blob: d8e7ebfe573ef5531fb2c60d00e87e4cb2127308 [file] [log] [blame]
#include <signal.h>
#include <unistd.h>
#ifdef CONFIG_HAVE_TIMERFD_CREATE
#include <sys/timerfd.h>
#endif
#ifdef CONFIG_VALGRIND_DEV
#include <valgrind/drd.h>
#else
#define DRD_IGNORE_VAR(x) do { } while (0)
#endif
#include "fio.h"
#include "smalloc.h"
#include "helper_thread.h"
#include "steadystate.h"
#include "pshared.h"
static int sleep_accuracy_ms;
static int timerfd = -1;
enum action {
A_EXIT = 1,
A_RESET = 2,
A_DO_STAT = 3,
};
static struct helper_data {
volatile int exit;
int pipe[2]; /* 0: read end; 1: write end. */
struct sk_out *sk_out;
pthread_t thread;
struct fio_sem *startup_sem;
} *helper_data;
struct interval_timer {
const char *name;
struct timespec expires;
uint32_t interval_ms;
int (*func)(void);
};
void helper_thread_destroy(void)
{
if (!helper_data)
return;
close(helper_data->pipe[0]);
close(helper_data->pipe[1]);
sfree(helper_data);
}
#ifdef _WIN32
static void sock_init(void)
{
WSADATA wsaData;
int res;
/* It is allowed to call WSAStartup() more than once. */
res = WSAStartup(MAKEWORD(2, 2), &wsaData);
assert(res == 0);
}
static int make_nonblocking(int fd)
{
unsigned long arg = 1;
return ioctlsocket(fd, FIONBIO, &arg);
}
static int write_to_pipe(int fd, const void *buf, size_t len)
{
return send(fd, buf, len, 0);
}
static int read_from_pipe(int fd, void *buf, size_t len)
{
return recv(fd, buf, len, 0);
}
#else
static void sock_init(void)
{
}
static int make_nonblocking(int fd)
{
return fcntl(fd, F_SETFL, O_NONBLOCK);
}
static int write_to_pipe(int fd, const void *buf, size_t len)
{
return write(fd, buf, len);
}
static int read_from_pipe(int fd, void *buf, size_t len)
{
return read(fd, buf, len);
}
#endif
static void block_signals(void)
{
#ifdef HAVE_PTHREAD_SIGMASK
sigset_t sigmask;
ret = pthread_sigmask(SIG_UNBLOCK, NULL, &sigmask);
assert(ret == 0);
ret = pthread_sigmask(SIG_BLOCK, &sigmask, NULL);
assert(ret == 0);
#endif
}
static void submit_action(enum action a)
{
const char data = a;
int ret;
if (!helper_data)
return;
ret = write_to_pipe(helper_data->pipe[1], &data, sizeof(data));
assert(ret == 1);
}
void helper_reset(void)
{
submit_action(A_RESET);
}
/*
* May be invoked in signal handler context and hence must only call functions
* that are async-signal-safe. See also
* https://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_04_03.
*/
void helper_do_stat(void)
{
submit_action(A_DO_STAT);
}
bool helper_should_exit(void)
{
if (!helper_data)
return true;
return helper_data->exit;
}
void helper_thread_exit(void)
{
if (!helper_data)
return;
helper_data->exit = 1;
submit_action(A_EXIT);
pthread_join(helper_data->thread, NULL);
}
/* Resets timers and returns the time in milliseconds until the next event. */
static int reset_timers(struct interval_timer timer[], int num_timers,
struct timespec *now)
{
uint32_t msec_to_next_event = INT_MAX;
int i;
for (i = 0; i < num_timers; ++i) {
timer[i].expires = *now;
timespec_add_msec(&timer[i].expires, timer[i].interval_ms);
msec_to_next_event = min_not_zero(msec_to_next_event,
timer[i].interval_ms);
}
return msec_to_next_event;
}
/*
* Waits for an action from fd during at least timeout_ms. `fd` must be in
* non-blocking mode.
*/
static uint8_t wait_for_action(int fd, unsigned int timeout_ms)
{
struct timeval timeout = {
.tv_sec = timeout_ms / 1000,
.tv_usec = (timeout_ms % 1000) * 1000,
};
fd_set rfds, efds;
uint8_t action = 0;
uint64_t exp;
int res;
res = read_from_pipe(fd, &action, sizeof(action));
if (res > 0 || timeout_ms == 0)
return action;
FD_ZERO(&rfds);
FD_SET(fd, &rfds);
FD_ZERO(&efds);
FD_SET(fd, &efds);
#ifdef CONFIG_HAVE_TIMERFD_CREATE
{
/*
* If the timer frequency is 100 Hz, select() will round up
* `timeout` to the next multiple of 1 / 100 Hz = 10 ms. Hence
* use a high-resolution timer if possible to increase
* select() timeout accuracy.
*/
struct itimerspec delta = {};
delta.it_value.tv_sec = timeout.tv_sec;
delta.it_value.tv_nsec = timeout.tv_usec * 1000;
res = timerfd_settime(timerfd, 0, &delta, NULL);
assert(res == 0);
FD_SET(timerfd, &rfds);
}
#endif
res = select(max(fd, timerfd) + 1, &rfds, NULL, &efds,
timerfd >= 0 ? NULL : &timeout);
if (res < 0) {
log_err("fio: select() call in helper thread failed: %s",
strerror(errno));
return A_EXIT;
}
if (FD_ISSET(fd, &rfds))
read_from_pipe(fd, &action, sizeof(action));
if (timerfd >= 0 && FD_ISSET(timerfd, &rfds)) {
res = read(timerfd, &exp, sizeof(exp));
assert(res == sizeof(exp));
}
return action;
}
/*
* Verify whether or not timer @it has expired. If timer @it has expired, call
* @it->func(). @now is the current time. @msec_to_next_event is an
* input/output parameter that represents the time until the next event.
*/
static int eval_timer(struct interval_timer *it, const struct timespec *now,
unsigned int *msec_to_next_event)
{
int64_t delta_ms;
bool expired;
/* interval == 0 means that the timer is disabled. */
if (it->interval_ms == 0)
return 0;
delta_ms = rel_time_since(now, &it->expires);
expired = delta_ms <= sleep_accuracy_ms;
if (expired) {
timespec_add_msec(&it->expires, it->interval_ms);
delta_ms = rel_time_since(now, &it->expires);
if (delta_ms < it->interval_ms - sleep_accuracy_ms ||
delta_ms > it->interval_ms + sleep_accuracy_ms) {
dprint(FD_HELPERTHREAD,
"%s: delta = %" PRIi64 " <> %u. Clock jump?\n",
it->name, delta_ms, it->interval_ms);
delta_ms = it->interval_ms;
it->expires = *now;
timespec_add_msec(&it->expires, it->interval_ms);
}
}
*msec_to_next_event = min((unsigned int)delta_ms, *msec_to_next_event);
return expired ? it->func() : 0;
}
static void *helper_thread_main(void *data)
{
struct helper_data *hd = data;
unsigned int msec_to_next_event, next_log;
struct interval_timer timer[] = {
{
.name = "disk_util",
.interval_ms = DISK_UTIL_MSEC,
.func = update_io_ticks,
},
{
.name = "status_interval",
.interval_ms = status_interval,
.func = __show_running_run_stats,
},
{
.name = "steadystate",
.interval_ms = steadystate_enabled ? STEADYSTATE_MSEC :
0,
.func = steadystate_check,
}
};
struct timespec ts;
int clk_tck, ret = 0;
#ifdef _SC_CLK_TCK
clk_tck = sysconf(_SC_CLK_TCK);
#else
/*
* The timer frequence is variable on Windows. Instead of trying to
* query it, use 64 Hz, the clock frequency lower bound. See also
* https://carpediemsystems.co.uk/2019/07/18/windows-system-timer-granularity/.
*/
clk_tck = 64;
#endif
dprint(FD_HELPERTHREAD, "clk_tck = %d\n", clk_tck);
assert(clk_tck > 0);
sleep_accuracy_ms = (1000 + clk_tck - 1) / clk_tck;
#ifdef CONFIG_HAVE_TIMERFD_CREATE
timerfd = timerfd_create(CLOCK_MONOTONIC, TFD_NONBLOCK);
assert(timerfd >= 0);
sleep_accuracy_ms = 1;
#endif
sk_out_assign(hd->sk_out);
/* Let another thread handle signals. */
block_signals();
fio_get_mono_time(&ts);
msec_to_next_event = reset_timers(timer, FIO_ARRAY_SIZE(timer), &ts);
fio_sem_up(hd->startup_sem);
while (!ret && !hd->exit) {
uint8_t action;
int i;
action = wait_for_action(hd->pipe[0], msec_to_next_event);
if (action == A_EXIT)
break;
fio_get_mono_time(&ts);
msec_to_next_event = INT_MAX;
if (action == A_RESET)
msec_to_next_event = reset_timers(timer,
FIO_ARRAY_SIZE(timer), &ts);
for (i = 0; i < FIO_ARRAY_SIZE(timer); ++i)
ret = eval_timer(&timer[i], &ts, &msec_to_next_event);
if (action == A_DO_STAT)
__show_running_run_stats();
next_log = calc_log_samples();
if (!next_log)
next_log = DISK_UTIL_MSEC;
msec_to_next_event = min(next_log, msec_to_next_event);
dprint(FD_HELPERTHREAD,
"next_log: %u, msec_to_next_event: %u\n",
next_log, msec_to_next_event);
if (!is_backend)
print_thread_status();
}
if (timerfd >= 0) {
close(timerfd);
timerfd = -1;
}
fio_writeout_logs(false);
sk_out_drop();
return NULL;
}
/*
* Connect two sockets to each other to emulate the pipe() system call on Windows.
*/
int pipe_over_loopback(int fd[2])
{
struct sockaddr_in addr = { .sin_family = AF_INET };
socklen_t len = sizeof(addr);
int res;
addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
sock_init();
fd[0] = socket(AF_INET, SOCK_STREAM, 0);
if (fd[0] < 0)
goto err;
fd[1] = socket(AF_INET, SOCK_STREAM, 0);
if (fd[1] < 0)
goto close_fd_0;
res = bind(fd[0], (struct sockaddr *)&addr, len);
if (res < 0)
goto close_fd_1;
res = getsockname(fd[0], (struct sockaddr *)&addr, &len);
if (res < 0)
goto close_fd_1;
res = listen(fd[0], 1);
if (res < 0)
goto close_fd_1;
res = connect(fd[1], (struct sockaddr *)&addr, len);
if (res < 0)
goto close_fd_1;
res = accept(fd[0], NULL, NULL);
if (res < 0)
goto close_fd_1;
close(fd[0]);
fd[0] = res;
return 0;
close_fd_1:
close(fd[1]);
close_fd_0:
close(fd[0]);
err:
return -1;
}
int helper_thread_create(struct fio_sem *startup_sem, struct sk_out *sk_out)
{
struct helper_data *hd;
int ret;
hd = scalloc(1, sizeof(*hd));
setup_disk_util();
steadystate_setup();
hd->sk_out = sk_out;
#if defined(CONFIG_PIPE2)
ret = pipe2(hd->pipe, O_CLOEXEC);
#elif defined(CONFIG_PIPE)
ret = pipe(hd->pipe);
#else
ret = pipe_over_loopback(hd->pipe);
#endif
if (ret)
return 1;
ret = make_nonblocking(hd->pipe[0]);
assert(ret >= 0);
hd->startup_sem = startup_sem;
DRD_IGNORE_VAR(helper_data);
ret = pthread_create(&hd->thread, NULL, helper_thread_main, hd);
if (ret) {
log_err("Can't create helper thread: %s\n", strerror(ret));
return 1;
}
helper_data = hd;
dprint(FD_MUTEX, "wait on startup_sem\n");
fio_sem_down(startup_sem);
dprint(FD_MUTEX, "done waiting on startup_sem\n");
return 0;
}