MUSB_TXCSR, csr);
/* REVISIT may be inappropriate w/o FIFONOTEMPTY ... */
musb_writew(regs, MUSB_TXCSR, csr);
} else {
u16 int_rxe = musb_readw(mbase, MUSB_INTRRXE);
if (hw_ep->is_shared_fifo)
musb_ep->is_in = 0;
if (musb_ep->is_in)
goto fail;
if (tmp > hw_ep->max_packet_sz_rx)
goto fail;
int_rxe |= (1 << epnum);
musb_writew(mbase, MUSB_INTRRXE, int_rxe);
/* REVISIT if can_bulk_combine() use by updating "tmp"
* likewise high bandwidth periodic rx
*/
musb_writew(regs, MUSB_RXMAXP, tmp);
/* force shared fifo to OUT-only mode */
if (hw_ep->is_shared_fifo) {
csr = musb_readw(regs, MUSB_TXCSR);
csr &= ~(MUSB_TXCSR_MODE | MUSB_TXCSR_TXPKTRDY);
musb_writew(regs, MUSB_TXCSR, csr);
}
csr = MUSB_RXCSR_FLUSHFIFO | MUSB_RXCSR_CLRDATATOG;
if (musb_ep->type == USB_ENDPOINT_XFER_ISOC)
csr |= MUSB_RXCSR_P_ISO;
else if (musb_ep->type == USB_ENDPOINT_XFER_INT)
csr |= MUSB_RXCSR_DISNYET;
/* set twice in case of double buffering */
musb_writew(regs, MUSB_RXCSR, csr);
musb_writew(regs, MUSB_RXCSR, csr);
}
/* NOTE: all the I/O code _should_ work fine without DMA, in case
* for some reason you run out of channels here.
*/
if (is_dma_capable() && musb->dma_controller) {
struct dma_controller *c = musb->dma_controller;
musb_ep->dma = c->channel_alloc(c, hw_ep,
(desc->bEndpointAddress & USB_DIR_IN));
} else
musb_ep->dma = NULL;
musb_ep->desc = desc;
musb_ep->busy = 0;
status = 0;
pr_debug("%s periph: enabled %s for %s %s, %smaxpacket %d\n",
musb_driver_name, musb_ep->end_point.name,
({ char *s; switch (musb_ep->type) {
case USB_ENDPOINT_XFER_BULK: s = "bulk"; break;
case USB_ENDPOINT_XFER_INT: s = "int"; break;
default: s = "iso"; break;
}; s; }),
musb_ep->is_in ? "IN" : "OUT",
musb_ep->dma ? "dma, " : "",
musb_ep->packet_sz);
schedule_work(&musb->irq_work);
fail:
spin_unlock_irqrestore(&musb->lock, flags);
return status;
}
/*
* Disable an endpoint flushing all requests queued.
*/
static int musb_gadget_disable(struct usb_ep *ep)
{
unsigned long flags;
struct musb *musb;
u8 epnum;
struct musb_ep *musb_ep;
void __iomem *epio;
int status = 0;
musb_ep = to_musb_ep(ep);
musb = musb_ep->musb;
epnum = musb_ep->current_epnum;
epio = musb->endpoints[epnum].regs;
spin_lock_irqsave(&musb->lock, flags);
musb_ep_select(musb->mregs, epnum);
/* zero the endpoint sizes */
if (musb_ep->is_in) {
u16 int_txe = musb_readw(musb->mregs, MUSB_INTRTXE);
int_txe &= ~(1 << epnum);
musb_writew(musb->mregs, MUSB_INTRTXE, int_txe);
musb_writew(epio, MUSB_TXMAXP, 0);
} else {
u16 int_rxe = musb_readw(musb->mregs, MUSB_INTRRXE);
int_rxe &= ~(1 << epnum);
musb_writew(musb->mregs, MUSB_INTRRXE, int_rxe);
musb_writew(epio, MUSB_RXMAXP, 0);
}
musb_ep->desc = NULL;
/* abort all pending DMA and requests */
nuke(musb_ep, -ESHUTDOWN);
schedule_work(&musb->irq_work);
spin_unlock_irqrestore(&(musb->lock), flags);
DBG(2, "%s\n", musb_ep->end_point.name);
return status;
}
/*
* Allocate a request for an endpoint.
* Reused by ep0 code.
*/
struct usb_request *musb_alloc_request(struct usb_ep *ep, gfp_t gfp_flags)
{
struct musb_ep *musb_ep = to_musb_ep(ep);
struct musb_request *request = NULL;
request = kzalloc(sizeof *request, gfp_flags);
if (request) {
INIT_LIST_HEAD(&request->request.list);
request->request.dma = DMA_ADDR_INVALID;
request->epnum = musb_ep->current_epnum;
request->ep = musb_ep;
}
return &request->request;
}
/*
* Free a request
* Reused by ep0 code.
*/
void musb_free_request(struct usb_ep *ep, struct usb_request *req)
{
kfree(to_musb_request(req));
}
static LIST_HEAD(buffers);
struct free_record {
struct list_head list;
struct device *dev;
unsigned bytes;
dma_addr_t dma;
};
/*
* Context: controller locked, IRQs blocked.
*/
static void musb_ep_restart(struct musb *musb, struct musb_request *req)
{
DBG(3, "<== %s request %p len %u on hw_ep%d\n",
req->tx ? "TX/IN" : "RX/OUT",
&req->request, req->request.length, req->epnum);
musb_ep_select(musb->mregs, req->epnum);
if (req->tx)
txstate(musb, req);
else
rxstate(musb, req);
}
static int musb_gadget_queue(struct usb_ep *ep, struct usb_request *req,
gfp_t gfp_flags)
{
struct musb_ep *musb_ep;
struct musb_request *request;
struct musb *musb;
int status = 0;
unsigned long lockflags;
if (!ep || !req)
return -EINVAL;
if (!req->buf)
return -ENODATA;
musb_ep = to_musb_ep(ep);
musb = musb_ep->musb;
request = to_musb_request(req);
request->musb = musb;
if (request->ep != musb_ep)
return -EINVAL;
DBG(4, "<== to %s request=%p\n", ep->name, req);
/* request is mine now... */
request->request.actual = 0;
request->request.status = -EINPROGRESS;
request->epnum = musb_ep->current_epnum;
request->tx = musb_ep->is_in;
if (is_dma_capable() && musb_ep->dma) {
if (request->request.dma == DMA_ADDR_INVALID) {
request->request.dma = dma_map_single(
musb->controller,
request->request.buf,
request->request.length,
request->tx
? DMA_TO_DEVICE
: DMA_FROM_DEVICE);
request->mapped = 1;
} else {
dma_sync_single_for_device(musb->controller,
request->request.dma,
request->request.length,
request->tx
? DMA_TO_DEVICE
: DMA_FROM_DEVICE);
request->mapped = 0;
}
} else if (!req->buf) {
return -ENODATA;
} else
request->mapped = 0;
spin_lock_irqsave(&musb->lock, lockflags);
/* don't queue if the ep is down */
if (!musb_ep->desc) {
DBG(4, "req %p queued to %s while ep %s\n",
req, ep->name, "disabled");
status = -ESHUTDOWN;
goto cleanup;
}
/* add request to the list */
list_add_tail(&(request->request.list), &(musb_ep->req_list));
/* it this is the head of the queue, start i/o ... */
if (!musb_ep->busy && &request->request.list == musb_ep->req_list.next)
musb_ep_restart(musb, request);
cleanup:
spin_unlock_irqrestore(&musb->lock, lockflags);
return status;
}
static int musb_gadget_dequeue(struct usb_ep *ep, struct usb_request *request)
{
struct musb_ep *musb_ep = to_musb_ep(ep);
struct usb_request *r;
unsigned long flags;
int status = 0;
struct musb *musb = musb_ep->musb;
if (!ep || !request || to_musb_request(request)->ep != musb_ep)
return -EINVAL;
spin_lock_irqsave(&musb->lock, flags);
list_for_each_entry(r, &musb_ep->req_list, list) {
if (r == request)
break;
}
if (r != request) {
DBG(3, "request %p not queued to %s\n", request, ep->name);
status = -EINVAL;
goto done;
}
/* if the hardware doesn't have the request, easy ... */
if (musb_ep->req_list.next != &request->list || musb_ep->busy)
musb_g_giveback(musb_ep, request, -ECONNRESET);
/* ... else abort the dma transfer ... */
else if (is_dma_capable() && musb_ep->dma) {
struct dma_controller *c = musb->dma_controller;
musb_ep_select(musb->mregs, musb_ep->current_epnum);
if (c->channel_abort)
status = c->channel_abort(musb_ep->dma);
else
status = -EBUSY;
if (status == 0)
musb_g_giveback(musb_ep, request, -ECONNRESET);
} else {
/* NOTE: by sticking to easily tested hardware/driver states,
* we leave counting of in-flight packets imprecise.
*/
musb_g_giveback(musb_ep, request, -ECONNRESET);
}
done:
spin_unlock_irqrestore(&musb->lock, flags);
return status;
}
/*
* Set or clear the halt bit of an endpoint. A halted enpoint won't tx/rx any
* data but will queue requests.
*
* exported to ep0 code
*/
int musb_gadget_set_halt(struct usb_ep *ep, int value)
{
struct musb_ep *musb_ep = to_musb_ep(ep);
u8 epnum = musb_ep->current_epnum;
struct musb *musb = musb_ep->musb;
void __iomem *epio = musb->endpoints[epnum].regs;
void __iomem *mbase;
unsigned long flags;
u16 csr;
struct musb_request *request = NULL;
int status = 0;
if (!ep)
return -EINVAL;
mbase = musb->mregs;
spin_lock_irqsave(&musb->lock, flags);
if ((USB_ENDPOINT_XFER_ISOC == musb_ep->type)) {
status = -EINVAL;
goto done;
}
musb_ep_select(mbase, epnum);
/* cannot portably stall with non-empty FIFO */
request = to_musb_request(next_request(musb_ep));
if (value && musb_ep->is_in) {
csr = musb_readw(epio, MUSB_TXCSR);
if (csr & MUSB_TXCSR_FIFONOTEMPTY) {
DBG(3, "%s fifo busy, cannot halt\n", ep->name);
spin_unlock_irqrestore(&musb->lock, flags);
return -EAGAIN;
}
}
/* set/clear the stall and toggle bits */
DBG(2, "%s: %s stall\n", ep->name, value ? "set" : "clear");
if (musb_ep->is_in) {
csr = musb_readw(epio, MUSB_TXCSR);
if (csr & MUSB_TXCSR_FIFONOTEMPTY)
csr |= MUSB_TXCSR_FLUSHFIFO;
csr |= MUSB_TXCSR_P_WZC_BITS
| MUSB_TXCSR_CLRDATATOG;
if (value)
csr |= MUSB_TXCSR_P_SENDSTALL;
else
csr &= ~(MUSB_TXCSR_P_SENDSTALL
| MUSB_TXCSR_P_SENTSTALL);
csr &= ~MUSB_TXCSR_TXPKTRDY;
musb_writew(epio, MUSB_TXCSR, csr);
} else {
csr = musb_readw(epio, MUSB_RXCSR);
csr |= MUSB_RXCSR_P_WZC_BITS
| MUSB_RXCSR_FLUSHFIFO
| MUSB_RXCSR_CLRDATATOG;
if (value)
csr |= MUSB_RXCSR_P_SENDSTALL;
else
csr &= ~(MUSB_RXCSR_P_SENDSTALL
| MUSB_RXCSR_P_SENTSTALL);
musb_writew(epio, MUSB_RXCSR, csr);
}
done:
/* maybe start the first request in the queue */
if (!musb_ep->busy && !value && request) {
DBG(3, "restarting the request\n");
musb_ep_restart(musb, request);
}
spin_unlock_irqrestore(&musb->lock, flags);
return status;
}
static int musb_gadget_fifo_status(struct usb_ep *ep)
{
struct musb_ep *musb_ep = to_musb_ep(ep);
void __iomem *epio = musb_ep->hw_ep->regs;
int retval = -EINVAL;
if (musb_ep->desc && !musb_ep->is_in) {
struct musb *musb = musb_ep->musb;
int epnum = musb_ep->current_epnum;
void __iomem *mbase = musb->mregs;
unsigned long flags;
spin_lock_irqsave(&musb->lock, flags);
musb_ep_select(mbase, epnum);
/* FIXME return zero unless RXPKTRDY is set */
retval = musb_readw(epio, MUSB_RXCOUNT);
spin_unlock_irqrestore(&musb->lock, flags);
}
return retval;
}
static void musb_gadget_fifo_flush(struct usb_ep *ep)
{
struct musb_ep *musb_ep = to_musb_ep(ep);
struct musb *musb = musb_ep->musb;
u8 epnum = musb_ep->current_epnum;
void __iomem *epio = musb->endpoints[epnum].regs;
void __iomem *mbase;
unsigned long flags;
u16 csr, int_txe;
mbase = musb->mregs;
spin_lock_irqsave(&musb->lock, flags);
musb_ep_select(mbase, (u8) epnum);
/* disable interrupts */
int_txe = musb_readw(mbase, MUSB_INTRTXE);
musb_writew(mbase, MUSB_INTRTXE, int_txe & ~(1 << epnum));
if (musb_ep->is_in) {
csr = musb_readw(epio, MUSB_TXCSR);
if (csr & MUSB_TXCSR_FIFONOTEMPTY) {
csr |= MUSB_TXCSR_FLUSHFIFO | MUSB_TXCSR_P_WZC_BITS;
musb_writew(epio, MUSB_TXCSR, csr);
/* REVISIT may be inappropriate w/o FIFONOTEMPTY ... */
musb_writew(epio, MUSB_TXCSR, csr);
}
} else {
csr = musb_readw(epio, MUSB_RXCSR);
csr |= MUSB_RXCSR_FLUSHFIFO | MUSB_RXCSR_P_WZC_BITS;
musb_writew(epio, MUSB_RXCSR, csr);
musb_writew(epio, MUSB_RXCSR, csr);
}
/* re-enable interrupt */
musb_writew(mbase, MUSB_INTRTXE, int_txe);
spin_unlock_irqrestore(&musb->lock, flags);
}
static const struct usb_ep_ops musb_ep_ops = {
.enable = musb_gadget_enable,
.disable = musb_gadget_disable,
.alloc_request = musb_alloc_request,
.free_request = musb_free_request,
.queue = musb_gadget_queue,
.dequeue = musb_gadget_dequeue,
.set_halt = musb_gadget_set_halt,
.fifo_status = musb_gadget_fifo_status,
.fifo_flush = musb_gadget_fifo_flush
};
/* ----------------------------------------------------------------------- */
static int musb_gadget_get_frame(struct usb_gadget *gadget)
{
struct musb *musb = gadget_to_musb(gadget);
return (int)musb_readw(musb->mregs, MUSB_FRAME);
}
static int musb_gadget_wakeup(struct usb_gadget *gadget)
{
struct musb *musb = gadget_to_musb(gadget);
void __iomem *mregs = musb->mregs;
unsigned long flags;
int status = -EINVAL;
u8 power, devctl;
int retries;
spin_lock_irqsave(&musb->lock, flags);
switch (musb->xceiv->state) {
case OTG_STATE_B_PERIPHERAL:
/* NOTE: OTG state machine doesn't include B_SUSPENDED;
* that's part of the standard usb 1.1 state machine, and
* doesn't affect OTG transitions.
*/
if (musb->may_wakeup && musb->is_suspended)
break;
goto done;
case OTG_STATE_B_IDLE:
/* Start SRP ... OTG not required. */
devctl = musb_readb(mregs, MUSB_DEVCTL);
DBG(2, "Sending SRP: devctl: %02x\n", devctl);
devctl |= MUSB_DEVCTL_SESSION;
musb_writeb(mregs, MUSB_DEVCTL, devctl);
devctl = musb_readb(mregs, MUSB_DEVCTL);
retries = 100;
while (!(devctl & MUSB_DEVCTL_SESSION)) {
devctl = musb_readb(mregs, MUSB_DEVCTL);
if (retries-- < 1)
break;
}
retries = 10000;
while (devctl & MUSB_DEVCTL_SESSION) {
devctl = musb_readb(mregs, MUSB_DEVCTL);
if (retries-- < 1)
break;
}
/* Block idling for at least 1s */
musb_platform_try_idle(musb,
jiffies + msecs_to_jiffies(1 * HZ));
status = 0;
goto done;
default:
DBG(2, "Unhandled wake: %s\n", otg_state_string(musb));
goto done;
}
status = 0;
power = musb_readb(mregs, MUSB_POWER);
power |= MUSB_POWER_RESUME;
musb_writeb(mregs, MUSB_POWER, power);
DBG(2, "issue wakeup\n");
/* FIXME do this next chunk in a timer callback, no udelay */
mdelay(2);
power = musb_readb(mregs, MUSB_POWER);
power &= ~MUSB_POWER_RESUME;
musb_writeb(mregs, MUSB_POWER, power);
done:
spin_unlock_irqrestore(&musb->lock, flags);
return status;
}
static int
musb_gadget_set_self_powered(struct usb_gadget *gadget, int is_selfpowered)
{
struct musb *musb = gadget_to_musb(gadget);
musb->is_self_powered = !!is_selfpowered;
return 0;
}
static void musb_pullup(struct musb *musb, int is_on)
{
u8 power;
power = musb_readb(musb->mregs, MUSB_POWER);
if (is_on)
power |= MUSB_POWER_SOFTCONN;
else
power &= ~MUSB_POWER_SOFTCONN;
/* FIXME if on, HdrcStart; if off, HdrcStop */
DBG(3, "gadget %s D+ pullup %s\n",
musb->gadget_driver->function, is_on ? "on" : "off");
musb_writeb(musb->mregs, MUSB_POWER, power);
}
#if 0
static int musb_gadget_vbus_session(struct usb_gadget *gadget, int is_active)
{
DBG(2, "<= %s =>\n", __func__);
/*
* FIXME iff driver's softconnect flag is set (as it is during probe,
* though that can clear it), just musb_pullup().
*/
return -EINVAL;
}
#endif
static int musb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
{
struct musb *musb = gadget_to_musb(gadget);
if (!musb->xceiv->set_power)
return -EOPNOTSUPP;
return otg_set_power(musb->xceiv, mA);
}
static int musb_gadget_pullup(struct usb_gadget *gadget, int is_on)
{
struct musb *musb = gadget_to_musb(gadget);
unsigned long flags;
is_on = !!is_on;
/* NOTE: this assumes we are sensing vbus; we'd rather
* not pullup unless the B-session is active.
*/
spin_lock_irqsave(&musb->lock, flags);
if (is_on != musb->softconnect) {
musb->softconnect = is_on;
musb_pullup(musb, is_on);
}
spin_unlock_irqrestore(&musb->lock, flags);
return 0;
}
static const struct usb_gadget_ops musb_gadget_operations = {
.get_frame = musb_gadget_get_frame,
.wakeup = musb_gadget_wakeup,
.set_selfpowered = musb_gadget_set_self_powered,
/* .vbus_session = musb_gadget_vbus_session, */
.vbus_draw = musb_gadget_vbus_draw,
.pullup = musb_gadget_pullup,
};
/* ----------------------------------------------------------------------- */
/* Registration */
/* Only this registration code "knows" the rule (from USB standards)
* about there being only one external upstream port. It assumes
* all peripheral ports are external...
*/
static struct musb *the_gadget;
static void musb_gadget_release(struct device *dev)
{
/* kref_put(WHAT) */
dev_dbg(dev, "%s\n", __func__);
}
static void __init
init_peripheral_ep(struct musb *musb, struct musb_ep *ep, u8 epnum, int is_in)
{
struct musb_hw_ep *hw_ep = musb->endpoints + epnum;
memset(ep, 0, sizeof *ep);
ep->current_epnum = epnum;
ep->musb = musb;
ep->hw_ep = hw_ep;
ep->is_in = is_in;
INIT_LIST_HEAD(&ep->req_list);
sprintf(ep->name, "ep%d%s", epnum,
(!epnum || hw_ep->is_shared_fifo) ? "" : (
is_in ? "in" : "out"));
ep->end_point.name = ep->name;
INIT_LIST_HEAD(&ep->end_point.ep_list);
if (!epnum) {
ep->end_point.maxpacket = 64;
ep->end_point.ops = &musb_g_ep0_ops;
musb->g.ep0 = &ep->end_point;
} else {
if (is_in)
ep->end_point.maxpacket = hw_ep->max_packet_sz_tx;
else
ep->end_point.maxpacket = hw_ep->max_packet_sz_rx;
ep->end_point.ops = &musb_ep_ops;
list_add_tail(&ep->end_point.ep_list, &musb->g.ep_list);
}
}
/*
* Initialize the endpoints exposed to peripheral drivers, with backlinks
* to the rest of the driver state.
*/
static inline void __init musb_g_init_endpoints(struct musb *musb)
{
u8 epnum;
struct musb_hw_ep *hw_ep;
unsigned count = 0;
/* intialize endpoint list just once */
INIT_LIST_HEAD(&(musb->g.ep_list));
for (epnum = 0, hw_ep = musb->endpoints;
epnum < musb->nr_endpoints;
epnum++, hw_ep++) {
if (hw_ep->is_shared_fifo /* || !epnum */) {
init_peripheral_ep(musb, &hw_ep->ep_in, epnum, 0);
count++;
} else {
if (hw_ep->max_packet_sz_tx) {
init_peripheral_ep(musb, &hw_ep->ep_in,
epnum, 1);
count++;
}
if (hw_ep->max_packet_sz_rx) {
init_peripheral_ep(musb, &hw_ep->ep_out,
epnum, 0);
count++;
}
}
}
}
/* called once during driver setup to initialize and link into
* the driver model; memory is zeroed.
*/
int __init musb_gadget_setup(struct musb *musb)
{
int status;
/* REVISIT minor race: if (erroneously) setting up two
* musb peripherals at the same time, only the bus lock
* is probably held.
*/
if (the_gadget)
return -EBUSY;
the_gadget = musb;
musb->g.ops = &musb_gadget_operations;
musb->g.is_dualspeed = 1;
musb->g.speed = USB_SPEED_UNKNOWN;
/* this "gadget" abstracts/virtualizes the controller */
dev_set_name(&musb->g.dev, "gadget");
musb->g.dev.parent = musb->controller;
musb->g.dev.dma_mask = musb->controller->dma_mask;
musb->g.dev.release = musb_gadget_release;
musb->g.name = musb_driver_name;
if (is_otg_enabled(musb))
musb->g.is_otg = 1;
musb_g_init_endpoints(musb);
musb->is_active = 0;
musb_platform_try_idle(musb, 0);
status = device_register(&musb->g.dev);
if (status != 0)
the_gadget = NULL;
return status;
}
void musb_gadget_cleanup(struct musb *musb)
{
if (musb != the_gadget)
return;
device_unregister(&musb->g.dev);
the_gadget = NULL;
}
/*
* Register the gadget driver. Used by gadget drivers when
* registering themselves with the controller.
*
* -EINVAL something went wrong (not driver)
* -EBUSY another gadget is already using the controller
* -ENOMEM no memeory to perform the operation
*
* @param driver the gadget driver
* @return <0 if error, 0 if everything is fine
*/
int usb_gadget_register_driver(struct usb_gadget_driver *driver)
{
int retval;
unsigned long flags;
struct musb *musb = the_gadget;
if (!driver
|| driver->speed != USB_SPEED_HIGH
|| !driver->bind
|| !driver->setup)
return -EINVAL;
/* driver must be initialized to support peripheral mode */
if (!musb || !(musb->board_mode == MUSB_OTG
|| musb->board_mode != MUSB_OTG)) {
DBG(1, "%s, no dev??\n", __func__);
return -ENODEV;
}
DBG(3, "registering driver %s\n", driver->function);
spin_lock_irqsave(&musb->lock, flags);
if (musb->gadget_driver) {
DBG(1, "%s is already bound to %s\n",
musb_driver_name,
musb->gadget_driver->driver.name);
retval = -EBUSY;
} else {
musb->gadget_driver = driver;
musb->g.dev.driver = &driver->driver;
driver->driver.bus = NULL;
musb->softconnect = 1;
retval = 0;
}
spin_unlock_irqrestore(&musb->lock, flags);
if (retval == 0) {
retval = driver->bind(&musb->g);
if (retval != 0) {
DBG(3, "bind to driver %s failed --> %d\n",
driver->driver.name, retval);
musb->gadget_driver = NULL;
musb->g.dev.driver = NULL;
}
spin_lock_irqsave(&musb->lock, flags);
otg_set_peripheral(musb->xceiv, &musb->g);
musb->is_active = 1;
/* FIXME this ignores the softconnect flag. Drivers are
* allowed hold the peripheral inactive until for example
* userspace hooks up printer hardware or DSP codecs, so
* hosts only see fully functional devices.
*/
if (!is_otg_enabled(musb))
musb_start(musb);
otg_set_peripheral(musb->xceiv, &musb->g);
spin_unlock_irqrestore(&musb->lock, flags);
if (is_otg_enabled(musb)) {
DBG(3, "OTG startup...\n");
/* REVISIT: funcall to other code, which also
* handles power budgeting ... this way also
* ensures HdrcStart is indirectly called.
*/
retval = usb_add_hcd(musb_to_hcd(musb), -1, 0);
if (retval < 0) {
DBG(1, "add_hcd failed, %d\n", retval);
spin_lock_irqsave(&musb->lock, flags);
otg_set_peripheral(musb->xceiv, NULL);
musb->gadget_driver = NULL;
musb->g.dev.driver = NULL;
spin_unlock_irqrestore(&musb->lock, flags);
}
}
}
return retval;
}
EXPORT_SYMBOL(usb_gadget_register_driver);
static void stop_activity(struct musb *musb, struct usb_gadget_driver *driver)
{
int i;
struct musb_hw_ep *hw_ep;
/* don't disconnect if it's not connected */
if (musb->g.speed == USB_SPEED_UNKNOWN)
driver = NULL;
else
musb->g.speed = USB_SPEED_UNKNOWN;
/* deactivate the hardware */
if (musb->softconnect) {
musb->softconnect = 0;
musb_pullup(musb, 0);
}
musb_stop(musb);
/* killing any outstanding requests will quiesce the driver;
* then report disconnect
*/
if (driver) {
for (i = 0, hw_ep = musb->endpoints;
i < musb->nr_endpoints;
i++, hw_ep++) {
musb_ep_select(musb->mregs, i);
if (hw_ep->is_shared_fifo /* || !epnum */) {
nuke(&hw_ep->ep_in, -ESHUTDOWN);
} else {
if (hw_ep->max_packet_sz_tx)
nuke(&hw_ep->ep_in, -ESHUTDOWN);
if (hw_ep->max_packet_sz_rx)
nuke(&hw_ep->ep_out, -ESHUTDOWN);
}
}
spin_unlock(&musb->lock);
driver->disconnect(&musb->g);
spin_lock(&musb->lock);
}
}
/*
* Unregister the gadget driver. Used by gadget drivers when
* unregistering themselves from the controller.
*
* @param driver the gadget driver to unregister
*/
int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
{
unsigned long flags;
int retval = 0;
struct musb *musb = the_gadget;
if (!driver || !driver->unbind || !musb)
return -EINVAL;
/* REVISIT always use otg_set_peripheral() here too;
* this needs to shut down the OTG engine.
*/
spin_lock_irqsave(&musb->lock, flags);
#ifdef CONFIG_USB_MUSB_OTG
musb_hnp_stop(musb);
#endif
if (musb->gadget_driver == driver) {
(void) musb_gadget_vbus_draw(&musb->g, 0);
musb->xceiv->state = OTG_STATE_UNDEFINED;
stop_activity(musb, driver);
otg_set_peripheral(musb->xceiv, NULL);
DBG(3, "unregistering driver %s\n", driver->function);
spin_unlock_irqrestore(&musb->lock, flags);
driver->unbind(&musb->g);
spin_lock_irqsave(&musb->lock, flags);
musb->gadget_driver = NULL;
musb->g.dev.driver = NULL;
musb->is_active = 0;
musb_platform_try_idle(musb, 0);
} else
retval = -EINVAL;
spin_unlock_irqrestore(&musb->lock, flags);
if (is_otg_enabled(musb) && retval == 0) {
usb_remove_hcd(musb_to_hcd(musb));
/* FIXME we need to be able to register another
* gadget driver here and have everything work;
* that currently misbehaves.
*/
}
return retval;
}
EXPORT_SYMBOL(usb_gadget_unregister_driver);
/* ----------------------------------------------------------------------- */
/* lifecycle operations called through plat_uds.c */
void musb_g_resume(struct musb *musb)
{
musb->is_suspended = 0;
switch (musb->xceiv->state) {
case OTG_STATE_B_IDLE:
break;
case OTG_STATE_B_WAIT_ACON:
case OTG_STATE_B_PERIPHERAL:
musb->is_active = 1;
if (musb->gadget_driver && musb->gadget_driver->resume) {
spin_unlock(&musb->lock);
musb->gadget_driver->resume(&musb->g);
spin_lock(&musb->lock);
}
break;
default:
WARNING("unhandled RESUME transition (%s)\n",
otg_state_string(musb));
}
}
/* called when SOF packets stop for 3+ msec */
void musb_g_suspend(struct musb *musb)
{
u8 devctl;
devctl = musb_readb(musb->mregs, MUSB_DEVCTL);
DBG(3, "devctl %02x\n", devctl);
switch (musb->xceiv->state) {
case OTG_STATE_B_IDLE:
if ((devctl & MUSB_DEVCTL_VBUS) == MUSB_DEVCTL_VBUS)
musb->xceiv->state = OTG_STATE_B_PERIPHERAL;
break;
case OTG_STATE_B_PERIPHERAL:
musb->is_suspended = 1;
if (musb->gadget_driver && musb->gadget_driver->suspend) {
spin_unlock(&musb->lock);
musb->gadget_driver->suspend(&musb->g);
spin_lock(&musb->lock);
}
break;
default:
/* REVISIT if B_HOST, clear DEVCTL.HOSTREQ;
* A_PERIPHERAL may need care too
*/
WARNING("unhandled SUSPEND transition (%s)\n",
otg_state_string(musb));
}
}
/* Called during SRP */
void musb_g_wakeup(struct musb *musb)
{
musb_gadget_wakeup(&musb->g);
}
/* called when VBUS drops below session threshold, and in other cases */
void musb_g_disconnect(struct musb *musb)
{
void __iomem *mregs = musb->mregs;
u8 devctl = musb_readb(mregs, MUSB_DEVCTL);
DBG(3, "devctl %02x\n", devctl);
/* clear HR */
musb_writeb(mregs, MUSB_DEVCTL, devctl & MUSB_DEVCTL_SESSION);
/* don't draw vbus until new b-default session */
(void) musb_gadget_vbus_draw(&musb->g, 0);
musb->g.speed = USB_SPEED_UNKNOWN;
if (musb->gadget_driver && musb->gadget_driver->disconnect) {
spin_unlock(&musb->lock);
musb->gadget_driver->disconnect(&musb->g);
spin_lock(&musb->lock);
}
switch (musb->xceiv->state) {
default:
#ifdef CONFIG_USB_MUSB_OTG
DBG(2, "Unhandled disconnect %s, setting a_idle\n",
otg_state_string(musb));
musb->xceiv->state = OTG_STATE_A_IDLE;
MUSB_HST_MODE(musb);
break;
case OTG_STATE_A_PERIPHERAL:
musb->xceiv->state = OTG_STATE_A_WAIT_BCON;
MUSB_HST_MODE(musb);
break;
case OTG_STATE_B_WAIT_ACON:
case OTG_STATE_B_HOST:
#endif
case OTG_STATE_B_PERIPHERAL:
case OTG_STATE_B_IDLE:
musb->xceiv->state = OTG_STATE_B_IDLE;
break;
case OTG_STATE_B_SRP_INIT:
break;
}
musb->is_active = 0;
}
void musb_g_reset(struct musb *musb)
__releases(musb->lock)
__acquires(musb->lock)
{
void __iomem *mbase = musb->mregs;
u8 devctl = musb_readb(mbase, MUSB_DEVCTL);
u8 power;
DBG(3, "<== %s addr=%x driver '%s'\n",
(devctl & MUSB_DEVCTL_BDEVICE)
? "B-Device" : "A-Device",
musb_readb(mbase, MUSB_FADDR),
musb->gadget_driver
? musb->gadget_driver->driver.name
: NULL
);
/* report disconnect, if we didn't already (flushing EP state) */
if (musb->g.speed != USB_SPEED_UNKNOWN)
musb_g_disconnect(musb);
/* clear HR */
else if (devctl & MUSB_DEVCTL_HR)
musb_writeb(mbase, MUSB_DEVCTL, MUSB_DEVCTL_SESSION);
/* what speed did we negotiate? */
power = musb_readb(mbase, MUSB_POWER);
musb->g.speed = (power & MUSB_POWER_HSMODE)
? USB_SPEED_HIGH : USB_SPEED_FULL;
/* start in USB_STATE_DEFAULT */
musb->is_active = 1;
musb->is_suspended = 0;
MUSB_DEV_MODE(musb);
musb->address = 0;
musb->ep0_state = MUSB_EP0_STAGE_SETUP;
musb->may_wakeup = 0;
musb->g.b_hnp_enable = 0;
musb->g.a_alt_hnp_support = 0;
musb->g.a_hnp_support = 0;
/* Normal reset, as B-Device;
* or else after HNP, as A-Device
*/
if (devctl & MUSB_DEVCTL_BDEVICE) {
musb->xceiv->state = OTG_STATE_B_PERIPHERAL;
musb->g.is_a_peripheral = 0;
} else if (is_otg_enabled(musb)) {
musb->xceiv->state = OTG_STATE_A_PERIPHERAL;
musb->g.is_a_peripheral = 1;
} else
WARN_ON(1);
/* start with default limits on VBUS power draw */
(void) musb_gadget_vbus_draw(&musb->g,
is_otg_enabled(musb) ? 8 : 100);
}