blob: d16b890fc6f1796445e007996ea5ab4ff0aee325 [file] [log] [blame]
/*
* Copyright (C) 2018 Western Digital Corporation or its affiliates.
*
* This file is released under the GPL.
*/
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <unistd.h>
#include "os/os.h"
#include "file.h"
#include "fio.h"
#include "lib/pow2.h"
#include "log.h"
#include "oslib/asprintf.h"
#include "smalloc.h"
#include "verify.h"
#include "pshared.h"
#include "zbd.h"
/**
* zbd_get_zoned_model - Get a device zoned model
* @td: FIO thread data
* @f: FIO file for which to get model information
*/
int zbd_get_zoned_model(struct thread_data *td, struct fio_file *f,
enum zbd_zoned_model *model)
{
int ret;
if (td->io_ops && td->io_ops->get_zoned_model)
ret = td->io_ops->get_zoned_model(td, f, model);
else
ret = blkzoned_get_zoned_model(td, f, model);
if (ret < 0) {
td_verror(td, errno, "get zoned model failed");
log_err("%s: get zoned model failed (%d).\n",
f->file_name, errno);
}
return ret;
}
/**
* zbd_report_zones - Get zone information
* @td: FIO thread data.
* @f: FIO file for which to get zone information
* @offset: offset from which to report zones
* @zones: Array of struct zbd_zone
* @nr_zones: Size of @zones array
*
* Get zone information into @zones starting from the zone at offset @offset
* for the device specified by @f.
*
* Returns the number of zones reported upon success and a negative error code
* upon failure. If the zone report is empty, always assume an error (device
* problem) and return -EIO.
*/
int zbd_report_zones(struct thread_data *td, struct fio_file *f,
uint64_t offset, struct zbd_zone *zones,
unsigned int nr_zones)
{
int ret;
if (td->io_ops && td->io_ops->report_zones)
ret = td->io_ops->report_zones(td, f, offset, zones, nr_zones);
else
ret = blkzoned_report_zones(td, f, offset, zones, nr_zones);
if (ret < 0) {
td_verror(td, errno, "report zones failed");
log_err("%s: report zones from sector %llu failed (%d).\n",
f->file_name, (unsigned long long)offset >> 9, errno);
} else if (ret == 0) {
td_verror(td, errno, "Empty zone report");
log_err("%s: report zones from sector %llu is empty.\n",
f->file_name, (unsigned long long)offset >> 9);
ret = -EIO;
}
return ret;
}
/**
* zbd_reset_wp - reset the write pointer of a range of zones
* @td: FIO thread data.
* @f: FIO file for which to reset zones
* @offset: Starting offset of the first zone to reset
* @length: Length of the range of zones to reset
*
* Reset the write pointer of all zones in the range @offset...@offset+@length.
* Returns 0 upon success and a negative error code upon failure.
*/
int zbd_reset_wp(struct thread_data *td, struct fio_file *f,
uint64_t offset, uint64_t length)
{
int ret;
if (td->io_ops && td->io_ops->reset_wp)
ret = td->io_ops->reset_wp(td, f, offset, length);
else
ret = blkzoned_reset_wp(td, f, offset, length);
if (ret < 0) {
td_verror(td, errno, "resetting wp failed");
log_err("%s: resetting wp for %llu sectors at sector %llu failed (%d).\n",
f->file_name, (unsigned long long)length >> 9,
(unsigned long long)offset >> 9, errno);
}
return ret;
}
/**
* zbd_zone_idx - convert an offset into a zone number
* @f: file pointer.
* @offset: offset in bytes. If this offset is in the first zone_size bytes
* past the disk size then the index of the sentinel is returned.
*/
static uint32_t zbd_zone_idx(const struct fio_file *f, uint64_t offset)
{
uint32_t zone_idx;
if (f->zbd_info->zone_size_log2 > 0)
zone_idx = offset >> f->zbd_info->zone_size_log2;
else
zone_idx = offset / f->zbd_info->zone_size;
return min(zone_idx, f->zbd_info->nr_zones);
}
/**
* zbd_zone_end - Return zone end location
* @z: zone info pointer.
*/
static inline uint64_t zbd_zone_end(const struct fio_zone_info *z)
{
return (z+1)->start;
}
/**
* zbd_zone_capacity_end - Return zone capacity limit end location
* @z: zone info pointer.
*/
static inline uint64_t zbd_zone_capacity_end(const struct fio_zone_info *z)
{
return z->start + z->capacity;
}
/**
* zbd_zone_full - verify whether a minimum number of bytes remain in a zone
* @f: file pointer.
* @z: zone info pointer.
* @required: minimum number of bytes that must remain in a zone.
*
* The caller must hold z->mutex.
*/
static bool zbd_zone_full(const struct fio_file *f, struct fio_zone_info *z,
uint64_t required)
{
assert((required & 511) == 0);
return z->has_wp &&
z->wp + required > zbd_zone_capacity_end(z);
}
static void zone_lock(struct thread_data *td, const struct fio_file *f,
struct fio_zone_info *z)
{
struct zoned_block_device_info *zbd = f->zbd_info;
uint32_t nz = z - zbd->zone_info;
/* A thread should never lock zones outside its working area. */
assert(f->min_zone <= nz && nz < f->max_zone);
assert(z->has_wp);
/*
* Lock the io_u target zone. The zone will be unlocked if io_u offset
* is changed or when io_u completes and zbd_put_io() executed.
* To avoid multiple jobs doing asynchronous I/Os from deadlocking each
* other waiting for zone locks when building an io_u batch, first
* only trylock the zone. If the zone is already locked by another job,
* process the currently queued I/Os so that I/O progress is made and
* zones unlocked.
*/
if (pthread_mutex_trylock(&z->mutex) != 0) {
if (!td_ioengine_flagged(td, FIO_SYNCIO))
io_u_quiesce(td);
pthread_mutex_lock(&z->mutex);
}
}
static inline void zone_unlock(struct fio_zone_info *z)
{
int ret;
assert(z->has_wp);
ret = pthread_mutex_unlock(&z->mutex);
assert(!ret);
}
static bool is_valid_offset(const struct fio_file *f, uint64_t offset)
{
return (uint64_t)(offset - f->file_offset) < f->io_size;
}
static inline struct fio_zone_info *get_zone(const struct fio_file *f,
unsigned int zone_nr)
{
return &f->zbd_info->zone_info[zone_nr];
}
/* Verify whether direct I/O is used for all host-managed zoned drives. */
static bool zbd_using_direct_io(void)
{
struct thread_data *td;
struct fio_file *f;
int i, j;
for_each_td(td, i) {
if (td->o.odirect || !(td->o.td_ddir & TD_DDIR_WRITE))
continue;
for_each_file(td, f, j) {
if (f->zbd_info &&
f->zbd_info->model == ZBD_HOST_MANAGED)
return false;
}
}
return true;
}
/* Whether or not the I/O range for f includes one or more sequential zones */
static bool zbd_is_seq_job(struct fio_file *f)
{
uint32_t zone_idx, zone_idx_b, zone_idx_e;
assert(f->zbd_info);
if (f->io_size == 0)
return false;
zone_idx_b = zbd_zone_idx(f, f->file_offset);
zone_idx_e = zbd_zone_idx(f, f->file_offset + f->io_size - 1);
for (zone_idx = zone_idx_b; zone_idx <= zone_idx_e; zone_idx++)
if (get_zone(f, zone_idx)->has_wp)
return true;
return false;
}
/*
* Verify whether offset and size parameters are aligned with zone boundaries.
*/
static bool zbd_verify_sizes(void)
{
const struct fio_zone_info *z;
struct thread_data *td;
struct fio_file *f;
uint64_t new_offset, new_end;
uint32_t zone_idx;
int i, j;
for_each_td(td, i) {
for_each_file(td, f, j) {
if (!f->zbd_info)
continue;
if (f->file_offset >= f->real_file_size)
continue;
if (!zbd_is_seq_job(f))
continue;
if (!td->o.zone_size) {
td->o.zone_size = f->zbd_info->zone_size;
if (!td->o.zone_size) {
log_err("%s: invalid 0 zone size\n",
f->file_name);
return false;
}
} else if (td->o.zone_size != f->zbd_info->zone_size) {
log_err("%s: job parameter zonesize %llu does not match disk zone size %llu.\n",
f->file_name, (unsigned long long) td->o.zone_size,
(unsigned long long) f->zbd_info->zone_size);
return false;
}
if (td->o.zone_skip % td->o.zone_size) {
log_err("%s: zoneskip %llu is not a multiple of the device zone size %llu.\n",
f->file_name, (unsigned long long) td->o.zone_skip,
(unsigned long long) td->o.zone_size);
return false;
}
zone_idx = zbd_zone_idx(f, f->file_offset);
z = get_zone(f, zone_idx);
if ((f->file_offset != z->start) &&
(td->o.td_ddir != TD_DDIR_READ)) {
new_offset = zbd_zone_end(z);
if (new_offset >= f->file_offset + f->io_size) {
log_info("%s: io_size must be at least one zone\n",
f->file_name);
return false;
}
log_info("%s: rounded up offset from %llu to %llu\n",
f->file_name, (unsigned long long) f->file_offset,
(unsigned long long) new_offset);
f->io_size -= (new_offset - f->file_offset);
f->file_offset = new_offset;
}
zone_idx = zbd_zone_idx(f, f->file_offset + f->io_size);
z = get_zone(f, zone_idx);
new_end = z->start;
if ((td->o.td_ddir != TD_DDIR_READ) &&
(f->file_offset + f->io_size != new_end)) {
if (new_end <= f->file_offset) {
log_info("%s: io_size must be at least one zone\n",
f->file_name);
return false;
}
log_info("%s: rounded down io_size from %llu to %llu\n",
f->file_name, (unsigned long long) f->io_size,
(unsigned long long) new_end - f->file_offset);
f->io_size = new_end - f->file_offset;
}
}
}
return true;
}
static bool zbd_verify_bs(void)
{
struct thread_data *td;
struct fio_file *f;
int i, j, k;
for_each_td(td, i) {
for_each_file(td, f, j) {
uint64_t zone_size;
if (!f->zbd_info)
continue;
zone_size = f->zbd_info->zone_size;
for (k = 0; k < FIO_ARRAY_SIZE(td->o.bs); k++) {
if (td->o.verify != VERIFY_NONE &&
zone_size % td->o.bs[k] != 0) {
log_info("%s: block size %llu is not a divisor of the zone size %llu\n",
f->file_name, td->o.bs[k],
(unsigned long long)zone_size);
return false;
}
}
}
}
return true;
}
static int ilog2(uint64_t i)
{
int log = -1;
while (i) {
i >>= 1;
log++;
}
return log;
}
/*
* Initialize f->zbd_info for devices that are not zoned block devices. This
* allows to execute a ZBD workload against a non-ZBD device.
*/
static int init_zone_info(struct thread_data *td, struct fio_file *f)
{
uint32_t nr_zones;
struct fio_zone_info *p;
uint64_t zone_size = td->o.zone_size;
uint64_t zone_capacity = td->o.zone_capacity;
struct zoned_block_device_info *zbd_info = NULL;
int i;
if (zone_size == 0) {
log_err("%s: Specifying the zone size is mandatory for regular block devices with --zonemode=zbd\n\n",
f->file_name);
return 1;
}
if (zone_size < 512) {
log_err("%s: zone size must be at least 512 bytes for --zonemode=zbd\n\n",
f->file_name);
return 1;
}
if (zone_capacity == 0)
zone_capacity = zone_size;
if (zone_capacity > zone_size) {
log_err("%s: job parameter zonecapacity %llu is larger than zone size %llu\n",
f->file_name, (unsigned long long) td->o.zone_capacity,
(unsigned long long) td->o.zone_size);
return 1;
}
nr_zones = (f->real_file_size + zone_size - 1) / zone_size;
zbd_info = scalloc(1, sizeof(*zbd_info) +
(nr_zones + 1) * sizeof(zbd_info->zone_info[0]));
if (!zbd_info)
return -ENOMEM;
mutex_init_pshared(&zbd_info->mutex);
zbd_info->refcount = 1;
p = &zbd_info->zone_info[0];
for (i = 0; i < nr_zones; i++, p++) {
mutex_init_pshared_with_type(&p->mutex,
PTHREAD_MUTEX_RECURSIVE);
p->start = i * zone_size;
p->wp = p->start;
p->type = ZBD_ZONE_TYPE_SWR;
p->cond = ZBD_ZONE_COND_EMPTY;
p->capacity = zone_capacity;
p->has_wp = 1;
}
/* a sentinel */
p->start = nr_zones * zone_size;
f->zbd_info = zbd_info;
f->zbd_info->zone_size = zone_size;
f->zbd_info->zone_size_log2 = is_power_of_2(zone_size) ?
ilog2(zone_size) : 0;
f->zbd_info->nr_zones = nr_zones;
return 0;
}
/*
* Maximum number of zones to report in one operation.
*/
#define ZBD_REPORT_MAX_ZONES 8192U
/*
* Parse the device zone report and store it in f->zbd_info. Must be called
* only for devices that are zoned, namely those with a model != ZBD_NONE.
*/
static int parse_zone_info(struct thread_data *td, struct fio_file *f)
{
int nr_zones, nrz;
struct zbd_zone *zones, *z;
struct fio_zone_info *p;
uint64_t zone_size, offset;
struct zoned_block_device_info *zbd_info = NULL;
int i, j, ret = -ENOMEM;
zones = calloc(ZBD_REPORT_MAX_ZONES, sizeof(struct zbd_zone));
if (!zones)
goto out;
nrz = zbd_report_zones(td, f, 0, zones, ZBD_REPORT_MAX_ZONES);
if (nrz < 0) {
ret = nrz;
log_info("fio: report zones (offset 0) failed for %s (%d).\n",
f->file_name, -ret);
goto out;
}
zone_size = zones[0].len;
nr_zones = (f->real_file_size + zone_size - 1) / zone_size;
if (td->o.zone_size == 0) {
td->o.zone_size = zone_size;
} else if (td->o.zone_size != zone_size) {
log_err("fio: %s job parameter zonesize %llu does not match disk zone size %llu.\n",
f->file_name, (unsigned long long) td->o.zone_size,
(unsigned long long) zone_size);
ret = -EINVAL;
goto out;
}
dprint(FD_ZBD, "Device %s has %d zones of size %llu KB\n", f->file_name,
nr_zones, (unsigned long long) zone_size / 1024);
zbd_info = scalloc(1, sizeof(*zbd_info) +
(nr_zones + 1) * sizeof(zbd_info->zone_info[0]));
if (!zbd_info)
goto out;
mutex_init_pshared(&zbd_info->mutex);
zbd_info->refcount = 1;
p = &zbd_info->zone_info[0];
for (offset = 0, j = 0; j < nr_zones;) {
z = &zones[0];
for (i = 0; i < nrz; i++, j++, z++, p++) {
mutex_init_pshared_with_type(&p->mutex,
PTHREAD_MUTEX_RECURSIVE);
p->start = z->start;
p->capacity = z->capacity;
switch (z->cond) {
case ZBD_ZONE_COND_NOT_WP:
case ZBD_ZONE_COND_FULL:
p->wp = p->start + p->capacity;
break;
default:
assert(z->start <= z->wp);
assert(z->wp <= z->start + zone_size);
p->wp = z->wp;
break;
}
switch (z->type) {
case ZBD_ZONE_TYPE_SWR:
p->has_wp = 1;
break;
default:
p->has_wp = 0;
}
p->type = z->type;
p->cond = z->cond;
if (j > 0 && p->start != p[-1].start + zone_size) {
log_info("%s: invalid zone data\n",
f->file_name);
ret = -EINVAL;
goto out;
}
}
z--;
offset = z->start + z->len;
if (j >= nr_zones)
break;
nrz = zbd_report_zones(td, f, offset, zones,
min((uint32_t)(nr_zones - j),
ZBD_REPORT_MAX_ZONES));
if (nrz < 0) {
ret = nrz;
log_info("fio: report zones (offset %llu) failed for %s (%d).\n",
(unsigned long long)offset,
f->file_name, -ret);
goto out;
}
}
/* a sentinel */
zbd_info->zone_info[nr_zones].start = offset;
f->zbd_info = zbd_info;
f->zbd_info->zone_size = zone_size;
f->zbd_info->zone_size_log2 = is_power_of_2(zone_size) ?
ilog2(zone_size) : 0;
f->zbd_info->nr_zones = nr_zones;
zbd_info = NULL;
ret = 0;
out:
sfree(zbd_info);
free(zones);
return ret;
}
/*
* Allocate zone information and store it into f->zbd_info if zonemode=zbd.
*
* Returns 0 upon success and a negative error code upon failure.
*/
static int zbd_create_zone_info(struct thread_data *td, struct fio_file *f)
{
enum zbd_zoned_model zbd_model;
int ret;
assert(td->o.zone_mode == ZONE_MODE_ZBD);
ret = zbd_get_zoned_model(td, f, &zbd_model);
if (ret)
return ret;
switch (zbd_model) {
case ZBD_IGNORE:
return 0;
case ZBD_HOST_AWARE:
case ZBD_HOST_MANAGED:
ret = parse_zone_info(td, f);
break;
case ZBD_NONE:
ret = init_zone_info(td, f);
break;
default:
td_verror(td, EINVAL, "Unsupported zoned model");
log_err("Unsupported zoned model\n");
return -EINVAL;
}
if (ret == 0) {
f->zbd_info->model = zbd_model;
f->zbd_info->max_open_zones = td->o.max_open_zones;
}
return ret;
}
void zbd_free_zone_info(struct fio_file *f)
{
uint32_t refcount;
assert(f->zbd_info);
pthread_mutex_lock(&f->zbd_info->mutex);
refcount = --f->zbd_info->refcount;
pthread_mutex_unlock(&f->zbd_info->mutex);
assert((int32_t)refcount >= 0);
if (refcount == 0)
sfree(f->zbd_info);
f->zbd_info = NULL;
}
/*
* Initialize f->zbd_info.
*
* Returns 0 upon success and a negative error code upon failure.
*
* Note: this function can only work correctly if it is called before the first
* fio fork() call.
*/
static int zbd_init_zone_info(struct thread_data *td, struct fio_file *file)
{
struct thread_data *td2;
struct fio_file *f2;
int i, j, ret;
for_each_td(td2, i) {
for_each_file(td2, f2, j) {
if (td2 == td && f2 == file)
continue;
if (!f2->zbd_info ||
strcmp(f2->file_name, file->file_name) != 0)
continue;
file->zbd_info = f2->zbd_info;
file->zbd_info->refcount++;
return 0;
}
}
ret = zbd_create_zone_info(td, file);
if (ret < 0)
td_verror(td, -ret, "zbd_create_zone_info() failed");
return ret;
}
static bool zbd_open_zone(struct thread_data *td, const struct fio_file *f,
uint32_t zone_idx);
static int zbd_reset_zone(struct thread_data *td, struct fio_file *f,
struct fio_zone_info *z);
int zbd_init_files(struct thread_data *td)
{
struct fio_file *f;
int i;
for_each_file(td, f, i) {
if (zbd_init_zone_info(td, f))
return 1;
}
return 0;
}
void zbd_recalc_options_with_zone_granularity(struct thread_data *td)
{
struct fio_file *f;
int i;
for_each_file(td, f, i) {
struct zoned_block_device_info *zbd = f->zbd_info;
// zonemode=strided doesn't get per-file zone size.
uint64_t zone_size = zbd ? zbd->zone_size : td->o.zone_size;
if (zone_size == 0)
continue;
if (td->o.size_nz > 0) {
td->o.size = td->o.size_nz * zone_size;
}
if (td->o.io_size_nz > 0) {
td->o.io_size = td->o.io_size_nz * zone_size;
}
if (td->o.start_offset_nz > 0) {
td->o.start_offset = td->o.start_offset_nz * zone_size;
}
if (td->o.offset_increment_nz > 0) {
td->o.offset_increment = td->o.offset_increment_nz * zone_size;
}
if (td->o.zone_skip_nz > 0) {
td->o.zone_skip = td->o.zone_skip_nz * zone_size;
}
}
}
int zbd_setup_files(struct thread_data *td)
{
struct fio_file *f;
int i;
if (!zbd_using_direct_io()) {
log_err("Using direct I/O is mandatory for writing to ZBD drives\n\n");
return 1;
}
if (!zbd_verify_sizes())
return 1;
if (!zbd_verify_bs())
return 1;
for_each_file(td, f, i) {
struct zoned_block_device_info *zbd = f->zbd_info;
struct fio_zone_info *z;
int zi;
if (!zbd)
continue;
f->min_zone = zbd_zone_idx(f, f->file_offset);
f->max_zone = zbd_zone_idx(f, f->file_offset + f->io_size);
/*
* When all zones in the I/O range are conventional, io_size
* can be smaller than zone size, making min_zone the same
* as max_zone. This is why the assert below needs to be made
* conditional.
*/
if (zbd_is_seq_job(f))
assert(f->min_zone < f->max_zone);
zbd->max_open_zones = zbd->max_open_zones ?: ZBD_MAX_OPEN_ZONES;
if (td->o.max_open_zones > 0 &&
zbd->max_open_zones != td->o.max_open_zones) {
log_err("Different 'max_open_zones' values\n");
return 1;
}
if (zbd->max_open_zones > ZBD_MAX_OPEN_ZONES) {
log_err("'max_open_zones' value is limited by %u\n", ZBD_MAX_OPEN_ZONES);
return 1;
}
for (zi = f->min_zone; zi < f->max_zone; zi++) {
z = &zbd->zone_info[zi];
if (z->cond != ZBD_ZONE_COND_IMP_OPEN &&
z->cond != ZBD_ZONE_COND_EXP_OPEN)
continue;
if (zbd_open_zone(td, f, zi))
continue;
/*
* If the number of open zones exceeds specified limits,
* reset all extra open zones.
*/
if (zbd_reset_zone(td, f, z) < 0) {
log_err("Failed to reest zone %d\n", zi);
return 1;
}
}
}
return 0;
}
static inline unsigned int zbd_zone_nr(const struct fio_file *f,
struct fio_zone_info *zone)
{
return zone - f->zbd_info->zone_info;
}
/**
* zbd_reset_zone - reset the write pointer of a single zone
* @td: FIO thread data.
* @f: FIO file associated with the disk for which to reset a write pointer.
* @z: Zone to reset.
*
* Returns 0 upon success and a negative error code upon failure.
*
* The caller must hold z->mutex.
*/
static int zbd_reset_zone(struct thread_data *td, struct fio_file *f,
struct fio_zone_info *z)
{
uint64_t offset = z->start;
uint64_t length = (z+1)->start - offset;
uint64_t data_in_zone = z->wp - z->start;
int ret = 0;
if (!data_in_zone)
return 0;
assert(is_valid_offset(f, offset + length - 1));
dprint(FD_ZBD, "%s: resetting wp of zone %u.\n", f->file_name,
zbd_zone_nr(f, z));
switch (f->zbd_info->model) {
case ZBD_HOST_AWARE:
case ZBD_HOST_MANAGED:
ret = zbd_reset_wp(td, f, offset, length);
if (ret < 0)
return ret;
break;
default:
break;
}
pthread_mutex_lock(&f->zbd_info->mutex);
f->zbd_info->sectors_with_data -= data_in_zone;
f->zbd_info->wp_sectors_with_data -= data_in_zone;
pthread_mutex_unlock(&f->zbd_info->mutex);
z->wp = z->start;
z->verify_block = 0;
td->ts.nr_zone_resets++;
return ret;
}
/* The caller must hold f->zbd_info->mutex */
static void zbd_close_zone(struct thread_data *td, const struct fio_file *f,
unsigned int zone_idx)
{
uint32_t open_zone_idx = 0;
for (; open_zone_idx < f->zbd_info->num_open_zones; open_zone_idx++) {
if (f->zbd_info->open_zones[open_zone_idx] == zone_idx)
break;
}
if (open_zone_idx == f->zbd_info->num_open_zones)
return;
dprint(FD_ZBD, "%s: closing zone %d\n", f->file_name, zone_idx);
memmove(f->zbd_info->open_zones + open_zone_idx,
f->zbd_info->open_zones + open_zone_idx + 1,
(ZBD_MAX_OPEN_ZONES - (open_zone_idx + 1)) *
sizeof(f->zbd_info->open_zones[0]));
f->zbd_info->num_open_zones--;
td->num_open_zones--;
get_zone(f, zone_idx)->open = 0;
}
/*
* Reset a range of zones. Returns 0 upon success and 1 upon failure.
* @td: fio thread data.
* @f: fio file for which to reset zones
* @zb: first zone to reset.
* @ze: first zone not to reset.
* @all_zones: whether to reset all zones or only those zones for which the
* write pointer is not a multiple of td->o.min_bs[DDIR_WRITE].
*/
static int zbd_reset_zones(struct thread_data *td, struct fio_file *f,
struct fio_zone_info *const zb,
struct fio_zone_info *const ze, bool all_zones)
{
struct fio_zone_info *z;
const uint32_t min_bs = td->o.min_bs[DDIR_WRITE];
bool reset_wp;
int res = 0;
assert(min_bs);
dprint(FD_ZBD, "%s: examining zones %u .. %u\n", f->file_name,
zbd_zone_nr(f, zb), zbd_zone_nr(f, ze));
for (z = zb; z < ze; z++) {
uint32_t nz = zbd_zone_nr(f, z);
if (!z->has_wp)
continue;
zone_lock(td, f, z);
if (all_zones) {
pthread_mutex_lock(&f->zbd_info->mutex);
zbd_close_zone(td, f, nz);
pthread_mutex_unlock(&f->zbd_info->mutex);
reset_wp = z->wp != z->start;
} else {
reset_wp = z->wp % min_bs != 0;
}
if (reset_wp) {
dprint(FD_ZBD, "%s: resetting zone %u\n",
f->file_name, zbd_zone_nr(f, z));
if (zbd_reset_zone(td, f, z) < 0)
res = 1;
}
zone_unlock(z);
}
return res;
}
/*
* Reset zbd_info.write_cnt, the counter that counts down towards the next
* zone reset.
*/
static void _zbd_reset_write_cnt(const struct thread_data *td,
const struct fio_file *f)
{
assert(0 <= td->o.zrf.u.f && td->o.zrf.u.f <= 1);
f->zbd_info->write_cnt = td->o.zrf.u.f ?
min(1.0 / td->o.zrf.u.f, 0.0 + UINT_MAX) : UINT_MAX;
}
static void zbd_reset_write_cnt(const struct thread_data *td,
const struct fio_file *f)
{
pthread_mutex_lock(&f->zbd_info->mutex);
_zbd_reset_write_cnt(td, f);
pthread_mutex_unlock(&f->zbd_info->mutex);
}
static bool zbd_dec_and_reset_write_cnt(const struct thread_data *td,
const struct fio_file *f)
{
uint32_t write_cnt = 0;
pthread_mutex_lock(&f->zbd_info->mutex);
assert(f->zbd_info->write_cnt);
if (f->zbd_info->write_cnt)
write_cnt = --f->zbd_info->write_cnt;
if (write_cnt == 0)
_zbd_reset_write_cnt(td, f);
pthread_mutex_unlock(&f->zbd_info->mutex);
return write_cnt == 0;
}
enum swd_action {
CHECK_SWD,
SET_SWD,
};
/* Calculate the number of sectors with data (swd) and perform action 'a' */
static uint64_t zbd_process_swd(struct thread_data *td,
const struct fio_file *f, enum swd_action a)
{
struct fio_zone_info *zb, *ze, *z;
uint64_t swd = 0;
uint64_t wp_swd = 0;
zb = get_zone(f, f->min_zone);
ze = get_zone(f, f->max_zone);
for (z = zb; z < ze; z++) {
if (z->has_wp) {
zone_lock(td, f, z);
wp_swd += z->wp - z->start;
}
swd += z->wp - z->start;
}
pthread_mutex_lock(&f->zbd_info->mutex);
switch (a) {
case CHECK_SWD:
assert(f->zbd_info->sectors_with_data == swd);
assert(f->zbd_info->wp_sectors_with_data == wp_swd);
break;
case SET_SWD:
f->zbd_info->sectors_with_data = swd;
f->zbd_info->wp_sectors_with_data = wp_swd;
break;
}
pthread_mutex_unlock(&f->zbd_info->mutex);
for (z = zb; z < ze; z++)
if (z->has_wp)
zone_unlock(z);
return swd;
}
/*
* The swd check is useful for debugging but takes too much time to leave
* it enabled all the time. Hence it is disabled by default.
*/
static const bool enable_check_swd = false;
/* Check whether the values of zbd_info.*sectors_with_data are correct. */
static void zbd_check_swd(struct thread_data *td, const struct fio_file *f)
{
if (!enable_check_swd)
return;
zbd_process_swd(td, f, CHECK_SWD);
}
void zbd_file_reset(struct thread_data *td, struct fio_file *f)
{
struct fio_zone_info *zb, *ze;
uint64_t swd;
if (!f->zbd_info || !td_write(td))
return;
zb = get_zone(f, f->min_zone);
ze = get_zone(f, f->max_zone);
swd = zbd_process_swd(td, f, SET_SWD);
dprint(FD_ZBD, "%s(%s): swd = %" PRIu64 "\n", __func__, f->file_name,
swd);
/*
* If data verification is enabled reset the affected zones before
* writing any data to avoid that a zone reset has to be issued while
* writing data, which causes data loss.
*/
zbd_reset_zones(td, f, zb, ze, td->o.verify != VERIFY_NONE &&
td->runstate != TD_VERIFYING);
zbd_reset_write_cnt(td, f);
}
/* The caller must hold f->zbd_info->mutex. */
static bool is_zone_open(const struct thread_data *td, const struct fio_file *f,
unsigned int zone_idx)
{
struct zoned_block_device_info *zbdi = f->zbd_info;
int i;
assert(td->o.job_max_open_zones == 0 || td->num_open_zones <= td->o.job_max_open_zones);
assert(td->o.job_max_open_zones <= zbdi->max_open_zones);
assert(zbdi->num_open_zones <= zbdi->max_open_zones);
for (i = 0; i < zbdi->num_open_zones; i++)
if (zbdi->open_zones[i] == zone_idx)
return true;
return false;
}
/*
* Open a ZBD zone if it was not yet open. Returns true if either the zone was
* already open or if opening a new zone is allowed. Returns false if the zone
* was not yet open and opening a new zone would cause the zone limit to be
* exceeded.
*/
static bool zbd_open_zone(struct thread_data *td, const struct fio_file *f,
uint32_t zone_idx)
{
const uint32_t min_bs = td->o.min_bs[DDIR_WRITE];
struct fio_zone_info *z = get_zone(f, zone_idx);
bool res = true;
if (z->cond == ZBD_ZONE_COND_OFFLINE)
return false;
/*
* Skip full zones with data verification enabled because resetting a
* zone causes data loss and hence causes verification to fail.
*/
if (td->o.verify != VERIFY_NONE && zbd_zone_full(f, z, min_bs))
return false;
pthread_mutex_lock(&f->zbd_info->mutex);
if (is_zone_open(td, f, zone_idx)) {
/*
* If the zone is already open and going to be full by writes
* in-flight, handle it as a full zone instead of an open zone.
*/
if (z->wp >= zbd_zone_capacity_end(z))
res = false;
goto out;
}
res = false;
/* Zero means no limit */
if (td->o.job_max_open_zones > 0 &&
td->num_open_zones >= td->o.job_max_open_zones)
goto out;
if (f->zbd_info->num_open_zones >= f->zbd_info->max_open_zones)
goto out;
dprint(FD_ZBD, "%s: opening zone %d\n", f->file_name, zone_idx);
f->zbd_info->open_zones[f->zbd_info->num_open_zones++] = zone_idx;
td->num_open_zones++;
z->open = 1;
res = true;
out:
pthread_mutex_unlock(&f->zbd_info->mutex);
return res;
}
/* Anything goes as long as it is not a constant. */
static uint32_t pick_random_zone_idx(const struct fio_file *f,
const struct io_u *io_u)
{
return io_u->offset * f->zbd_info->num_open_zones / f->real_file_size;
}
/*
* Modify the offset of an I/O unit that does not refer to an open zone such
* that it refers to an open zone. Close an open zone and open a new zone if
* necessary. The open zone is searched across sequential zones.
* This algorithm can only work correctly if all write pointers are
* a multiple of the fio block size. The caller must neither hold z->mutex
* nor f->zbd_info->mutex. Returns with z->mutex held upon success.
*/
static struct fio_zone_info *zbd_convert_to_open_zone(struct thread_data *td,
struct io_u *io_u)
{
const uint32_t min_bs = td->o.min_bs[io_u->ddir];
struct fio_file *f = io_u->file;
struct fio_zone_info *z;
unsigned int open_zone_idx = -1;
uint32_t zone_idx, new_zone_idx;
int i;
bool wait_zone_close;
assert(is_valid_offset(f, io_u->offset));
if (td->o.max_open_zones || td->o.job_max_open_zones) {
/*
* This statement accesses f->zbd_info->open_zones[] on purpose
* without locking.
*/
zone_idx = f->zbd_info->open_zones[pick_random_zone_idx(f, io_u)];
} else {
zone_idx = zbd_zone_idx(f, io_u->offset);
}
if (zone_idx < f->min_zone)
zone_idx = f->min_zone;
else if (zone_idx >= f->max_zone)
zone_idx = f->max_zone - 1;
dprint(FD_ZBD, "%s(%s): starting from zone %d (offset %lld, buflen %lld)\n",
__func__, f->file_name, zone_idx, io_u->offset, io_u->buflen);
/*
* Since z->mutex is the outer lock and f->zbd_info->mutex the inner
* lock it can happen that the state of the zone with index zone_idx
* has changed after 'z' has been assigned and before f->zbd_info->mutex
* has been obtained. Hence the loop.
*/
for (;;) {
uint32_t tmp_idx;
z = get_zone(f, zone_idx);
if (z->has_wp)
zone_lock(td, f, z);
pthread_mutex_lock(&f->zbd_info->mutex);
if (z->has_wp) {
if (z->cond != ZBD_ZONE_COND_OFFLINE &&
td->o.max_open_zones == 0 && td->o.job_max_open_zones == 0)
goto examine_zone;
if (f->zbd_info->num_open_zones == 0) {
dprint(FD_ZBD, "%s(%s): no zones are open\n",
__func__, f->file_name);
goto open_other_zone;
}
}
/*
* List of opened zones is per-device, shared across all threads.
* Start with quasi-random candidate zone.
* Ignore zones which don't belong to thread's offset/size area.
*/
open_zone_idx = pick_random_zone_idx(f, io_u);
assert(!open_zone_idx ||
open_zone_idx < f->zbd_info->num_open_zones);
tmp_idx = open_zone_idx;
for (i = 0; i < f->zbd_info->num_open_zones; i++) {
uint32_t tmpz;
if (tmp_idx >= f->zbd_info->num_open_zones)
tmp_idx = 0;
tmpz = f->zbd_info->open_zones[tmp_idx];
if (f->min_zone <= tmpz && tmpz < f->max_zone) {
open_zone_idx = tmp_idx;
goto found_candidate_zone;
}
tmp_idx++;
}
dprint(FD_ZBD, "%s(%s): no candidate zone\n",
__func__, f->file_name);
pthread_mutex_unlock(&f->zbd_info->mutex);
if (z->has_wp)
zone_unlock(z);
return NULL;
found_candidate_zone:
new_zone_idx = f->zbd_info->open_zones[open_zone_idx];
if (new_zone_idx == zone_idx)
break;
zone_idx = new_zone_idx;
pthread_mutex_unlock(&f->zbd_info->mutex);
if (z->has_wp)
zone_unlock(z);
}
/* Both z->mutex and f->zbd_info->mutex are held. */
examine_zone:
if (z->wp + min_bs <= zbd_zone_capacity_end(z)) {
pthread_mutex_unlock(&f->zbd_info->mutex);
goto out;
}
open_other_zone:
/* Check if number of open zones reaches one of limits. */
wait_zone_close =
f->zbd_info->num_open_zones == f->max_zone - f->min_zone ||
(td->o.max_open_zones &&
f->zbd_info->num_open_zones == td->o.max_open_zones) ||
(td->o.job_max_open_zones &&
td->num_open_zones == td->o.job_max_open_zones);
pthread_mutex_unlock(&f->zbd_info->mutex);
/* Only z->mutex is held. */
/*
* When number of open zones reaches to one of limits, wait for
* zone close before opening a new zone.
*/
if (wait_zone_close) {
dprint(FD_ZBD, "%s(%s): quiesce to allow open zones to close\n",
__func__, f->file_name);
io_u_quiesce(td);
}
/* Zone 'z' is full, so try to open a new zone. */
for (i = f->io_size / f->zbd_info->zone_size; i > 0; i--) {
zone_idx++;
if (z->has_wp)
zone_unlock(z);
z++;
if (!is_valid_offset(f, z->start)) {
/* Wrap-around. */
zone_idx = f->min_zone;
z = get_zone(f, zone_idx);
}
assert(is_valid_offset(f, z->start));
if (!z->has_wp)
continue;
zone_lock(td, f, z);
if (z->open)
continue;
if (zbd_open_zone(td, f, zone_idx))
goto out;
}
/* Only z->mutex is held. */
/* Check whether the write fits in any of the already opened zones. */
pthread_mutex_lock(&f->zbd_info->mutex);
for (i = 0; i < f->zbd_info->num_open_zones; i++) {
zone_idx = f->zbd_info->open_zones[i];
if (zone_idx < f->min_zone || zone_idx >= f->max_zone)
continue;
pthread_mutex_unlock(&f->zbd_info->mutex);
zone_unlock(z);
z = get_zone(f, zone_idx);
zone_lock(td, f, z);
if (z->wp + min_bs <= zbd_zone_capacity_end(z))
goto out;
pthread_mutex_lock(&f->zbd_info->mutex);
}
pthread_mutex_unlock(&f->zbd_info->mutex);
zone_unlock(z);
dprint(FD_ZBD, "%s(%s): did not open another zone\n", __func__,
f->file_name);
return NULL;
out:
dprint(FD_ZBD, "%s(%s): returning zone %d\n", __func__, f->file_name,
zone_idx);
io_u->offset = z->start;
assert(z->has_wp);
assert(z->cond != ZBD_ZONE_COND_OFFLINE);
return z;
}
/* The caller must hold z->mutex. */
static struct fio_zone_info *zbd_replay_write_order(struct thread_data *td,
struct io_u *io_u,
struct fio_zone_info *z)
{
const struct fio_file *f = io_u->file;
const uint32_t min_bs = td->o.min_bs[DDIR_WRITE];
if (!zbd_open_zone(td, f, zbd_zone_nr(f, z))) {
zone_unlock(z);
z = zbd_convert_to_open_zone(td, io_u);
assert(z);
}
if (z->verify_block * min_bs >= z->capacity) {
log_err("%s: %d * %d >= %llu\n", f->file_name, z->verify_block,
min_bs, (unsigned long long)z->capacity);
/*
* If the assertion below fails during a test run, adding
* "--experimental_verify=1" to the command line may help.
*/
assert(false);
}
io_u->offset = z->start + z->verify_block * min_bs;
if (io_u->offset + io_u->buflen >= zbd_zone_capacity_end(z)) {
log_err("%s: %llu + %llu >= %llu\n", f->file_name, io_u->offset,
io_u->buflen, (unsigned long long) zbd_zone_capacity_end(z));
assert(false);
}
z->verify_block += io_u->buflen / min_bs;
return z;
}
/*
* Find another zone for which @io_u fits in the readable data in the zone.
* Search in zones @zb + 1 .. @zl. For random workload, also search in zones
* @zb - 1 .. @zf.
*
* Either returns NULL or returns a zone pointer. When the zone has write
* pointer, hold the mutex for the zone.
*/
static struct fio_zone_info *
zbd_find_zone(struct thread_data *td, struct io_u *io_u,
struct fio_zone_info *zb, struct fio_zone_info *zl)
{
const uint32_t min_bs = td->o.min_bs[io_u->ddir];
struct fio_file *f = io_u->file;
struct fio_zone_info *z1, *z2;
const struct fio_zone_info *const zf = get_zone(f, f->min_zone);
/*
* Skip to the next non-empty zone in case of sequential I/O and to
* the nearest non-empty zone in case of random I/O.
*/
for (z1 = zb + 1, z2 = zb - 1; z1 < zl || z2 >= zf; z1++, z2--) {
if (z1 < zl && z1->cond != ZBD_ZONE_COND_OFFLINE) {
if (z1->has_wp)
zone_lock(td, f, z1);
if (z1->start + min_bs <= z1->wp)
return z1;
if (z1->has_wp)
zone_unlock(z1);
} else if (!td_random(td)) {
break;
}
if (td_random(td) && z2 >= zf &&
z2->cond != ZBD_ZONE_COND_OFFLINE) {
if (z2->has_wp)
zone_lock(td, f, z2);
if (z2->start + min_bs <= z2->wp)
return z2;
if (z2->has_wp)
zone_unlock(z2);
}
}
dprint(FD_ZBD, "%s: adjusting random read offset failed\n",
f->file_name);
return NULL;
}
/**
* zbd_end_zone_io - update zone status at command completion
* @io_u: I/O unit
* @z: zone info pointer
*
* If the write command made the zone full, close it.
*
* The caller must hold z->mutex.
*/
static void zbd_end_zone_io(struct thread_data *td, const struct io_u *io_u,
struct fio_zone_info *z)
{
const struct fio_file *f = io_u->file;
if (io_u->ddir == DDIR_WRITE &&
io_u->offset + io_u->buflen >= zbd_zone_capacity_end(z)) {
pthread_mutex_lock(&f->zbd_info->mutex);
zbd_close_zone(td, f, zbd_zone_nr(f, z));
pthread_mutex_unlock(&f->zbd_info->mutex);
}
}
/**
* zbd_queue_io - update the write pointer of a sequential zone
* @io_u: I/O unit
* @success: Whether or not the I/O unit has been queued successfully
* @q: queueing status (busy, completed or queued).
*
* For write and trim operations, update the write pointer of the I/O unit
* target zone.
*/
static void zbd_queue_io(struct thread_data *td, struct io_u *io_u, int q,
bool success)
{
const struct fio_file *f = io_u->file;
struct zoned_block_device_info *zbd_info = f->zbd_info;
struct fio_zone_info *z;
uint32_t zone_idx;
uint64_t zone_end;
if (!zbd_info)
return;
zone_idx = zbd_zone_idx(f, io_u->offset);
assert(zone_idx < zbd_info->nr_zones);
z = get_zone(f, zone_idx);
assert(z->has_wp);
if (!success)
goto unlock;
dprint(FD_ZBD,
"%s: queued I/O (%lld, %llu) for zone %u\n",
f->file_name, io_u->offset, io_u->buflen, zone_idx);
switch (io_u->ddir) {
case DDIR_WRITE:
zone_end = min((uint64_t)(io_u->offset + io_u->buflen),
zbd_zone_capacity_end(z));
pthread_mutex_lock(&zbd_info->mutex);
/*
* z->wp > zone_end means that one or more I/O errors
* have occurred.
*/
if (z->wp <= zone_end) {
zbd_info->sectors_with_data += zone_end - z->wp;
zbd_info->wp_sectors_with_data += zone_end - z->wp;
}
pthread_mutex_unlock(&zbd_info->mutex);
z->wp = zone_end;
break;
case DDIR_TRIM:
assert(z->wp == z->start);
break;
default:
break;
}
if (q == FIO_Q_COMPLETED && !io_u->error)
zbd_end_zone_io(td, io_u, z);
unlock:
if (!success || q != FIO_Q_QUEUED) {
/* BUSY or COMPLETED: unlock the zone */
zone_unlock(z);
io_u->zbd_put_io = NULL;
}
}
/**
* zbd_put_io - Unlock an I/O unit target zone lock
* @io_u: I/O unit
*/
static void zbd_put_io(struct thread_data *td, const struct io_u *io_u)
{
const struct fio_file *f = io_u->file;
struct zoned_block_device_info *zbd_info = f->zbd_info;
struct fio_zone_info *z;
uint32_t zone_idx;
if (!zbd_info)
return;
zone_idx = zbd_zone_idx(f, io_u->offset);
assert(zone_idx < zbd_info->nr_zones);
z = get_zone(f, zone_idx);
assert(z->has_wp);
dprint(FD_ZBD,
"%s: terminate I/O (%lld, %llu) for zone %u\n",
f->file_name, io_u->offset, io_u->buflen, zone_idx);
zbd_end_zone_io(td, io_u, z);
zone_unlock(z);
zbd_check_swd(td, f);
}
/*
* Windows and MacOS do not define this.
*/
#ifndef EREMOTEIO
#define EREMOTEIO 121 /* POSIX value */
#endif
bool zbd_unaligned_write(int error_code)
{
switch (error_code) {
case EIO:
case EREMOTEIO:
return true;
}
return false;
}
/**
* setup_zbd_zone_mode - handle zoneskip as necessary for ZBD drives
* @td: FIO thread data.
* @io_u: FIO I/O unit.
*
* For sequential workloads, change the file offset to skip zoneskip bytes when
* no more IO can be performed in the current zone.
* - For read workloads, zoneskip is applied when the io has reached the end of
* the zone or the zone write position (when td->o.read_beyond_wp is false).
* - For write workloads, zoneskip is applied when the zone is full.
* This applies only to read and write operations.
*/
void setup_zbd_zone_mode(struct thread_data *td, struct io_u *io_u)
{
struct fio_file *f = io_u->file;
enum fio_ddir ddir = io_u->ddir;
struct fio_zone_info *z;
uint32_t zone_idx;
assert(td->o.zone_mode == ZONE_MODE_ZBD);
assert(td->o.zone_size);
zone_idx = zbd_zone_idx(f, f->last_pos[ddir]);
z = get_zone(f, zone_idx);
/*
* When the zone capacity is smaller than the zone size and the I/O is
* sequential write, skip to zone end if the latest position is at the
* zone capacity limit.
*/
if (z->capacity < f->zbd_info->zone_size && !td_random(td) &&
ddir == DDIR_WRITE &&
f->last_pos[ddir] >= zbd_zone_capacity_end(z)) {
dprint(FD_ZBD,
"%s: Jump from zone capacity limit to zone end:"
" (%llu -> %llu) for zone %u (%llu)\n",
f->file_name, (unsigned long long) f->last_pos[ddir],
(unsigned long long) zbd_zone_end(z), zone_idx,
(unsigned long long) z->capacity);
td->io_skip_bytes += zbd_zone_end(z) - f->last_pos[ddir];
f->last_pos[ddir] = zbd_zone_end(z);
}
/*
* zone_skip is valid only for sequential workloads.
*/
if (td_random(td) || !td->o.zone_skip)
return;
/*
* It is time to switch to a new zone if:
* - zone_bytes == zone_size bytes have already been accessed
* - The last position reached the end of the current zone.
* - For reads with td->o.read_beyond_wp == false, the last position
* reached the zone write pointer.
*/
if (td->zone_bytes >= td->o.zone_size ||
f->last_pos[ddir] >= zbd_zone_end(z) ||
(ddir == DDIR_READ &&
(!td->o.read_beyond_wp) && f->last_pos[ddir] >= z->wp)) {
/*
* Skip zones.
*/
td->zone_bytes = 0;
f->file_offset += td->o.zone_size + td->o.zone_skip;
/*
* Wrap from the beginning, if we exceed the file size
*/
if (f->file_offset >= f->real_file_size)
f->file_offset = get_start_offset(td, f);
f->last_pos[ddir] = f->file_offset;
td->io_skip_bytes += td->o.zone_skip;
}
}
/**
* zbd_adjust_ddir - Adjust an I/O direction for zonemode=zbd.
*
* @td: FIO thread data.
* @io_u: FIO I/O unit.
* @ddir: I/O direction before adjustment.
*
* Return adjusted I/O direction.
*/
enum fio_ddir zbd_adjust_ddir(struct thread_data *td, struct io_u *io_u,
enum fio_ddir ddir)
{
/*
* In case read direction is chosen for the first random I/O, fio with
* zonemode=zbd stops because no data can be read from zoned block
* devices with all empty zones. Overwrite the first I/O direction as
* write to make sure data to read exists.
*/
if (ddir != DDIR_READ || !td_rw(td))
return ddir;
if (io_u->file->zbd_info->sectors_with_data ||
td->o.read_beyond_wp)
return DDIR_READ;
return DDIR_WRITE;
}
/**
* zbd_adjust_block - adjust the offset and length as necessary for ZBD drives
* @td: FIO thread data.
* @io_u: FIO I/O unit.
*
* Locking strategy: returns with z->mutex locked if and only if z refers
* to a sequential zone and if io_u_accept is returned. z is the zone that
* corresponds to io_u->offset at the end of this function.
*/
enum io_u_action zbd_adjust_block(struct thread_data *td, struct io_u *io_u)
{
struct fio_file *f = io_u->file;
uint32_t zone_idx_b;
struct fio_zone_info *zb, *zl, *orig_zb;
uint32_t orig_len = io_u->buflen;
uint32_t min_bs = td->o.min_bs[io_u->ddir];
uint64_t new_len;
int64_t range;
if (!f->zbd_info)
return io_u_accept;
assert(min_bs);
assert(is_valid_offset(f, io_u->offset));
assert(io_u->buflen);
zone_idx_b = zbd_zone_idx(f, io_u->offset);
zb = get_zone(f, zone_idx_b);
orig_zb = zb;
if (!zb->has_wp) {
/* Accept non-write I/Os for conventional zones. */
if (io_u->ddir != DDIR_WRITE)
return io_u_accept;
/*
* Make sure that writes to conventional zones
* don't cross over to any sequential zones.
*/
if (!(zb + 1)->has_wp ||
io_u->offset + io_u->buflen <= (zb + 1)->start)
return io_u_accept;
if (io_u->offset + min_bs > (zb + 1)->start) {
dprint(FD_IO,
"%s: off=%llu + min_bs=%u > next zone %llu\n",
f->file_name, io_u->offset,
min_bs, (unsigned long long) (zb + 1)->start);
io_u->offset = zb->start + (zb + 1)->start - io_u->offset;
new_len = min(io_u->buflen, (zb + 1)->start - io_u->offset);
} else {
new_len = (zb + 1)->start - io_u->offset;
}
io_u->buflen = new_len / min_bs * min_bs;
return io_u_accept;
}
/*
* Accept the I/O offset for reads if reading beyond the write pointer
* is enabled.
*/
if (zb->cond != ZBD_ZONE_COND_OFFLINE &&
io_u->ddir == DDIR_READ && td->o.read_beyond_wp)
return io_u_accept;
zbd_check_swd(td, f);
zone_lock(td, f, zb);
switch (io_u->ddir) {
case DDIR_READ:
if (td->runstate == TD_VERIFYING && td_write(td)) {
zb = zbd_replay_write_order(td, io_u, zb);
goto accept;
}
/*
* Check that there is enough written data in the zone to do an
* I/O of at least min_bs B. If there isn't, find a new zone for
* the I/O.
*/
range = zb->cond != ZBD_ZONE_COND_OFFLINE ?
zb->wp - zb->start : 0;
if (range < min_bs ||
((!td_random(td)) && (io_u->offset + min_bs > zb->wp))) {
zone_unlock(zb);
zl = get_zone(f, f->max_zone);
zb = zbd_find_zone(td, io_u, zb, zl);
if (!zb) {
dprint(FD_ZBD,
"%s: zbd_find_zone(%lld, %llu) failed\n",
f->file_name, io_u->offset,
io_u->buflen);
goto eof;
}
/*
* zbd_find_zone() returned a zone with a range of at
* least min_bs.
*/
range = zb->wp - zb->start;
assert(range >= min_bs);
if (!td_random(td))
io_u->offset = zb->start;
}
/*
* Make sure the I/O is within the zone valid data range while
* maximizing the I/O size and preserving randomness.
*/
if (range <= io_u->buflen)
io_u->offset = zb->start;
else if (td_random(td))
io_u->offset = zb->start +
((io_u->offset - orig_zb->start) %
(range - io_u->buflen)) / min_bs * min_bs;
/*
* When zbd_find_zone() returns a conventional zone,
* we can simply accept the new i/o offset here.
*/
if (!zb->has_wp)
return io_u_accept;
/*
* Make sure the I/O does not cross over the zone wp position.
*/
new_len = min((unsigned long long)io_u->buflen,
(unsigned long long)(zb->wp - io_u->offset));
new_len = new_len / min_bs * min_bs;
if (new_len < io_u->buflen) {
io_u->buflen = new_len;
dprint(FD_IO, "Changed length from %u into %llu\n",
orig_len, io_u->buflen);
}
assert(zb->start <= io_u->offset);
assert(io_u->offset + io_u->buflen <= zb->wp);
goto accept;
case DDIR_WRITE:
if (io_u->buflen > f->zbd_info->zone_size) {
td_verror(td, EINVAL, "I/O buflen exceeds zone size");
dprint(FD_IO,
"%s: I/O buflen %llu exceeds zone size %llu\n",
f->file_name, io_u->buflen,
(unsigned long long) f->zbd_info->zone_size);
goto eof;
}
if (!zbd_open_zone(td, f, zone_idx_b)) {
zone_unlock(zb);
zb = zbd_convert_to_open_zone(td, io_u);
if (!zb) {
dprint(FD_IO, "%s: can't convert to open zone",
f->file_name);
goto eof;
}
zone_idx_b = zbd_zone_nr(f, zb);
}
/* Check whether the zone reset threshold has been exceeded */
if (td->o.zrf.u.f) {
if (f->zbd_info->wp_sectors_with_data >=
f->io_size * td->o.zrt.u.f &&
zbd_dec_and_reset_write_cnt(td, f)) {
zb->reset_zone = 1;
}
}
/* Reset the zone pointer if necessary */
if (zb->reset_zone || zbd_zone_full(f, zb, min_bs)) {
assert(td->o.verify == VERIFY_NONE);
/*
* Since previous write requests may have been submitted
* asynchronously and since we will submit the zone
* reset synchronously, wait until previously submitted
* write requests have completed before issuing a
* zone reset.
*/
io_u_quiesce(td);
zb->reset_zone = 0;
if (zbd_reset_zone(td, f, zb) < 0)
goto eof;
if (zb->capacity < min_bs) {
td_verror(td, EINVAL, "ZCAP is less min_bs");
log_err("zone capacity %llu smaller than minimum block size %d\n",
(unsigned long long)zb->capacity,
min_bs);
goto eof;
}
}
/* Make writes occur at the write pointer */
assert(!zbd_zone_full(f, zb, min_bs));
io_u->offset = zb->wp;
if (!is_valid_offset(f, io_u->offset)) {
td_verror(td, EINVAL, "invalid WP value");
dprint(FD_ZBD, "%s: dropped request with offset %llu\n",
f->file_name, io_u->offset);
goto eof;
}
/*
* Make sure that the buflen is a multiple of the minimal
* block size. Give up if shrinking would make the request too
* small.
*/
new_len = min((unsigned long long)io_u->buflen,
zbd_zone_capacity_end(zb) - io_u->offset);
new_len = new_len / min_bs * min_bs;
if (new_len == io_u->buflen)
goto accept;
if (new_len >= min_bs) {
io_u->buflen = new_len;
dprint(FD_IO, "Changed length from %u into %llu\n",
orig_len, io_u->buflen);
goto accept;
}
td_verror(td, EIO, "zone remainder too small");
log_err("zone remainder %lld smaller than min block size %d\n",
(zbd_zone_capacity_end(zb) - io_u->offset), min_bs);
goto eof;
case DDIR_TRIM:
/* fall-through */
case DDIR_SYNC:
case DDIR_DATASYNC:
case DDIR_SYNC_FILE_RANGE:
case DDIR_WAIT:
case DDIR_LAST:
case DDIR_INVAL:
goto accept;
}
assert(false);
accept:
assert(zb->has_wp);
assert(zb->cond != ZBD_ZONE_COND_OFFLINE);
assert(!io_u->zbd_queue_io);
assert(!io_u->zbd_put_io);
io_u->zbd_queue_io = zbd_queue_io;
io_u->zbd_put_io = zbd_put_io;
/*
* Since we return with the zone lock still held,
* add an annotation to let Coverity know that it
* is intentional.
*/
/* coverity[missing_unlock] */
return io_u_accept;
eof:
if (zb && zb->has_wp)
zone_unlock(zb);
return io_u_eof;
}
/* Return a string with ZBD statistics */
char *zbd_write_status(const struct thread_stat *ts)
{
char *res;
if (asprintf(&res, "; %llu zone resets", (unsigned long long) ts->nr_zone_resets) < 0)
return NULL;
return res;
}