blob: ab5edc28a9c9225e22b6153d4d65e74aceeeb23f [file] [log] [blame]
/*
* block queue tracing parse application
*
* Copyright (C) 2005 Jens Axboe <axboe@suse.de>
* Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <getopt.h>
#include <errno.h>
#include <signal.h>
#include <locale.h>
#include <libgen.h>
#include "blktrace.h"
#include "rbtree.h"
#include "jhash.h"
static char blkparse_version[] = "1.1.0";
struct skip_info {
unsigned long start, end;
struct skip_info *prev, *next;
};
struct per_dev_info {
dev_t dev;
char *name;
int backwards;
unsigned long long events;
unsigned long long first_reported_time;
unsigned long long last_reported_time;
unsigned long long last_read_time;
struct io_stats io_stats;
unsigned long skips;
unsigned long long seq_skips;
unsigned int max_depth[2];
unsigned int cur_depth[2];
struct rb_root rb_track;
int nfiles;
int ncpus;
unsigned long *cpu_map;
unsigned int cpu_map_max;
struct per_cpu_info *cpus;
};
/*
* some duplicated effort here, we can unify this hash and the ppi hash later
*/
struct process_pid_map {
pid_t pid;
char comm[16];
struct process_pid_map *hash_next, *list_next;
};
#define PPM_HASH_SHIFT (8)
#define PPM_HASH_SIZE (1 << PPM_HASH_SHIFT)
#define PPM_HASH_MASK (PPM_HASH_SIZE - 1)
static struct process_pid_map *ppm_hash_table[PPM_HASH_SIZE];
struct per_process_info {
struct process_pid_map *ppm;
struct io_stats io_stats;
struct per_process_info *hash_next, *list_next;
int more_than_one;
/*
* individual io stats
*/
unsigned long long longest_allocation_wait[2];
unsigned long long longest_dispatch_wait[2];
unsigned long long longest_completion_wait[2];
};
#define PPI_HASH_SHIFT (8)
#define PPI_HASH_SIZE (1 << PPI_HASH_SHIFT)
#define PPI_HASH_MASK (PPI_HASH_SIZE - 1)
static struct per_process_info *ppi_hash_table[PPI_HASH_SIZE];
static struct per_process_info *ppi_list;
static int ppi_list_entries;
static struct option l_opts[] = {
{
.name = "act-mask",
.has_arg = required_argument,
.flag = NULL,
.val = 'a'
},
{
.name = "set-mask",
.has_arg = required_argument,
.flag = NULL,
.val = 'A'
},
{
.name = "batch",
.has_arg = required_argument,
.flag = NULL,
.val = 'b'
},
{
.name = "input-directory",
.has_arg = required_argument,
.flag = NULL,
.val = 'D'
},
{
.name = "dump-binary",
.has_arg = required_argument,
.flag = NULL,
.val = 'd'
},
{
.name = "format",
.has_arg = required_argument,
.flag = NULL,
.val = 'f'
},
{
.name = "format-spec",
.has_arg = required_argument,
.flag = NULL,
.val = 'F'
},
{
.name = "hash-by-name",
.has_arg = no_argument,
.flag = NULL,
.val = 'h'
},
{
.name = "input",
.has_arg = required_argument,
.flag = NULL,
.val = 'i'
},
{
.name = "no-msgs",
.has_arg = no_argument,
.flag = NULL,
.val = 'M'
},
{
.name = "output",
.has_arg = required_argument,
.flag = NULL,
.val = 'o'
},
{
.name = "no-text-output",
.has_arg = no_argument,
.flag = NULL,
.val = 'O'
},
{
.name = "quiet",
.has_arg = no_argument,
.flag = NULL,
.val = 'q'
},
{
.name = "per-program-stats",
.has_arg = no_argument,
.flag = NULL,
.val = 's'
},
{
.name = "track-ios",
.has_arg = no_argument,
.flag = NULL,
.val = 't'
},
{
.name = "stopwatch",
.has_arg = required_argument,
.flag = NULL,
.val = 'w'
},
{
.name = "verbose",
.has_arg = no_argument,
.flag = NULL,
.val = 'v'
},
{
.name = "version",
.has_arg = no_argument,
.flag = NULL,
.val = 'V'
},
{
.name = NULL,
}
};
/*
* for sorting the displayed output
*/
struct trace {
struct blk_io_trace *bit;
struct rb_node rb_node;
struct trace *next;
unsigned long read_sequence;
};
static struct rb_root rb_sort_root;
static unsigned long rb_sort_entries;
static struct trace *trace_list;
/*
* allocation cache
*/
static struct blk_io_trace *bit_alloc_list;
static struct trace *t_alloc_list;
/*
* for tracking individual ios
*/
struct io_track {
struct rb_node rb_node;
struct process_pid_map *ppm;
__u64 sector;
unsigned long long allocation_time;
unsigned long long queue_time;
unsigned long long dispatch_time;
unsigned long long completion_time;
};
static int ndevices;
static struct per_dev_info *devices;
static char *get_dev_name(struct per_dev_info *, char *, int);
static int trace_rb_insert_last(struct per_dev_info *, struct trace *);
FILE *ofp = NULL;
static char *output_name;
static char *input_dir;
static unsigned long long genesis_time;
static unsigned long long last_allowed_time;
static unsigned long long stopwatch_start; /* start from zero by default */
static unsigned long long stopwatch_end = -1ULL; /* "infinity" */
static unsigned long read_sequence;
static int per_process_stats;
static int per_device_and_cpu_stats = 1;
static int track_ios;
static int ppi_hash_by_pid = 1;
static int verbose;
static unsigned int act_mask = -1U;
static int stats_printed;
static int bin_output_msgs = 1;
int data_is_native = -1;
static FILE *dump_fp;
static char *dump_binary;
static unsigned int t_alloc_cache;
static unsigned int bit_alloc_cache;
#define RB_BATCH_DEFAULT (512)
static unsigned int rb_batch = RB_BATCH_DEFAULT;
static int pipeline;
static char *pipename;
static int text_output = 1;
#define is_done() (*(volatile int *)(&done))
static volatile int done;
struct timespec abs_start_time;
static unsigned long long start_timestamp;
static int have_drv_data = 0;
#define JHASH_RANDOM (0x3af5f2ee)
#define CPUS_PER_LONG (8 * sizeof(unsigned long))
#define CPU_IDX(cpu) ((cpu) / CPUS_PER_LONG)
#define CPU_BIT(cpu) ((cpu) & (CPUS_PER_LONG - 1))
static void output_binary(void *buf, int len)
{
if (dump_binary) {
size_t n = fwrite(buf, len, 1, dump_fp);
if (n != 1) {
perror(dump_binary);
fclose(dump_fp);
dump_binary = NULL;
}
}
}
static void resize_cpu_info(struct per_dev_info *pdi, int cpu)
{
struct per_cpu_info *cpus = pdi->cpus;
int ncpus = pdi->ncpus;
int new_count = cpu + 1;
int new_space, size;
char *new_start;
size = new_count * sizeof(struct per_cpu_info);
cpus = realloc(cpus, size);
if (!cpus) {
char name[20];
fprintf(stderr, "Out of memory, CPU info for device %s (%d)\n",
get_dev_name(pdi, name, sizeof(name)), size);
exit(1);
}
new_start = (char *)cpus + (ncpus * sizeof(struct per_cpu_info));
new_space = (new_count - ncpus) * sizeof(struct per_cpu_info);
memset(new_start, 0, new_space);
pdi->ncpus = new_count;
pdi->cpus = cpus;
for (new_count = 0; new_count < pdi->ncpus; new_count++) {
struct per_cpu_info *pci = &pdi->cpus[new_count];
if (!pci->fd) {
pci->fd = -1;
memset(&pci->rb_last, 0, sizeof(pci->rb_last));
pci->rb_last_entries = 0;
pci->last_sequence = -1;
}
}
}
static struct per_cpu_info *get_cpu_info(struct per_dev_info *pdi, int cpu)
{
struct per_cpu_info *pci;
if (cpu >= pdi->ncpus)
resize_cpu_info(pdi, cpu);
pci = &pdi->cpus[cpu];
pci->cpu = cpu;
return pci;
}
static int resize_devices(char *name)
{
int size = (ndevices + 1) * sizeof(struct per_dev_info);
devices = realloc(devices, size);
if (!devices) {
fprintf(stderr, "Out of memory, device %s (%d)\n", name, size);
return 1;
}
memset(&devices[ndevices], 0, sizeof(struct per_dev_info));
devices[ndevices].name = name;
ndevices++;
return 0;
}
static struct per_dev_info *get_dev_info(dev_t dev)
{
struct per_dev_info *pdi;
int i;
for (i = 0; i < ndevices; i++) {
if (!devices[i].dev)
devices[i].dev = dev;
if (devices[i].dev == dev)
return &devices[i];
}
if (resize_devices(NULL))
return NULL;
pdi = &devices[ndevices - 1];
pdi->dev = dev;
pdi->first_reported_time = 0;
pdi->last_read_time = 0;
return pdi;
}
static void insert_skip(struct per_cpu_info *pci, unsigned long start,
unsigned long end)
{
struct skip_info *sip;
for (sip = pci->skips_tail; sip != NULL; sip = sip->prev) {
if (end == (sip->start - 1)) {
sip->start = start;
return;
} else if (start == (sip->end + 1)) {
sip->end = end;
return;
}
}
sip = malloc(sizeof(struct skip_info));
sip->start = start;
sip->end = end;
sip->prev = sip->next = NULL;
if (pci->skips_tail == NULL)
pci->skips_head = pci->skips_tail = sip;
else {
sip->prev = pci->skips_tail;
pci->skips_tail->next = sip;
pci->skips_tail = sip;
}
}
static void remove_sip(struct per_cpu_info *pci, struct skip_info *sip)
{
if (sip->prev == NULL) {
if (sip->next == NULL)
pci->skips_head = pci->skips_tail = NULL;
else {
pci->skips_head = sip->next;
sip->next->prev = NULL;
}
} else if (sip->next == NULL) {
pci->skips_tail = sip->prev;
sip->prev->next = NULL;
} else {
sip->prev->next = sip->next;
sip->next->prev = sip->prev;
}
sip->prev = sip->next = NULL;
free(sip);
}
#define IN_SKIP(sip,seq) (((sip)->start <= (seq)) && ((seq) <= sip->end))
static int check_current_skips(struct per_cpu_info *pci, unsigned long seq)
{
struct skip_info *sip;
for (sip = pci->skips_tail; sip != NULL; sip = sip->prev) {
if (IN_SKIP(sip, seq)) {
if (sip->start == seq) {
if (sip->end == seq)
remove_sip(pci, sip);
else
sip->start += 1;
} else if (sip->end == seq)
sip->end -= 1;
else {
sip->end = seq - 1;
insert_skip(pci, seq + 1, sip->end);
}
return 1;
}
}
return 0;
}
static void collect_pdi_skips(struct per_dev_info *pdi)
{
struct skip_info *sip;
int cpu;
pdi->skips = 0;
pdi->seq_skips = 0;
for (cpu = 0; cpu < pdi->ncpus; cpu++) {
struct per_cpu_info *pci = &pdi->cpus[cpu];
for (sip = pci->skips_head; sip != NULL; sip = sip->next) {
pdi->skips++;
pdi->seq_skips += (sip->end - sip->start + 1);
if (verbose)
fprintf(stderr,"(%d,%d): skipping %lu -> %lu\n",
MAJOR(pdi->dev), MINOR(pdi->dev),
sip->start, sip->end);
}
}
}
static void cpu_mark_online(struct per_dev_info *pdi, unsigned int cpu)
{
if (cpu >= pdi->cpu_map_max || !pdi->cpu_map) {
int new_max = (cpu + CPUS_PER_LONG) & ~(CPUS_PER_LONG - 1);
unsigned long *map = malloc(new_max / sizeof(long));
memset(map, 0, new_max / sizeof(long));
if (pdi->cpu_map) {
memcpy(map, pdi->cpu_map, pdi->cpu_map_max / sizeof(long));
free(pdi->cpu_map);
}
pdi->cpu_map = map;
pdi->cpu_map_max = new_max;
}
pdi->cpu_map[CPU_IDX(cpu)] |= (1UL << CPU_BIT(cpu));
}
static inline void cpu_mark_offline(struct per_dev_info *pdi, int cpu)
{
pdi->cpu_map[CPU_IDX(cpu)] &= ~(1UL << CPU_BIT(cpu));
}
static inline int cpu_is_online(struct per_dev_info *pdi, int cpu)
{
return (pdi->cpu_map[CPU_IDX(cpu)] & (1UL << CPU_BIT(cpu))) != 0;
}
static inline int ppm_hash_pid(pid_t pid)
{
return jhash_1word(pid, JHASH_RANDOM) & PPM_HASH_MASK;
}
static struct process_pid_map *find_ppm(pid_t pid)
{
const int hash_idx = ppm_hash_pid(pid);
struct process_pid_map *ppm;
ppm = ppm_hash_table[hash_idx];
while (ppm) {
if (ppm->pid == pid)
return ppm;
ppm = ppm->hash_next;
}
return NULL;
}
static struct process_pid_map *add_ppm_hash(pid_t pid, const char *name)
{
const int hash_idx = ppm_hash_pid(pid);
struct process_pid_map *ppm;
ppm = find_ppm(pid);
if (!ppm) {
ppm = malloc(sizeof(*ppm));
memset(ppm, 0, sizeof(*ppm));
ppm->pid = pid;
memset(ppm->comm, 0, sizeof(ppm->comm));
strncpy(ppm->comm, name, sizeof(ppm->comm));
ppm->comm[sizeof(ppm->comm) - 1] = '\0';
ppm->hash_next = ppm_hash_table[hash_idx];
ppm_hash_table[hash_idx] = ppm;
}
return ppm;
}
static void handle_notify(struct blk_io_trace *bit)
{
void *payload = (caddr_t) bit + sizeof(*bit);
__u32 two32[2];
switch (bit->action) {
case BLK_TN_PROCESS:
add_ppm_hash(bit->pid, payload);
break;
case BLK_TN_TIMESTAMP:
if (bit->pdu_len != sizeof(two32))
return;
memcpy(two32, payload, sizeof(two32));
if (!data_is_native) {
two32[0] = be32_to_cpu(two32[0]);
two32[1] = be32_to_cpu(two32[1]);
}
start_timestamp = bit->time;
abs_start_time.tv_sec = two32[0];
abs_start_time.tv_nsec = two32[1];
if (abs_start_time.tv_nsec < 0) {
abs_start_time.tv_sec--;
abs_start_time.tv_nsec += 1000000000;
}
break;
case BLK_TN_MESSAGE:
if (bit->pdu_len > 0) {
char msg[bit->pdu_len+1];
memcpy(msg, (char *)payload, bit->pdu_len);
msg[bit->pdu_len] = '\0';
fprintf(ofp,
"%3d,%-3d %2d %8s %5d.%09lu %5u %2s %3s %s\n",
MAJOR(bit->device), MINOR(bit->device),
bit->cpu, "0", (int) SECONDS(bit->time),
(unsigned long) NANO_SECONDS(bit->time),
0, "m", "N", msg);
}
break;
default:
/* Ignore unknown notify events */
;
}
}
char *find_process_name(pid_t pid)
{
struct process_pid_map *ppm = find_ppm(pid);
if (ppm)
return ppm->comm;
return NULL;
}
static inline int ppi_hash_pid(pid_t pid)
{
return jhash_1word(pid, JHASH_RANDOM) & PPI_HASH_MASK;
}
static inline int ppi_hash_name(const char *name)
{
return jhash(name, 16, JHASH_RANDOM) & PPI_HASH_MASK;
}
static inline int ppi_hash(struct per_process_info *ppi)
{
struct process_pid_map *ppm = ppi->ppm;
if (ppi_hash_by_pid)
return ppi_hash_pid(ppm->pid);
return ppi_hash_name(ppm->comm);
}
static inline void add_ppi_to_hash(struct per_process_info *ppi)
{
const int hash_idx = ppi_hash(ppi);
ppi->hash_next = ppi_hash_table[hash_idx];
ppi_hash_table[hash_idx] = ppi;
}
static inline void add_ppi_to_list(struct per_process_info *ppi)
{
ppi->list_next = ppi_list;
ppi_list = ppi;
ppi_list_entries++;
}
static struct per_process_info *find_ppi_by_name(char *name)
{
const int hash_idx = ppi_hash_name(name);
struct per_process_info *ppi;
ppi = ppi_hash_table[hash_idx];
while (ppi) {
struct process_pid_map *ppm = ppi->ppm;
if (!strcmp(ppm->comm, name))
return ppi;
ppi = ppi->hash_next;
}
return NULL;
}
static struct per_process_info *find_ppi_by_pid(pid_t pid)
{
const int hash_idx = ppi_hash_pid(pid);
struct per_process_info *ppi;
ppi = ppi_hash_table[hash_idx];
while (ppi) {
struct process_pid_map *ppm = ppi->ppm;
if (ppm->pid == pid)
return ppi;
ppi = ppi->hash_next;
}
return NULL;
}
static struct per_process_info *find_ppi(pid_t pid)
{
struct per_process_info *ppi;
char *name;
if (ppi_hash_by_pid)
return find_ppi_by_pid(pid);
name = find_process_name(pid);
if (!name)
return NULL;
ppi = find_ppi_by_name(name);
if (ppi && ppi->ppm->pid != pid)
ppi->more_than_one = 1;
return ppi;
}
/*
* struct trace and blktrace allocation cache, we do potentially
* millions of mallocs for these structures while only using at most
* a few thousand at the time
*/
static inline void t_free(struct trace *t)
{
if (t_alloc_cache < 1024) {
t->next = t_alloc_list;
t_alloc_list = t;
t_alloc_cache++;
} else
free(t);
}
static inline struct trace *t_alloc(void)
{
struct trace *t = t_alloc_list;
if (t) {
t_alloc_list = t->next;
t_alloc_cache--;
return t;
}
return malloc(sizeof(*t));
}
static inline void bit_free(struct blk_io_trace *bit)
{
if (bit_alloc_cache < 1024 && !bit->pdu_len) {
/*
* abuse a 64-bit field for a next pointer for the free item
*/
bit->time = (__u64) (unsigned long) bit_alloc_list;
bit_alloc_list = (struct blk_io_trace *) bit;
bit_alloc_cache++;
} else
free(bit);
}
static inline struct blk_io_trace *bit_alloc(void)
{
struct blk_io_trace *bit = bit_alloc_list;
if (bit) {
bit_alloc_list = (struct blk_io_trace *) (unsigned long) \
bit->time;
bit_alloc_cache--;
return bit;
}
return malloc(sizeof(*bit));
}
static inline void __put_trace_last(struct per_dev_info *pdi, struct trace *t)
{
struct per_cpu_info *pci = get_cpu_info(pdi, t->bit->cpu);
rb_erase(&t->rb_node, &pci->rb_last);
pci->rb_last_entries--;
bit_free(t->bit);
t_free(t);
}
static void put_trace(struct per_dev_info *pdi, struct trace *t)
{
rb_erase(&t->rb_node, &rb_sort_root);
rb_sort_entries--;
trace_rb_insert_last(pdi, t);
}
static inline int trace_rb_insert(struct trace *t, struct rb_root *root)
{
struct rb_node **p = &root->rb_node;
struct rb_node *parent = NULL;
struct trace *__t;
while (*p) {
parent = *p;
__t = rb_entry(parent, struct trace, rb_node);
if (t->bit->time < __t->bit->time)
p = &(*p)->rb_left;
else if (t->bit->time > __t->bit->time)
p = &(*p)->rb_right;
else if (t->bit->device < __t->bit->device)
p = &(*p)->rb_left;
else if (t->bit->device > __t->bit->device)
p = &(*p)->rb_right;
else if (t->bit->sequence < __t->bit->sequence)
p = &(*p)->rb_left;
else /* >= sequence */
p = &(*p)->rb_right;
}
rb_link_node(&t->rb_node, parent, p);
rb_insert_color(&t->rb_node, root);
return 0;
}
static inline int trace_rb_insert_sort(struct trace *t)
{
if (!trace_rb_insert(t, &rb_sort_root)) {
rb_sort_entries++;
return 0;
}
return 1;
}
static int trace_rb_insert_last(struct per_dev_info *pdi, struct trace *t)
{
struct per_cpu_info *pci = get_cpu_info(pdi, t->bit->cpu);
if (trace_rb_insert(t, &pci->rb_last))
return 1;
pci->rb_last_entries++;
if (pci->rb_last_entries > rb_batch * pdi->nfiles) {
struct rb_node *n = rb_first(&pci->rb_last);
t = rb_entry(n, struct trace, rb_node);
__put_trace_last(pdi, t);
}
return 0;
}
static struct trace *trace_rb_find(dev_t device, unsigned long sequence,
struct rb_root *root, int order)
{
struct rb_node *n = root->rb_node;
struct rb_node *prev = NULL;
struct trace *__t;
while (n) {
__t = rb_entry(n, struct trace, rb_node);
prev = n;
if (device < __t->bit->device)
n = n->rb_left;
else if (device > __t->bit->device)
n = n->rb_right;
else if (sequence < __t->bit->sequence)
n = n->rb_left;
else if (sequence > __t->bit->sequence)
n = n->rb_right;
else
return __t;
}
/*
* hack - the list may not be sequence ordered because some
* events don't have sequence and time matched. so we end up
* being a little off in the rb lookup here, because we don't
* know the time we are looking for. compensate by browsing
* a little ahead from the last entry to find the match
*/
if (order && prev) {
int max = 5;
while (((n = rb_next(prev)) != NULL) && max--) {
__t = rb_entry(n, struct trace, rb_node);
if (__t->bit->device == device &&
__t->bit->sequence == sequence)
return __t;
prev = n;
}
}
return NULL;
}
static inline struct trace *trace_rb_find_last(struct per_dev_info *pdi,
struct per_cpu_info *pci,
unsigned long seq)
{
return trace_rb_find(pdi->dev, seq, &pci->rb_last, 0);
}
static inline int track_rb_insert(struct per_dev_info *pdi,struct io_track *iot)
{
struct rb_node **p = &pdi->rb_track.rb_node;
struct rb_node *parent = NULL;
struct io_track *__iot;
while (*p) {
parent = *p;
__iot = rb_entry(parent, struct io_track, rb_node);
if (iot->sector < __iot->sector)
p = &(*p)->rb_left;
else if (iot->sector > __iot->sector)
p = &(*p)->rb_right;
else {
fprintf(stderr,
"sector alias (%Lu) on device %d,%d!\n",
(unsigned long long) iot->sector,
MAJOR(pdi->dev), MINOR(pdi->dev));
return 1;
}
}
rb_link_node(&iot->rb_node, parent, p);
rb_insert_color(&iot->rb_node, &pdi->rb_track);
return 0;
}
static struct io_track *__find_track(struct per_dev_info *pdi, __u64 sector)
{
struct rb_node *n = pdi->rb_track.rb_node;
struct io_track *__iot;
while (n) {
__iot = rb_entry(n, struct io_track, rb_node);
if (sector < __iot->sector)
n = n->rb_left;
else if (sector > __iot->sector)
n = n->rb_right;
else
return __iot;
}
return NULL;
}
static struct io_track *find_track(struct per_dev_info *pdi, pid_t pid,
__u64 sector)
{
struct io_track *iot;
iot = __find_track(pdi, sector);
if (!iot) {
iot = malloc(sizeof(*iot));
iot->ppm = find_ppm(pid);
if (!iot->ppm)
iot->ppm = add_ppm_hash(pid, "unknown");
iot->sector = sector;
track_rb_insert(pdi, iot);
}
return iot;
}
static void log_track_frontmerge(struct per_dev_info *pdi,
struct blk_io_trace *t)
{
struct io_track *iot;
if (!track_ios)
return;
iot = __find_track(pdi, t->sector + t_sec(t));
if (!iot) {
if (verbose)
fprintf(stderr, "merge not found for (%d,%d): %llu\n",
MAJOR(pdi->dev), MINOR(pdi->dev),
(unsigned long long) t->sector + t_sec(t));
return;
}
rb_erase(&iot->rb_node, &pdi->rb_track);
iot->sector -= t_sec(t);
track_rb_insert(pdi, iot);
}
static void log_track_getrq(struct per_dev_info *pdi, struct blk_io_trace *t)
{
struct io_track *iot;
if (!track_ios)
return;
iot = find_track(pdi, t->pid, t->sector);
iot->allocation_time = t->time;
}
static inline int is_remapper(struct per_dev_info *pdi)
{
int major = MAJOR(pdi->dev);
return (major == 253 || major == 9);
}
/*
* for md/dm setups, the interesting cycle is Q -> C. So track queueing
* time here, as dispatch time
*/
static void log_track_queue(struct per_dev_info *pdi, struct blk_io_trace *t)
{
struct io_track *iot;
if (!track_ios)
return;
if (!is_remapper(pdi))
return;
iot = find_track(pdi, t->pid, t->sector);
iot->dispatch_time = t->time;
}
/*
* return time between rq allocation and insertion
*/
static unsigned long long log_track_insert(struct per_dev_info *pdi,
struct blk_io_trace *t)
{
unsigned long long elapsed;
struct io_track *iot;
if (!track_ios)
return -1;
iot = find_track(pdi, t->pid, t->sector);
iot->queue_time = t->time;
if (!iot->allocation_time)
return -1;
elapsed = iot->queue_time - iot->allocation_time;
if (per_process_stats) {
struct per_process_info *ppi = find_ppi(iot->ppm->pid);
int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
if (ppi && elapsed > ppi->longest_allocation_wait[w])
ppi->longest_allocation_wait[w] = elapsed;
}
return elapsed;
}
/*
* return time between queue and issue
*/
static unsigned long long log_track_issue(struct per_dev_info *pdi,
struct blk_io_trace *t)
{
unsigned long long elapsed;
struct io_track *iot;
if (!track_ios)
return -1;
if ((t->action & BLK_TC_ACT(BLK_TC_FS)) == 0)
return -1;
iot = __find_track(pdi, t->sector);
if (!iot) {
if (verbose)
fprintf(stderr, "issue not found for (%d,%d): %llu\n",
MAJOR(pdi->dev), MINOR(pdi->dev),
(unsigned long long) t->sector);
return -1;
}
iot->dispatch_time = t->time;
elapsed = iot->dispatch_time - iot->queue_time;
if (per_process_stats) {
struct per_process_info *ppi = find_ppi(iot->ppm->pid);
int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
if (ppi && elapsed > ppi->longest_dispatch_wait[w])
ppi->longest_dispatch_wait[w] = elapsed;
}
return elapsed;
}
/*
* return time between dispatch and complete
*/
static unsigned long long log_track_complete(struct per_dev_info *pdi,
struct blk_io_trace *t)
{
unsigned long long elapsed;
struct io_track *iot;
if (!track_ios)
return -1;
iot = __find_track(pdi, t->sector);
if (!iot) {
if (verbose)
fprintf(stderr,"complete not found for (%d,%d): %llu\n",
MAJOR(pdi->dev), MINOR(pdi->dev),
(unsigned long long) t->sector);
return -1;
}
iot->completion_time = t->time;
elapsed = iot->completion_time - iot->dispatch_time;
if (per_process_stats) {
struct per_process_info *ppi = find_ppi(iot->ppm->pid);
int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
if (ppi && elapsed > ppi->longest_completion_wait[w])
ppi->longest_completion_wait[w] = elapsed;
}
/*
* kill the trace, we don't need it after completion
*/
rb_erase(&iot->rb_node, &pdi->rb_track);
free(iot);
return elapsed;
}
static struct io_stats *find_process_io_stats(pid_t pid)
{
struct per_process_info *ppi = find_ppi(pid);
if (!ppi) {
ppi = malloc(sizeof(*ppi));
memset(ppi, 0, sizeof(*ppi));
ppi->ppm = find_ppm(pid);
if (!ppi->ppm)
ppi->ppm = add_ppm_hash(pid, "unknown");
add_ppi_to_hash(ppi);
add_ppi_to_list(ppi);
}
return &ppi->io_stats;
}
static char *get_dev_name(struct per_dev_info *pdi, char *buffer, int size)
{
if (pdi->name)
snprintf(buffer, size, "%s", pdi->name);
else
snprintf(buffer, size, "%d,%d",MAJOR(pdi->dev),MINOR(pdi->dev));
return buffer;
}
static void check_time(struct per_dev_info *pdi, struct blk_io_trace *bit)
{
unsigned long long this = bit->time;
unsigned long long last = pdi->last_reported_time;
pdi->backwards = (this < last) ? 'B' : ' ';
pdi->last_reported_time = this;
}
static inline void __account_m(struct io_stats *ios, struct blk_io_trace *t,
int rw)
{
if (rw) {
ios->mwrites++;
ios->mwrite_kb += t_kb(t);
ios->mwrite_b += t_b(t);
} else {
ios->mreads++;
ios->mread_kb += t_kb(t);
ios->mread_b += t_b(t);
}
}
static inline void account_m(struct blk_io_trace *t, struct per_cpu_info *pci,
int rw)
{
__account_m(&pci->io_stats, t, rw);
if (per_process_stats) {
struct io_stats *ios = find_process_io_stats(t->pid);
__account_m(ios, t, rw);
}
}
static inline void __account_pc_queue(struct io_stats *ios,
struct blk_io_trace *t, int rw)
{
if (rw) {
ios->qwrites_pc++;
ios->qwrite_kb_pc += t_kb(t);
ios->qwrite_b_pc += t_b(t);
} else {
ios->qreads_pc++;
ios->qread_kb += t_kb(t);
ios->qread_b_pc += t_b(t);
}
}
static inline void account_pc_queue(struct blk_io_trace *t,
struct per_cpu_info *pci, int rw)
{
__account_pc_queue(&pci->io_stats, t, rw);
if (per_process_stats) {
struct io_stats *ios = find_process_io_stats(t->pid);
__account_pc_queue(ios, t, rw);
}
}
static inline void __account_pc_issue(struct io_stats *ios, int rw,
unsigned int bytes)
{
if (rw) {
ios->iwrites_pc++;
ios->iwrite_kb_pc += bytes >> 10;
ios->iwrite_b_pc += bytes & 1023;
} else {
ios->ireads_pc++;
ios->iread_kb_pc += bytes >> 10;
ios->iread_b_pc += bytes & 1023;
}
}
static inline void account_pc_issue(struct blk_io_trace *t,
struct per_cpu_info *pci, int rw)
{
__account_pc_issue(&pci->io_stats, rw, t->bytes);
if (per_process_stats) {
struct io_stats *ios = find_process_io_stats(t->pid);
__account_pc_issue(ios, rw, t->bytes);
}
}
static inline void __account_pc_requeue(struct io_stats *ios,
struct blk_io_trace *t, int rw)
{
if (rw) {
ios->wrqueue_pc++;
ios->iwrite_kb_pc -= t_kb(t);
ios->iwrite_b_pc -= t_b(t);
} else {
ios->rrqueue_pc++;
ios->iread_kb_pc -= t_kb(t);
ios->iread_b_pc -= t_b(t);
}
}
static inline void account_pc_requeue(struct blk_io_trace *t,
struct per_cpu_info *pci, int rw)
{
__account_pc_requeue(&pci->io_stats, t, rw);
if (per_process_stats) {
struct io_stats *ios = find_process_io_stats(t->pid);
__account_pc_requeue(ios, t, rw);
}
}
static inline void __account_pc_c(struct io_stats *ios, int rw)
{
if (rw)
ios->cwrites_pc++;
else
ios->creads_pc++;
}
static inline void account_pc_c(struct blk_io_trace *t,
struct per_cpu_info *pci, int rw)
{
__account_pc_c(&pci->io_stats, rw);
if (per_process_stats) {
struct io_stats *ios = find_process_io_stats(t->pid);
__account_pc_c(ios, rw);
}
}
static inline void __account_queue(struct io_stats *ios, struct blk_io_trace *t,
int rw)
{
if (rw) {
ios->qwrites++;
ios->qwrite_kb += t_kb(t);
ios->qwrite_b += t_b(t);
} else {
ios->qreads++;
ios->qread_kb += t_kb(t);
ios->qread_b += t_b(t);
}
}
static inline void account_queue(struct blk_io_trace *t,
struct per_cpu_info *pci, int rw)
{
__account_queue(&pci->io_stats, t, rw);
if (per_process_stats) {
struct io_stats *ios = find_process_io_stats(t->pid);
__account_queue(ios, t, rw);
}
}
static inline void __account_c(struct io_stats *ios, int rw, int bytes)
{
if (rw) {
ios->cwrites++;
ios->cwrite_kb += bytes >> 10;
ios->cwrite_b += bytes & 1023;
} else {
ios->creads++;
ios->cread_kb += bytes >> 10;
ios->cread_b += bytes & 1023;
}
}
static inline void account_c(struct blk_io_trace *t, struct per_cpu_info *pci,
int rw, int bytes)
{
__account_c(&pci->io_stats, rw, bytes);
if (per_process_stats) {
struct io_stats *ios = find_process_io_stats(t->pid);
__account_c(ios, rw, bytes);
}
}
static inline void __account_issue(struct io_stats *ios, int rw,
unsigned int bytes)
{
if (rw) {
ios->iwrites++;
ios->iwrite_kb += bytes >> 10;
ios->iwrite_b += bytes & 1023;
} else {
ios->ireads++;
ios->iread_kb += bytes >> 10;
ios->iread_b += bytes & 1023;
}
}
static inline void account_issue(struct blk_io_trace *t,
struct per_cpu_info *pci, int rw)
{
__account_issue(&pci->io_stats, rw, t->bytes);
if (per_process_stats) {
struct io_stats *ios = find_process_io_stats(t->pid);
__account_issue(ios, rw, t->bytes);
}
}
static inline void __account_unplug(struct io_stats *ios, int timer)
{
if (timer)
ios->timer_unplugs++;
else
ios->io_unplugs++;
}
static inline void account_unplug(struct blk_io_trace *t,
struct per_cpu_info *pci, int timer)
{
__account_unplug(&pci->io_stats, timer);
if (per_process_stats) {
struct io_stats *ios = find_process_io_stats(t->pid);
__account_unplug(ios, timer);
}
}
static inline void __account_requeue(struct io_stats *ios,
struct blk_io_trace *t, int rw)
{
if (rw) {
ios->wrqueue++;
ios->iwrite_kb -= t_kb(t);
ios->iwrite_b -= t_b(t);
} else {
ios->rrqueue++;
ios->iread_kb -= t_kb(t);
ios->iread_b -= t_b(t);
}
}
static inline void account_requeue(struct blk_io_trace *t,
struct per_cpu_info *pci, int rw)
{
__account_requeue(&pci->io_stats, t, rw);
if (per_process_stats) {
struct io_stats *ios = find_process_io_stats(t->pid);
__account_requeue(ios, t, rw);
}
}
static void log_complete(struct per_dev_info *pdi, struct per_cpu_info *pci,
struct blk_io_trace *t, char *act)
{
process_fmt(act, pci, t, log_track_complete(pdi, t), 0, NULL);
}
static void log_insert(struct per_dev_info *pdi, struct per_cpu_info *pci,
struct blk_io_trace *t, char *act)
{
process_fmt(act, pci, t, log_track_insert(pdi, t), 0, NULL);
}
static void log_queue(struct per_cpu_info *pci, struct blk_io_trace *t,
char *act)
{
process_fmt(act, pci, t, -1, 0, NULL);
}
static void log_issue(struct per_dev_info *pdi, struct per_cpu_info *pci,
struct blk_io_trace *t, char *act)
{
process_fmt(act, pci, t, log_track_issue(pdi, t), 0, NULL);
}
static void log_merge(struct per_dev_info *pdi, struct per_cpu_info *pci,
struct blk_io_trace *t, char *act)
{
if (act[0] == 'F')
log_track_frontmerge(pdi, t);
process_fmt(act, pci, t, -1ULL, 0, NULL);
}
static void log_action(struct per_cpu_info *pci, struct blk_io_trace *t,
char *act)
{
process_fmt(act, pci, t, -1ULL, 0, NULL);
}
static void log_generic(struct per_cpu_info *pci, struct blk_io_trace *t,
char *act)
{
process_fmt(act, pci, t, -1ULL, 0, NULL);
}
static void log_unplug(struct per_cpu_info *pci, struct blk_io_trace *t,
char *act)
{
process_fmt(act, pci, t, -1ULL, 0, NULL);
}
static void log_split(struct per_cpu_info *pci, struct blk_io_trace *t,
char *act)
{
process_fmt(act, pci, t, -1ULL, 0, NULL);
}
static void log_pc(struct per_cpu_info *pci, struct blk_io_trace *t, char *act)
{
unsigned char *buf = (unsigned char *) t + sizeof(*t);
process_fmt(act, pci, t, -1ULL, t->pdu_len, buf);
}
static void dump_trace_pc(struct blk_io_trace *t, struct per_dev_info *pdi,
struct per_cpu_info *pci)
{
int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
int act = t->action & 0xffff;
switch (act) {
case __BLK_TA_QUEUE:
log_generic(pci, t, "Q");
account_pc_queue(t, pci, w);
break;
case __BLK_TA_GETRQ:
log_generic(pci, t, "G");
break;
case __BLK_TA_SLEEPRQ:
log_generic(pci, t, "S");
break;
case __BLK_TA_REQUEUE:
/*
* can happen if we miss traces, don't let it go
* below zero
*/
if (pdi->cur_depth[w])
pdi->cur_depth[w]--;
account_pc_requeue(t, pci, w);
log_generic(pci, t, "R");
break;
case __BLK_TA_ISSUE:
account_pc_issue(t, pci, w);
pdi->cur_depth[w]++;
if (pdi->cur_depth[w] > pdi->max_depth[w])
pdi->max_depth[w] = pdi->cur_depth[w];
log_pc(pci, t, "D");
break;
case __BLK_TA_COMPLETE:
if (pdi->cur_depth[w])
pdi->cur_depth[w]--;
log_pc(pci, t, "C");
account_pc_c(t, pci, w);
break;
case __BLK_TA_INSERT:
log_pc(pci, t, "I");
break;
default:
fprintf(stderr, "Bad pc action %x\n", act);
break;
}
}
static void dump_trace_fs(struct blk_io_trace *t, struct per_dev_info *pdi,
struct per_cpu_info *pci)
{
int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
int act = t->action & 0xffff;
switch (act) {
case __BLK_TA_QUEUE:
log_track_queue(pdi, t);
account_queue(t, pci, w);
log_queue(pci, t, "Q");
break;
case __BLK_TA_INSERT:
log_insert(pdi, pci, t, "I");
break;
case __BLK_TA_BACKMERGE:
account_m(t, pci, w);
log_merge(pdi, pci, t, "M");
break;
case __BLK_TA_FRONTMERGE:
account_m(t, pci, w);
log_merge(pdi, pci, t, "F");
break;
case __BLK_TA_GETRQ:
log_track_getrq(pdi, t);
log_generic(pci, t, "G");
break;
case __BLK_TA_SLEEPRQ:
log_generic(pci, t, "S");
break;
case __BLK_TA_REQUEUE:
/*
* can happen if we miss traces, don't let it go
* below zero
*/
if (pdi->cur_depth[w])
pdi->cur_depth[w]--;
account_requeue(t, pci, w);
log_queue(pci, t, "R");
break;
case __BLK_TA_ISSUE:
account_issue(t, pci, w);
pdi->cur_depth[w]++;
if (pdi->cur_depth[w] > pdi->max_depth[w])
pdi->max_depth[w] = pdi->cur_depth[w];
log_issue(pdi, pci, t, "D");
break;
case __BLK_TA_COMPLETE:
if (pdi->cur_depth[w])
pdi->cur_depth[w]--;
account_c(t, pci, w, t->bytes);
log_complete(pdi, pci, t, "C");
break;
case __BLK_TA_PLUG:
log_action(pci, t, "P");
break;
case __BLK_TA_UNPLUG_IO:
account_unplug(t, pci, 0);
log_unplug(pci, t, "U");
break;
case __BLK_TA_UNPLUG_TIMER:
account_unplug(t, pci, 1);
log_unplug(pci, t, "UT");
break;
case __BLK_TA_SPLIT:
log_split(pci, t, "X");
break;
case __BLK_TA_BOUNCE:
log_generic(pci, t, "B");
break;
case __BLK_TA_REMAP:
log_generic(pci, t, "A");
break;
case __BLK_TA_DRV_DATA:
have_drv_data = 1;
/* dump to binary file only */
break;
default:
fprintf(stderr, "Bad fs action %x\n", t->action);
break;
}
}
static void dump_trace(struct blk_io_trace *t, struct per_cpu_info *pci,
struct per_dev_info *pdi)
{
if (text_output) {
if (t->action == BLK_TN_MESSAGE)
handle_notify(t);
else if (t->action & BLK_TC_ACT(BLK_TC_PC))
dump_trace_pc(t, pdi, pci);
else
dump_trace_fs(t, pdi, pci);
}
if (!pdi->events)
pdi->first_reported_time = t->time;
pdi->events++;
if (bin_output_msgs ||
!(t->action & BLK_TC_ACT(BLK_TC_NOTIFY) &&
t->action == BLK_TN_MESSAGE))
output_binary(t, sizeof(*t) + t->pdu_len);
}
/*
* print in a proper way, not too small and not too big. if more than
* 1000,000K, turn into M and so on
*/
static char *size_cnv(char *dst, unsigned long long num, int in_kb)
{
char suff[] = { '\0', 'K', 'M', 'G', 'P' };
unsigned int i = 0;
if (in_kb)
i++;
while (num > 1000 * 1000ULL && (i < sizeof(suff) - 1)) {
i++;
num /= 1000;
}
sprintf(dst, "%'8Lu%c", num, suff[i]);
return dst;
}
static void dump_io_stats(struct per_dev_info *pdi, struct io_stats *ios,
char *msg)
{
static char x[256], y[256];
fprintf(ofp, "%s\n", msg);
fprintf(ofp, " Reads Queued: %s, %siB\t",
size_cnv(x, ios->qreads, 0),
size_cnv(y, ios->qread_kb + (ios->qread_b>>10), 1));
fprintf(ofp, " Writes Queued: %s, %siB\n",
size_cnv(x, ios->qwrites, 0),
size_cnv(y, ios->qwrite_kb + (ios->qwrite_b>>10), 1));
fprintf(ofp, " Read Dispatches: %s, %siB\t",
size_cnv(x, ios->ireads, 0),
size_cnv(y, ios->iread_kb + (ios->iread_b>>10), 1));
fprintf(ofp, " Write Dispatches: %s, %siB\n",
size_cnv(x, ios->iwrites, 0),
size_cnv(y, ios->iwrite_kb + (ios->iwrite_b>>10), 1));
fprintf(ofp, " Reads Requeued: %s\t\t", size_cnv(x, ios->rrqueue, 0));
fprintf(ofp, " Writes Requeued: %s\n", size_cnv(x, ios->wrqueue, 0));
fprintf(ofp, " Reads Completed: %s, %siB\t",
size_cnv(x, ios->creads, 0),
size_cnv(y, ios->cread_kb + (ios->cread_b>>10), 1));
fprintf(ofp, " Writes Completed: %s, %siB\n",
size_cnv(x, ios->cwrites, 0),
size_cnv(y, ios->cwrite_kb + (ios->cwrite_b>>10), 1));
fprintf(ofp, " Read Merges: %s, %siB\t",
size_cnv(x, ios->mreads, 0),
size_cnv(y, ios->mread_kb + (ios->mread_b>>10), 1));
fprintf(ofp, " Write Merges: %s, %siB\n",
size_cnv(x, ios->mwrites, 0),
size_cnv(y, ios->mwrite_kb + (ios->mwrite_b>>10), 1));
if (pdi) {
fprintf(ofp, " Read depth: %'8u%8c\t", pdi->max_depth[0], ' ');
fprintf(ofp, " Write depth: %'8u\n", pdi->max_depth[1]);
}
if (ios->qreads_pc || ios->qwrites_pc || ios->ireads_pc || ios->iwrites_pc ||
ios->rrqueue_pc || ios->wrqueue_pc || ios->creads_pc || ios->cwrites_pc) {
fprintf(ofp, " PC Reads Queued: %s, %siB\t",
size_cnv(x, ios->qreads_pc, 0),
size_cnv(y,
ios->qread_kb_pc + (ios->qread_b_pc>>10), 1));
fprintf(ofp, " PC Writes Queued: %s, %siB\n",
size_cnv(x, ios->qwrites_pc, 0),
size_cnv(y,
ios->qwrite_kb_pc + (ios->qwrite_b_pc>>10), 1));
fprintf(ofp, " PC Read Disp.: %s, %siB\t",
size_cnv(x, ios->ireads_pc, 0),
size_cnv(y,
ios->iread_kb_pc + (ios->iread_b_pc>>10), 1));
fprintf(ofp, " PC Write Disp.: %s, %siB\n",
size_cnv(x, ios->iwrites_pc, 0),
size_cnv(y,
ios->iwrite_kb_pc + (ios->iwrite_b_pc>>10),
1));
fprintf(ofp, " PC Reads Req.: %s\t\t", size_cnv(x, ios->rrqueue_pc, 0));
fprintf(ofp, " PC Writes Req.: %s\n", size_cnv(x, ios->wrqueue_pc, 0));
fprintf(ofp, " PC Reads Compl.: %s\t\t", size_cnv(x, ios->creads_pc, 0));
fprintf(ofp, " PC Writes Compl.: %s\n", size_cnv(x, ios->cwrites_pc, 0));
}
fprintf(ofp, " IO unplugs: %'8lu%8c\t", ios->io_unplugs, ' ');
fprintf(ofp, " Timer unplugs: %'8lu\n", ios->timer_unplugs);
}
static void dump_wait_stats(struct per_process_info *ppi)
{
unsigned long rawait = ppi->longest_allocation_wait[0] / 1000;
unsigned long rdwait = ppi->longest_dispatch_wait[0] / 1000;
unsigned long rcwait = ppi->longest_completion_wait[0] / 1000;
unsigned long wawait = ppi->longest_allocation_wait[1] / 1000;
unsigned long wdwait = ppi->longest_dispatch_wait[1] / 1000;
unsigned long wcwait = ppi->longest_completion_wait[1] / 1000;
fprintf(ofp, " Allocation wait: %'8lu%8c\t", rawait, ' ');
fprintf(ofp, " Allocation wait: %'8lu\n", wawait);
fprintf(ofp, " Dispatch wait: %'8lu%8c\t", rdwait, ' ');
fprintf(ofp, " Dispatch wait: %'8lu\n", wdwait);
fprintf(ofp, " Completion wait: %'8lu%8c\t", rcwait, ' ');
fprintf(ofp, " Completion wait: %'8lu\n", wcwait);
}
static int ppi_name_compare(const void *p1, const void *p2)
{
struct per_process_info *ppi1 = *((struct per_process_info **) p1);
struct per_process_info *ppi2 = *((struct per_process_info **) p2);
int res;
res = strverscmp(ppi1->ppm->comm, ppi2->ppm->comm);
if (!res)
res = ppi1->ppm->pid > ppi2->ppm->pid;
return res;
}
static void sort_process_list(void)
{
struct per_process_info **ppis;
struct per_process_info *ppi;
int i = 0;
ppis = malloc(ppi_list_entries * sizeof(struct per_process_info *));
ppi = ppi_list;
while (ppi) {
ppis[i++] = ppi;
ppi = ppi->list_next;
}
qsort(ppis, ppi_list_entries, sizeof(ppi), ppi_name_compare);
i = ppi_list_entries - 1;
ppi_list = NULL;
while (i >= 0) {
ppi = ppis[i];
ppi->list_next = ppi_list;
ppi_list = ppi;
i--;
}
free(ppis);
}
static void show_process_stats(void)
{
struct per_process_info *ppi;
sort_process_list();
ppi = ppi_list;
while (ppi) {
struct process_pid_map *ppm = ppi->ppm;
char name[64];
if (ppi->more_than_one)
sprintf(name, "%s (%u, ...)", ppm->comm, ppm->pid);
else
sprintf(name, "%s (%u)", ppm->comm, ppm->pid);
dump_io_stats(NULL, &ppi->io_stats, name);
dump_wait_stats(ppi);
ppi = ppi->list_next;
}
fprintf(ofp, "\n");
}
static void show_device_and_cpu_stats(void)
{
struct per_dev_info *pdi;
struct per_cpu_info *pci;
struct io_stats total, *ios;
unsigned long long rrate, wrate, msec;
int i, j, pci_events;
char line[3 + 8/*cpu*/ + 2 + 32/*dev*/ + 3];
char name[32];
double ratio;
for (pdi = devices, i = 0; i < ndevices; i++, pdi++) {
memset(&total, 0, sizeof(total));
pci_events = 0;
if (i > 0)
fprintf(ofp, "\n");
for (pci = pdi->cpus, j = 0; j < pdi->ncpus; j++, pci++) {
if (!pci->nelems)
continue;
ios = &pci->io_stats;
total.qreads += ios->qreads;
total.qwrites += ios->qwrites;
total.creads += ios->creads;
total.cwrites += ios->cwrites;
total.mreads += ios->mreads;
total.mwrites += ios->mwrites;
total.ireads += ios->ireads;
total.iwrites += ios->iwrites;
total.rrqueue += ios->rrqueue;
total.wrqueue += ios->wrqueue;
total.qread_kb += ios->qread_kb;
total.qwrite_kb += ios->qwrite_kb;
total.cread_kb += ios->cread_kb;
total.cwrite_kb += ios->cwrite_kb;
total.iread_kb += ios->iread_kb;
total.iwrite_kb += ios->iwrite_kb;
total.mread_kb += ios->mread_kb;
total.mwrite_kb += ios->mwrite_kb;
total.qread_b += ios->qread_b;
total.qwrite_b += ios->qwrite_b;
total.cread_b += ios->cread_b;
total.cwrite_b += ios->cwrite_b;
total.iread_b += ios->iread_b;
total.iwrite_b += ios->iwrite_b;
total.mread_b += ios->mread_b;
total.mwrite_b += ios->mwrite_b;
total.qreads_pc += ios->qreads_pc;
total.qwrites_pc += ios->qwrites_pc;
total.creads_pc += ios->creads_pc;
total.cwrites_pc += ios->cwrites_pc;
total.ireads_pc += ios->ireads_pc;
total.iwrites_pc += ios->iwrites_pc;
total.rrqueue_pc += ios->rrqueue_pc;
total.wrqueue_pc += ios->wrqueue_pc;
total.qread_kb_pc += ios->qread_kb_pc;
total.qwrite_kb_pc += ios->qwrite_kb_pc;
total.iread_kb_pc += ios->iread_kb_pc;
total.iwrite_kb_pc += ios->iwrite_kb_pc;
total.qread_b_pc += ios->qread_b_pc;
total.qwrite_b_pc += ios->qwrite_b_pc;
total.iread_b_pc += ios->iread_b_pc;
total.iwrite_b_pc += ios->iwrite_b_pc;
total.timer_unplugs += ios->timer_unplugs;
total.io_unplugs += ios->io_unplugs;
snprintf(line, sizeof(line) - 1, "CPU%d (%s):",
j, get_dev_name(pdi, name, sizeof(name)));
dump_io_stats(pdi, ios, line);
pci_events++;
}
if (pci_events > 1) {
fprintf(ofp, "\n");
snprintf(line, sizeof(line) - 1, "Total (%s):",
get_dev_name(pdi, name, sizeof(name)));
dump_io_stats(NULL, &total, line);
}
wrate = rrate = 0;
msec = (pdi->last_reported_time - pdi->first_reported_time) / 1000000;
if (msec) {
rrate = ((1000 * total.cread_kb) + total.cread_b) /
msec;
wrate = ((1000 * total.cwrite_kb) + total.cwrite_b) /
msec;
}
fprintf(ofp, "\nThroughput (R/W): %'LuKiB/s / %'LuKiB/s\n",
rrate, wrate);
fprintf(ofp, "Events (%s): %'Lu entries\n",
get_dev_name(pdi, line, sizeof(line)), pdi->events);
collect_pdi_skips(pdi);
if (!pdi->skips && !pdi->events)
ratio = 0.0;
else
ratio = 100.0 * ((double)pdi->seq_skips /
(double)(pdi->events + pdi->seq_skips));
fprintf(ofp, "Skips: %'lu forward (%'llu - %5.1lf%%)\n",
pdi->skips, pdi->seq_skips, ratio);
}
}
static void find_genesis(void)
{
struct trace *t = trace_list;
genesis_time = -1ULL;
while (t != NULL) {
if (t->bit->time < genesis_time)
genesis_time = t->bit->time;
t = t->next;
}
/* The time stamp record will usually be the first
* record in the trace, but not always.
*/
if (start_timestamp
&& start_timestamp != genesis_time) {
long delta = genesis_time - start_timestamp;
abs_start_time.tv_sec += SECONDS(delta);
abs_start_time.tv_nsec += NANO_SECONDS(delta);
if (abs_start_time.tv_nsec < 0) {
abs_start_time.tv_nsec += 1000000000;
abs_start_time.tv_sec -= 1;
} else
if (abs_start_time.tv_nsec > 1000000000) {
abs_start_time.tv_nsec -= 1000000000;
abs_start_time.tv_sec += 1;
}
}
}
static inline int check_stopwatch(struct blk_io_trace *bit)
{
if (bit->time < stopwatch_end &&
bit->time >= stopwatch_start)
return 0;
return 1;
}
/*
* return youngest entry read
*/
static int sort_entries(unsigned long long *youngest)
{
struct per_dev_info *pdi = NULL;
struct per_cpu_info *pci = NULL;
struct trace *t;
if (!genesis_time)
find_genesis();
*youngest = 0;
while ((t = trace_list) != NULL) {
struct blk_io_trace *bit = t->bit;
trace_list = t->next;
bit->time -= genesis_time;
if (bit->time < *youngest || !*youngest)
*youngest = bit->time;
if (!pdi || pdi->dev != bit->device) {
pdi = get_dev_info(bit->device);
pci = NULL;
}
if (!pci || pci->cpu != bit->cpu)
pci = get_cpu_info(pdi, bit->cpu);
if (bit->sequence < pci->smallest_seq_read)
pci->smallest_seq_read = bit->sequence;
if (check_stopwatch(bit)) {
bit_free(bit);
t_free(t);
continue;
}
if (trace_rb_insert_sort(t))
return -1;
}
return 0;
}
/*
* to continue, we must have traces from all online cpus in the tree
*/
static int check_cpu_map(struct per_dev_info *pdi)
{
unsigned long *cpu_map;
struct rb_node *n;
struct trace *__t;
unsigned int i;
int ret, cpu;
/*
* create a map of the cpus we have traces for
*/
cpu_map = malloc(pdi->cpu_map_max / sizeof(long));
memset(cpu_map, 0, sizeof(*cpu_map));
n = rb_first(&rb_sort_root);
while (n) {
__t = rb_entry(n, struct trace, rb_node);
cpu = __t->bit->cpu;
cpu_map[CPU_IDX(cpu)] |= (1UL << CPU_BIT(cpu));
n = rb_next(n);
}
/*
* we can't continue if pdi->cpu_map has entries set that we don't
* have in the sort rbtree. the opposite is not a problem, though
*/
ret = 0;
for (i = 0; i < pdi->cpu_map_max / CPUS_PER_LONG; i++) {
if (pdi->cpu_map[i] & ~(cpu_map[i])) {
ret = 1;
break;
}
}
free(cpu_map);
return ret;
}
static int check_sequence(struct per_dev_info *pdi, struct trace *t, int force)
{
struct blk_io_trace *bit = t->bit;
unsigned long expected_sequence;
struct per_cpu_info *pci;
struct trace *__t;
pci = get_cpu_info(pdi, bit->cpu);
expected_sequence = pci->last_sequence + 1;
if (!expected_sequence) {
/*
* 1 should be the first entry, just allow it
*/
if (bit->sequence == 1)
return 0;
if (bit->sequence == pci->smallest_seq_read)
return 0;
return check_cpu_map(pdi);
}
if (bit->sequence == expected_sequence)
return 0;
/*
* we may not have seen that sequence yet. if we are not doing
* the final run, break and wait for more entries.
*/
if (expected_sequence < pci->smallest_seq_read) {
__t = trace_rb_find_last(pdi, pci, expected_sequence);
if (!__t)
goto skip;
__put_trace_last(pdi, __t);
return 0;
} else if (!force) {
return 1;
} else {
skip:
if (check_current_skips(pci, bit->sequence))
return 0;
if (expected_sequence < bit->sequence)
insert_skip(pci, expected_sequence, bit->sequence - 1);
return 0;
}
}
static void show_entries_rb(int force)
{
struct per_dev_info *pdi = NULL;
struct per_cpu_info *pci = NULL;
struct blk_io_trace *bit;
struct rb_node *n;
struct trace *t;
while ((n = rb_first(&rb_sort_root)) != NULL) {
if (is_done() && !force && !pipeline)
break;
t = rb_entry(n, struct trace, rb_node);
bit = t->bit;
if (read_sequence - t->read_sequence < 1 && !force)
break;
if (!pdi || pdi->dev != bit->device) {
pdi = get_dev_info(bit->device);
pci = NULL;
}
if (!pdi) {
fprintf(stderr, "Unknown device ID? (%d,%d)\n",
MAJOR(bit->device), MINOR(bit->device));
break;
}
if (!(bit->action == BLK_TN_MESSAGE) &&
check_sequence(pdi, t, force))
break;
if (!force && bit->time > last_allowed_time)
break;
check_time(pdi, bit);
if (!pci || pci->cpu != bit->cpu)
pci = get_cpu_info(pdi, bit->cpu);
if (!(bit->action == BLK_TN_MESSAGE))
pci->last_sequence = bit->sequence;
pci->nelems++;
if (bit->action & (act_mask << BLK_TC_SHIFT))
dump_trace(bit, pci, pdi);
put_trace(pdi, t);
}
}
static int read_data(int fd, void *buffer, int bytes, int block, int *fdblock)
{
int ret, bytes_left, fl;
void *p;
if (block != *fdblock) {
fl = fcntl(fd, F_GETFL);
if (!block) {
*fdblock = 0;
fcntl(fd, F_SETFL, fl | O_NONBLOCK);
} else {
*fdblock = 1;
fcntl(fd, F_SETFL, fl & ~O_NONBLOCK);
}
}
bytes_left = bytes;
p = buffer;
while (bytes_left > 0) {
ret = read(fd, p, bytes_left);
if (!ret)
return 1;
else if (ret < 0) {
if (errno != EAGAIN) {
perror("read");
return -1;
}
/*
* never do partial reads. we can return if we
* didn't read anything and we should not block,
* otherwise wait for data
*/
if ((bytes_left == bytes) && !block)
return 1;
usleep(10);
continue;
} else {
p += ret;
bytes_left -= ret;
}
}
return 0;
}
static inline __u16 get_pdulen(struct blk_io_trace *bit)
{
if (data_is_native)
return bit->pdu_len;
return __bswap_16(bit->pdu_len);
}
static inline __u32 get_magic(struct blk_io_trace *bit)
{
if (data_is_native)
return bit->magic;
return __bswap_32(bit->magic);
}
static int read_events(int fd, int always_block, int *fdblock)
{
struct per_dev_info *pdi = NULL;
unsigned int events = 0;
while (!is_done() && events < rb_batch) {
struct blk_io_trace *bit;
struct trace *t;
int pdu_len, should_block, ret;
__u32 magic;
bit = bit_alloc();
should_block = !events || always_block;
ret = read_data(fd, bit, sizeof(*bit), should_block, fdblock);
if (ret) {
bit_free(bit);
if (!events && ret < 0)
events = ret;
break;
}
/*
* look at first trace to check whether we need to convert
* data in the future
*/
if (data_is_native == -1 && check_data_endianness(bit->magic))
break;
magic = get_magic(bit);
if ((magic & 0xffffff00) != BLK_IO_TRACE_MAGIC) {
fprintf(stderr, "Bad magic %x\n", magic);
break;
}
pdu_len = get_pdulen(bit);
if (pdu_len) {
void *ptr = realloc(bit, sizeof(*bit) + pdu_len);
if (read_data(fd, ptr + sizeof(*bit), pdu_len, 1, fdblock)) {
bit_free(ptr);
break;
}
bit = ptr;
}
trace_to_cpu(bit);
if (verify_trace(bit)) {
bit_free(bit);
continue;
}
/*
* not a real trace, so grab and handle it here
*/
if (bit->action & BLK_TC_ACT(BLK_TC_NOTIFY) && bit->action != BLK_TN_MESSAGE) {
handle_notify(bit);
output_binary(bit, sizeof(*bit) + bit->pdu_len);
continue;
}
t = t_alloc();
memset(t, 0, sizeof(*t));
t->bit = bit;
t->read_sequence = read_sequence;
t->next = trace_list;
trace_list = t;
if (!pdi || pdi->dev != bit->device)
pdi = get_dev_info(bit->device);
if (bit->time > pdi->last_read_time)
pdi->last_read_time = bit->time;
events++;
}
return events;
}
/*
* Managing input streams
*/
struct ms_stream {
struct ms_stream *next;
struct trace *first, *last;
struct per_dev_info *pdi;
unsigned int cpu;
};
#define MS_HASH(d, c) ((MAJOR(d) & 0xff) ^ (MINOR(d) & 0xff) ^ (cpu & 0xff))
struct ms_stream *ms_head;
struct ms_stream *ms_hash[256];
static void ms_sort(struct ms_stream *msp);
static int ms_prime(struct ms_stream *msp);
static inline struct trace *ms_peek(struct ms_stream *msp)
{
return (msp == NULL) ? NULL : msp->first;
}
static inline __u64 ms_peek_time(struct ms_stream *msp)
{
return ms_peek(msp)->bit->time;
}
static inline void ms_resort(struct ms_stream *msp)
{
if (msp->next && ms_peek_time(msp) > ms_peek_time(msp->next)) {
ms_head = msp->next;
msp->next = NULL;
ms_sort(msp);
}
}
static inline void ms_deq(struct ms_stream *msp)
{
msp->first = msp->first->next;
if (!msp->first) {
msp->last = NULL;
if (!ms_prime(msp)) {
ms_head = msp->next;
msp->next = NULL;
return;
}
}
ms_resort(msp);
}
static void ms_sort(struct ms_stream *msp)
{
__u64 msp_t = ms_peek_time(msp);
struct ms_stream *this_msp = ms_head;
if (this_msp == NULL)
ms_head = msp;
else if (msp_t < ms_peek_time(this_msp)) {
msp->next = this_msp;
ms_head = msp;
}
else {
while (this_msp->next && ms_peek_time(this_msp->next) < msp_t)
this_msp = this_msp->next;
msp->next = this_msp->next;
this_msp->next = msp;
}
}
static int ms_prime(struct ms_stream *msp)
{
__u32 magic;
unsigned int i;
struct trace *t;
struct per_dev_info *pdi = msp->pdi;
struct per_cpu_info *pci = get_cpu_info(pdi, msp->cpu);
struct blk_io_trace *bit = NULL;
int ret, pdu_len, ndone = 0;
for (i = 0; !is_done() && pci->fd >= 0 && i < rb_batch; i++) {
bit = bit_alloc();
ret = read_data(pci->fd, bit, sizeof(*bit), 1, &pci->fdblock);
if (ret)
goto err;
if (data_is_native == -1 && check_data_endianness(bit->magic))
goto err;
magic = get_magic(bit);
if ((magic & 0xffffff00) != BLK_IO_TRACE_MAGIC) {
fprintf(stderr, "Bad magic %x\n", magic);
goto err;
}
pdu_len = get_pdulen(bit);
if (pdu_len) {
void *ptr = realloc(bit, sizeof(*bit) + pdu_len);
ret = read_data(pci->fd, ptr + sizeof(*bit), pdu_len,
1, &pci->fdblock);
if (ret) {
free(ptr);
bit = NULL;
goto err;
}
bit = ptr;
}
trace_to_cpu(bit);
if (verify_trace(bit))
goto err;
if (bit->cpu != pci->cpu) {
fprintf(stderr, "cpu %d trace info has error cpu %d\n",
pci->cpu, bit->cpu);
continue;
}
if (bit->action & BLK_TC_ACT(BLK_TC_NOTIFY) && bit->action != BLK_TN_MESSAGE) {
handle_notify(bit);
output_binary(bit, sizeof(*bit) + bit->pdu_len);
bit_free(bit);
i -= 1;
continue;
}
if (bit->time > pdi->last_read_time)
pdi->last_read_time = bit->time;
t = t_alloc();
memset(t, 0, sizeof(*t));
t->bit = bit;
if (msp->first == NULL)
msp->first = msp->last = t;
else {
msp->last->next = t;
msp->last = t;
}
ndone++;
}
return ndone;
err:
if (bit) bit_free(bit);
cpu_mark_offline(pdi, pci->cpu);
close(pci->fd);
pci->fd = -1;
return ndone;
}
static struct ms_stream *ms_alloc(struct per_dev_info *pdi, int cpu)
{
struct ms_stream *msp = malloc(sizeof(*msp));
msp->next = NULL;
msp->first = msp->last = NULL;
msp->pdi = pdi;
msp->cpu = cpu;
if (ms_prime(msp))
ms_sort(msp);
return msp;
}
static int setup_file(struct per_dev_info *pdi, int cpu)
{
int len = 0;
struct stat st;
char *p, *dname;
struct per_cpu_info *pci = get_cpu_info(pdi, cpu);
pci->cpu = cpu;
pci->fdblock = -1;
p = strdup(pdi->name);
dname = dirname(p);
if (strcmp(dname, ".")) {
input_dir = dname;
p = strdup(pdi->name);
strcpy(pdi->name, basename(p));
}
free(p);
if (input_dir)
len = sprintf(pci->fname, "%s/", input_dir);
snprintf(pci->fname + len, sizeof(pci->fname)-1-len,
"%s.blktrace.%d", pdi->name, pci->cpu);
if (stat(pci->fname, &st) < 0)
return 0;
if (!st.st_size)
return 1;
pci->fd = open(pci->fname, O_RDONLY);
if (pci->fd < 0) {
perror(pci->fname);
return 0;
}
printf("Input file %s added\n", pci->fname);
cpu_mark_online(pdi, pci->cpu);
pdi->nfiles++;
ms_alloc(pdi, pci->cpu);
return 1;
}
static int handle(struct ms_stream *msp)
{
struct trace *t;
struct per_dev_info *pdi;
struct per_cpu_info *pci;
struct blk_io_trace *bit;
t = ms_peek(msp);
bit = t->bit;
pdi = msp->pdi;
pci = get_cpu_info(pdi, msp->cpu);
pci->nelems++;
bit->time -= genesis_time;
if (t->bit->time > stopwatch_end)
return 0;
pdi->last_reported_time = bit->time;
if ((bit->action & (act_mask << BLK_TC_SHIFT))&&
t->bit->time >= stopwatch_start)
dump_trace(bit, pci, pdi);
ms_deq(msp);
if (text_output)
trace_rb_insert_last(pdi, t);
else {
bit_free(t->bit);
t_free(t);
}
return 1;
}
/*
* Check if we need to sanitize the name. We allow 'foo', or if foo.blktrace.X
* is given, then strip back down to 'foo' to avoid missing files.
*/
static int name_fixup(char *name)
{
char *b;
if (!name)
return 1;
b = strstr(name, ".blktrace.");
if (b)
*b = '\0';
return 0;
}
static int do_file(void)
{
int i, cpu, ret;
struct per_dev_info *pdi;
/*
* first prepare all files for reading
*/
for (i = 0; i < ndevices; i++) {
pdi = &devices[i];
ret = name_fixup(pdi->name);
if (ret)
return ret;
for (cpu = 0; setup_file(pdi, cpu); cpu++)
;
if (!cpu) {
fprintf(stderr,"No input files found for %s\n",
pdi->name);
return 1;
}
}
/*
* Get the initial time stamp
*/
if (ms_head)
genesis_time = ms_peek_time(ms_head);
/*
* Keep processing traces while any are left
*/
while (!is_done() && ms_head && handle(ms_head))
;
return 0;
}
static void do_pipe(int fd)
{
unsigned long long youngest;
int events, fdblock;
last_allowed_time = -1ULL;
fdblock = -1;
while ((events = read_events(fd, 0, &fdblock)) > 0) {
read_sequence++;
#if 0
smallest_seq_read = -1U;
#endif
if (sort_entries(&youngest))
break;
if (youngest > stopwatch_end)
break;
show_entries_rb(0);
}
if (rb_sort_entries)
show_entries_rb(1);
}
static int do_fifo(void)
{
int fd;
if (!strcmp(pipename, "-"))
fd = dup(STDIN_FILENO);
else
fd = open(pipename, O_RDONLY);
if (fd == -1) {
perror("dup stdin");
return -1;
}
do_pipe(fd);
close(fd);
return 0;
}
static void show_stats(void)
{
if (!ofp)
return;
if (stats_printed)
return;
stats_printed = 1;
if (per_process_stats)
show_process_stats();
if (per_device_and_cpu_stats)
show_device_and_cpu_stats();
fflush(ofp);
}
static void handle_sigint(__attribute__((__unused__)) int sig)
{
done = 1;
}
/*
* Extract start and duration times from a string, allowing
* us to specify a time interval of interest within a trace.
* Format: "duration" (start is zero) or "start:duration".
*/
static int find_stopwatch_interval(char *string)
{
double value;
char *sp;
value = strtod(string, &sp);
if (sp == string) {
fprintf(stderr,"Invalid stopwatch timer: %s\n", string);
return 1;
}
if (*sp == ':') {
stopwatch_start = DOUBLE_TO_NANO_ULL(value);
string = sp + 1;
value = strtod(string, &sp);
if (sp == string || *sp != '\0') {
fprintf(stderr,"Invalid stopwatch duration time: %s\n",
string);
return 1;
}
} else if (*sp != '\0') {
fprintf(stderr,"Invalid stopwatch start timer: %s\n", string);
return 1;
}
stopwatch_end = DOUBLE_TO_NANO_ULL(value);
if (stopwatch_end <= stopwatch_start) {
fprintf(stderr, "Invalid stopwatch interval: %Lu -> %Lu\n",
stopwatch_start, stopwatch_end);
return 1;
}
return 0;
}
static int is_pipe(const char *str)
{
struct stat st;
if (!strcmp(str, "-"))
return 1;
if (!stat(str, &st) && S_ISFIFO(st.st_mode))
return 1;
return 0;
}
#define S_OPTS "a:A:b:D:d:f:F:hi:o:Oqstw:vVM"
static char usage_str[] = "\n\n" \
"-i <file> | --input=<file>\n" \
"[ -a <action field> | --act-mask=<action field> ]\n" \
"[ -A <action mask> | --set-mask=<action mask> ]\n" \
"[ -b <traces> | --batch=<traces> ]\n" \
"[ -d <file> | --dump-binary=<file> ]\n" \
"[ -D <dir> | --input-directory=<dir> ]\n" \
"[ -f <format> | --format=<format> ]\n" \
"[ -F <spec> | --format-spec=<spec> ]\n" \
"[ -h | --hash-by-name ]\n" \
"[ -o <file> | --output=<file> ]\n" \
"[ -O | --no-text-output ]\n" \
"[ -q | --quiet ]\n" \
"[ -s | --per-program-stats ]\n" \
"[ -t | --track-ios ]\n" \
"[ -w <time> | --stopwatch=<time> ]\n" \
"[ -M | --no-msgs\n" \
"[ -v | --verbose ]\n" \
"[ -V | --version ]\n\n" \
"\t-a Only trace specified actions. See documentation\n" \
"\t-A Give trace mask as a single value. See documentation\n" \
"\t-b stdin read batching\n" \
"\t-d Output file. If specified, binary data is written to file\n" \
"\t-D Directory to prepend to input file names\n" \
"\t-f Output format. Customize the output format. The format field\n" \
"\t identifies can be found in the documentation\n" \
"\t-F Format specification. Can be found in the documentation\n" \
"\t-h Hash processes by name, not pid\n" \
"\t-i Input file containing trace data, or '-' for stdin\n" \
"\t-o Output file. If not given, output is stdout\n" \
"\t-O Do NOT output text data\n" \
"\t-q Quiet. Don't display any stats at the end of the trace\n" \
"\t-s Show per-program io statistics\n" \
"\t-t Track individual ios. Will tell you the time a request took\n" \
"\t to get queued, to get dispatched, and to get completed\n" \
"\t-w Only parse data between the given time interval in seconds.\n" \
"\t If 'start' isn't given, blkparse defaults the start time to 0\n" \
"\t-M Do not output messages to binary file\n" \
"\t-v More verbose for marginal errors\n" \
"\t-V Print program version info\n\n";
static void usage(char *prog)
{
fprintf(stderr, "Usage: %s %s", prog, usage_str);
}
int main(int argc, char *argv[])
{
int i, c, ret, mode;
int act_mask_tmp = 0;
char *ofp_buffer = NULL;
char *bin_ofp_buffer = NULL;
while ((c = getopt_long(argc, argv, S_OPTS, l_opts, NULL)) != -1) {
switch (c) {
case 'a':
i = find_mask_map(optarg);
if (i < 0) {
fprintf(stderr,"Invalid action mask %s\n",
optarg);
return 1;
}
act_mask_tmp |= i;
break;
case 'A':
if ((sscanf(optarg, "%x", &i) != 1) ||
!valid_act_opt(i)) {
fprintf(stderr,
"Invalid set action mask %s/0x%x\n",
optarg, i);
return 1;
}
act_mask_tmp = i;
break;
case 'i':
if (is_pipe(optarg) && !pipeline) {
pipeline = 1;
pipename = strdup(optarg);
} else if (resize_devices(optarg) != 0)
return 1;
break;
case 'D':
input_dir = optarg;
break;
case 'o':
output_name = optarg;
break;
case 'O':
text_output = 0;
break;
case 'b':
rb_batch = atoi(optarg);
if (rb_batch <= 0)
rb_batch = RB_BATCH_DEFAULT;
break;
case 's':
per_process_stats = 1;
break;
case 't':
track_ios = 1;
break;
case 'q':
per_device_and_cpu_stats = 0;
break;
case 'w':
if (find_stopwatch_interval(optarg) != 0)
return 1;
break;
case 'f':
set_all_format_specs(optarg);
break;
case 'F':
if (add_format_spec(optarg) != 0)
return 1;
break;
case 'h':
ppi_hash_by_pid = 0;
break;
case 'v':
verbose++;
break;
case 'V':
printf("%s version %s\n", argv[0], blkparse_version);
return 0;
case 'd':
dump_binary = optarg;
break;
case 'M':
bin_output_msgs = 0;
break;
default:
usage(argv[0]);
return 1;
}
}
while (optind < argc) {
if (is_pipe(argv[optind]) && !pipeline) {
pipeline = 1;
pipename = strdup(argv[optind]);
} else if (resize_devices(argv[optind]) != 0)
return 1;
optind++;
}
if (!pipeline && !ndevices) {
usage(argv[0]);
return 1;
}
if (act_mask_tmp != 0)
act_mask = act_mask_tmp;
memset(&rb_sort_root, 0, sizeof(rb_sort_root));
signal(SIGINT, handle_sigint);
signal(SIGHUP, handle_sigint);
signal(SIGTERM, handle_sigint);
setlocale(LC_NUMERIC, "en_US");
if (text_output) {
if (!output_name) {
ofp = fdopen(STDOUT_FILENO, "w");
mode = _IOLBF;
} else {
char ofname[PATH_MAX];
snprintf(ofname, sizeof(ofname) - 1, "%s", output_name);
ofp = fopen(ofname, "w");
mode = _IOFBF;
}
if (!ofp) {
perror("fopen");
return 1;
}
ofp_buffer = malloc(4096);
if (setvbuf(ofp, ofp_buffer, mode, 4096)) {
perror("setvbuf");
return 1;
}
}
if (dump_binary) {
if (!strcmp(dump_binary, "-"))
dump_fp = stdout;
else {
dump_fp = fopen(dump_binary, "w");
if (!dump_fp) {
perror(dump_binary);
dump_binary = NULL;
return 1;
}
}
bin_ofp_buffer = malloc(128 * 1024);
if (setvbuf(dump_fp, bin_ofp_buffer, _IOFBF, 128 * 1024)) {
perror("setvbuf binary");
return 1;
}
}
if (pipeline)
ret = do_fifo();
else
ret = do_file();
if (!ret)
show_stats();
if (have_drv_data && !dump_binary)
printf("\ndiscarded traces containing low-level device driver "
"specific data (only available in binary output)\n");
if (ofp_buffer) {
fflush(ofp);
free(ofp_buffer);
}
if (bin_ofp_buffer) {
fflush(dump_fp);
free(bin_ofp_buffer);
}
return ret;
}