blob: 52b4ca7e1c83e8feda885a8d3d84219f5f784190 [file] [log] [blame]
/*
* fio - the flexible io tester
*
* Copyright (C) 2005 Jens Axboe <axboe@suse.de>
* Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
*
* The license below covers all files distributed with fio unless otherwise
* noted in the file itself.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include <unistd.h>
#include <string.h>
#include <signal.h>
#include <assert.h>
#include <inttypes.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <math.h>
#include <pthread.h>
#include "fio.h"
#include "smalloc.h"
#include "verify.h"
#include "diskutil.h"
#include "cgroup.h"
#include "profile.h"
#include "lib/rand.h"
#include "lib/memalign.h"
#include "server.h"
#include "lib/getrusage.h"
#include "idletime.h"
#include "err.h"
#include "workqueue.h"
#include "lib/mountcheck.h"
#include "rate-submit.h"
#include "helper_thread.h"
#include "pshared.h"
#include "zone-dist.h"
static struct fio_sem *startup_sem;
static struct flist_head *cgroup_list;
static struct cgroup_mnt *cgroup_mnt;
static int exit_value;
static volatile bool fio_abort;
static unsigned int nr_process = 0;
static unsigned int nr_thread = 0;
struct io_log *agg_io_log[DDIR_RWDIR_CNT];
int groupid = 0;
unsigned int thread_number = 0;
unsigned int nr_segments = 0;
unsigned int cur_segment = 0;
unsigned int stat_number = 0;
int temp_stall_ts;
unsigned long done_secs = 0;
#ifdef PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP
pthread_mutex_t overlap_check = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
#else
pthread_mutex_t overlap_check = PTHREAD_MUTEX_INITIALIZER;
#endif
#define JOB_START_TIMEOUT (5 * 1000)
static void sig_int(int sig)
{
if (nr_segments) {
if (is_backend)
fio_server_got_signal(sig);
else {
log_info("\nfio: terminating on signal %d\n", sig);
log_info_flush();
exit_value = 128;
}
fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
}
}
void sig_show_status(int sig)
{
show_running_run_stats();
}
static void set_sig_handlers(void)
{
struct sigaction act;
memset(&act, 0, sizeof(act));
act.sa_handler = sig_int;
act.sa_flags = SA_RESTART;
sigaction(SIGINT, &act, NULL);
memset(&act, 0, sizeof(act));
act.sa_handler = sig_int;
act.sa_flags = SA_RESTART;
sigaction(SIGTERM, &act, NULL);
/* Windows uses SIGBREAK as a quit signal from other applications */
#ifdef WIN32
memset(&act, 0, sizeof(act));
act.sa_handler = sig_int;
act.sa_flags = SA_RESTART;
sigaction(SIGBREAK, &act, NULL);
#endif
memset(&act, 0, sizeof(act));
act.sa_handler = sig_show_status;
act.sa_flags = SA_RESTART;
sigaction(SIGUSR1, &act, NULL);
if (is_backend) {
memset(&act, 0, sizeof(act));
act.sa_handler = sig_int;
act.sa_flags = SA_RESTART;
sigaction(SIGPIPE, &act, NULL);
}
}
/*
* Check if we are above the minimum rate given.
*/
static bool __check_min_rate(struct thread_data *td, struct timespec *now,
enum fio_ddir ddir)
{
unsigned long long bytes = 0;
unsigned long iops = 0;
unsigned long spent;
unsigned long long rate;
unsigned long long ratemin = 0;
unsigned int rate_iops = 0;
unsigned int rate_iops_min = 0;
assert(ddir_rw(ddir));
if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
return false;
/*
* allow a 2 second settle period in the beginning
*/
if (mtime_since(&td->start, now) < 2000)
return false;
iops += td->this_io_blocks[ddir];
bytes += td->this_io_bytes[ddir];
ratemin += td->o.ratemin[ddir];
rate_iops += td->o.rate_iops[ddir];
rate_iops_min += td->o.rate_iops_min[ddir];
/*
* if rate blocks is set, sample is running
*/
if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
spent = mtime_since(&td->lastrate[ddir], now);
if (spent < td->o.ratecycle)
return false;
if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
/*
* check bandwidth specified rate
*/
if (bytes < td->rate_bytes[ddir]) {
log_err("%s: rate_min=%lluB/s not met, only transferred %lluB\n",
td->o.name, ratemin, bytes);
return true;
} else {
if (spent)
rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
else
rate = 0;
if (rate < ratemin ||
bytes < td->rate_bytes[ddir]) {
log_err("%s: rate_min=%lluB/s not met, got %lluB/s\n",
td->o.name, ratemin, rate);
return true;
}
}
} else {
/*
* checks iops specified rate
*/
if (iops < rate_iops) {
log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
td->o.name, rate_iops, iops);
return true;
} else {
if (spent)
rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
else
rate = 0;
if (rate < rate_iops_min ||
iops < td->rate_blocks[ddir]) {
log_err("%s: rate_iops_min=%u not met, got %llu IOPS\n",
td->o.name, rate_iops_min, rate);
return true;
}
}
}
}
td->rate_bytes[ddir] = bytes;
td->rate_blocks[ddir] = iops;
memcpy(&td->lastrate[ddir], now, sizeof(*now));
return false;
}
static bool check_min_rate(struct thread_data *td, struct timespec *now)
{
bool ret = false;
for_each_rw_ddir(ddir) {
if (td->bytes_done[ddir])
ret |= __check_min_rate(td, now, ddir);
}
return ret;
}
/*
* When job exits, we can cancel the in-flight IO if we are using async
* io. Attempt to do so.
*/
static void cleanup_pending_aio(struct thread_data *td)
{
int r;
/*
* get immediately available events, if any
*/
r = io_u_queued_complete(td, 0);
/*
* now cancel remaining active events
*/
if (td->io_ops->cancel) {
struct io_u *io_u;
int i;
io_u_qiter(&td->io_u_all, io_u, i) {
if (io_u->flags & IO_U_F_FLIGHT) {
r = td->io_ops->cancel(td, io_u);
if (!r)
put_io_u(td, io_u);
}
}
}
if (td->cur_depth)
r = io_u_queued_complete(td, td->cur_depth);
}
/*
* Helper to handle the final sync of a file. Works just like the normal
* io path, just does everything sync.
*/
static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
{
struct io_u *io_u = __get_io_u(td);
enum fio_q_status ret;
if (!io_u)
return true;
io_u->ddir = DDIR_SYNC;
io_u->file = f;
io_u_set(td, io_u, IO_U_F_NO_FILE_PUT);
if (td_io_prep(td, io_u)) {
put_io_u(td, io_u);
return true;
}
requeue:
ret = td_io_queue(td, io_u);
switch (ret) {
case FIO_Q_QUEUED:
td_io_commit(td);
if (io_u_queued_complete(td, 1) < 0)
return true;
break;
case FIO_Q_COMPLETED:
if (io_u->error) {
td_verror(td, io_u->error, "td_io_queue");
return true;
}
if (io_u_sync_complete(td, io_u) < 0)
return true;
break;
case FIO_Q_BUSY:
td_io_commit(td);
goto requeue;
}
return false;
}
static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
{
int ret, ret2;
if (fio_file_open(f))
return fio_io_sync(td, f);
if (td_io_open_file(td, f))
return 1;
ret = fio_io_sync(td, f);
ret2 = 0;
if (fio_file_open(f))
ret2 = td_io_close_file(td, f);
return (ret || ret2);
}
static inline void __update_ts_cache(struct thread_data *td)
{
fio_gettime(&td->ts_cache, NULL);
}
static inline void update_ts_cache(struct thread_data *td)
{
if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
__update_ts_cache(td);
}
static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
{
if (in_ramp_time(td))
return false;
if (!td->o.timeout)
return false;
if (utime_since(&td->epoch, t) >= td->o.timeout)
return true;
return false;
}
/*
* We need to update the runtime consistently in ms, but keep a running
* tally of the current elapsed time in microseconds for sub millisecond
* updates.
*/
static inline void update_runtime(struct thread_data *td,
unsigned long long *elapsed_us,
const enum fio_ddir ddir)
{
if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
return;
td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
elapsed_us[ddir] += utime_since_now(&td->start);
td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
}
static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
int *retptr)
{
int ret = *retptr;
if (ret < 0 || td->error) {
int err = td->error;
enum error_type_bit eb;
if (ret < 0)
err = -ret;
eb = td_error_type(ddir, err);
if (!(td->o.continue_on_error & (1 << eb)))
return true;
if (td_non_fatal_error(td, eb, err)) {
/*
* Continue with the I/Os in case of
* a non fatal error.
*/
update_error_count(td, err);
td_clear_error(td);
*retptr = 0;
return false;
} else if (td->o.fill_device && err == ENOSPC) {
/*
* We expect to hit this error if
* fill_device option is set.
*/
td_clear_error(td);
fio_mark_td_terminate(td);
return true;
} else {
/*
* Stop the I/O in case of a fatal
* error.
*/
update_error_count(td, err);
return true;
}
}
return false;
}
static void check_update_rusage(struct thread_data *td)
{
if (td->update_rusage) {
td->update_rusage = 0;
update_rusage_stat(td);
fio_sem_up(td->rusage_sem);
}
}
static int wait_for_completions(struct thread_data *td, struct timespec *time)
{
const int full = queue_full(td);
int min_evts = 0;
int ret;
if (td->flags & TD_F_REGROW_LOGS)
return io_u_quiesce(td);
/*
* if the queue is full, we MUST reap at least 1 event
*/
min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
min_evts = 1;
if (time && should_check_rate(td))
fio_gettime(time, NULL);
do {
ret = io_u_queued_complete(td, min_evts);
if (ret < 0)
break;
} while (full && (td->cur_depth > td->o.iodepth_low));
return ret;
}
int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
struct timespec *comp_time)
{
switch (*ret) {
case FIO_Q_COMPLETED:
if (io_u->error) {
*ret = -io_u->error;
clear_io_u(td, io_u);
} else if (io_u->resid) {
long long bytes = io_u->xfer_buflen - io_u->resid;
struct fio_file *f = io_u->file;
if (bytes_issued)
*bytes_issued += bytes;
if (!from_verify)
trim_io_piece(io_u);
/*
* zero read, fail
*/
if (!bytes) {
if (!from_verify)
unlog_io_piece(td, io_u);
td_verror(td, EIO, "full resid");
put_io_u(td, io_u);
break;
}
io_u->xfer_buflen = io_u->resid;
io_u->xfer_buf += bytes;
io_u->offset += bytes;
if (ddir_rw(io_u->ddir))
td->ts.short_io_u[io_u->ddir]++;
if (io_u->offset == f->real_file_size)
goto sync_done;
requeue_io_u(td, &io_u);
} else {
sync_done:
if (comp_time && should_check_rate(td))
fio_gettime(comp_time, NULL);
*ret = io_u_sync_complete(td, io_u);
if (*ret < 0)
break;
}
if (td->flags & TD_F_REGROW_LOGS)
regrow_logs(td);
/*
* when doing I/O (not when verifying),
* check for any errors that are to be ignored
*/
if (!from_verify)
break;
return 0;
case FIO_Q_QUEUED:
/*
* if the engine doesn't have a commit hook,
* the io_u is really queued. if it does have such
* a hook, it has to call io_u_queued() itself.
*/
if (td->io_ops->commit == NULL)
io_u_queued(td, io_u);
if (bytes_issued)
*bytes_issued += io_u->xfer_buflen;
break;
case FIO_Q_BUSY:
if (!from_verify)
unlog_io_piece(td, io_u);
requeue_io_u(td, &io_u);
td_io_commit(td);
break;
default:
assert(*ret < 0);
td_verror(td, -(*ret), "td_io_queue");
break;
}
if (break_on_this_error(td, ddir, ret))
return 1;
return 0;
}
static inline bool io_in_polling(struct thread_data *td)
{
return !td->o.iodepth_batch_complete_min &&
!td->o.iodepth_batch_complete_max;
}
/*
* Unlinks files from thread data fio_file structure
*/
static int unlink_all_files(struct thread_data *td)
{
struct fio_file *f;
unsigned int i;
int ret = 0;
for_each_file(td, f, i) {
if (f->filetype != FIO_TYPE_FILE)
continue;
ret = td_io_unlink_file(td, f);
if (ret)
break;
}
if (ret)
td_verror(td, ret, "unlink_all_files");
return ret;
}
/*
* Check if io_u will overlap an in-flight IO in the queue
*/
bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
{
bool overlap;
struct io_u *check_io_u;
unsigned long long x1, x2, y1, y2;
int i;
x1 = io_u->offset;
x2 = io_u->offset + io_u->buflen;
overlap = false;
io_u_qiter(q, check_io_u, i) {
if (check_io_u->flags & IO_U_F_FLIGHT) {
y1 = check_io_u->offset;
y2 = check_io_u->offset + check_io_u->buflen;
if (x1 < y2 && y1 < x2) {
overlap = true;
dprint(FD_IO, "in-flight overlap: %llu/%llu, %llu/%llu\n",
x1, io_u->buflen,
y1, check_io_u->buflen);
break;
}
}
}
return overlap;
}
static enum fio_q_status io_u_submit(struct thread_data *td, struct io_u *io_u)
{
/*
* Check for overlap if the user asked us to, and we have
* at least one IO in flight besides this one.
*/
if (td->o.serialize_overlap && td->cur_depth > 1 &&
in_flight_overlap(&td->io_u_all, io_u))
return FIO_Q_BUSY;
return td_io_queue(td, io_u);
}
/*
* The main verify engine. Runs over the writes we previously submitted,
* reads the blocks back in, and checks the crc/md5 of the data.
*/
static void do_verify(struct thread_data *td, uint64_t verify_bytes)
{
struct fio_file *f;
struct io_u *io_u;
int ret, min_events;
unsigned int i;
dprint(FD_VERIFY, "starting loop\n");
/*
* sync io first and invalidate cache, to make sure we really
* read from disk.
*/
for_each_file(td, f, i) {
if (!fio_file_open(f))
continue;
if (fio_io_sync(td, f))
break;
if (file_invalidate_cache(td, f))
break;
}
check_update_rusage(td);
if (td->error)
return;
/*
* verify_state needs to be reset before verification
* proceeds so that expected random seeds match actual
* random seeds in headers. The main loop will reset
* all random number generators if randrepeat is set.
*/
if (!td->o.rand_repeatable)
td_fill_verify_state_seed(td);
td_set_runstate(td, TD_VERIFYING);
io_u = NULL;
while (!td->terminate) {
enum fio_ddir ddir;
int full;
update_ts_cache(td);
check_update_rusage(td);
if (runtime_exceeded(td, &td->ts_cache)) {
__update_ts_cache(td);
if (runtime_exceeded(td, &td->ts_cache)) {
fio_mark_td_terminate(td);
break;
}
}
if (flow_threshold_exceeded(td))
continue;
if (!td->o.experimental_verify) {
io_u = __get_io_u(td);
if (!io_u)
break;
if (get_next_verify(td, io_u)) {
put_io_u(td, io_u);
break;
}
if (td_io_prep(td, io_u)) {
put_io_u(td, io_u);
break;
}
} else {
if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
break;
while ((io_u = get_io_u(td)) != NULL) {
if (IS_ERR_OR_NULL(io_u)) {
io_u = NULL;
ret = FIO_Q_BUSY;
goto reap;
}
/*
* We are only interested in the places where
* we wrote or trimmed IOs. Turn those into
* reads for verification purposes.
*/
if (io_u->ddir == DDIR_READ) {
/*
* Pretend we issued it for rwmix
* accounting
*/
td->io_issues[DDIR_READ]++;
put_io_u(td, io_u);
continue;
} else if (io_u->ddir == DDIR_TRIM) {
io_u->ddir = DDIR_READ;
io_u_set(td, io_u, IO_U_F_TRIMMED);
break;
} else if (io_u->ddir == DDIR_WRITE) {
io_u->ddir = DDIR_READ;
populate_verify_io_u(td, io_u);
break;
} else {
put_io_u(td, io_u);
continue;
}
}
if (!io_u)
break;
}
if (verify_state_should_stop(td, io_u)) {
put_io_u(td, io_u);
break;
}
if (td->o.verify_async)
io_u->end_io = verify_io_u_async;
else
io_u->end_io = verify_io_u;
ddir = io_u->ddir;
if (!td->o.disable_slat)
fio_gettime(&io_u->start_time, NULL);
ret = io_u_submit(td, io_u);
if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
break;
/*
* if we can queue more, do so. but check if there are
* completed io_u's first. Note that we can get BUSY even
* without IO queued, if the system is resource starved.
*/
reap:
full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
if (full || io_in_polling(td))
ret = wait_for_completions(td, NULL);
if (ret < 0)
break;
}
check_update_rusage(td);
if (!td->error) {
min_events = td->cur_depth;
if (min_events)
ret = io_u_queued_complete(td, min_events);
} else
cleanup_pending_aio(td);
td_set_runstate(td, TD_RUNNING);
dprint(FD_VERIFY, "exiting loop\n");
}
static bool exceeds_number_ios(struct thread_data *td)
{
unsigned long long number_ios;
if (!td->o.number_ios)
return false;
number_ios = ddir_rw_sum(td->io_blocks);
number_ios += td->io_u_queued + td->io_u_in_flight;
return number_ios >= (td->o.number_ios * td->loops);
}
static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
{
unsigned long long bytes, limit;
if (td_rw(td))
bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
else if (td_write(td))
bytes = this_bytes[DDIR_WRITE];
else if (td_read(td))
bytes = this_bytes[DDIR_READ];
else
bytes = this_bytes[DDIR_TRIM];
if (td->o.io_size)
limit = td->o.io_size;
else
limit = td->o.size;
limit *= td->loops;
return bytes >= limit || exceeds_number_ios(td);
}
static bool io_issue_bytes_exceeded(struct thread_data *td)
{
return io_bytes_exceeded(td, td->io_issue_bytes);
}
static bool io_complete_bytes_exceeded(struct thread_data *td)
{
return io_bytes_exceeded(td, td->this_io_bytes);
}
/*
* used to calculate the next io time for rate control
*
*/
static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
{
uint64_t bps = td->rate_bps[ddir];
assert(!(td->flags & TD_F_CHILD));
if (td->o.rate_process == RATE_PROCESS_POISSON) {
uint64_t val, iops;
iops = bps / td->o.bs[ddir];
val = (int64_t) (1000000 / iops) *
-logf(__rand_0_1(&td->poisson_state[ddir]));
if (val) {
dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
(unsigned long long) 1000000 / val,
ddir);
}
td->last_usec[ddir] += val;
return td->last_usec[ddir];
} else if (bps) {
uint64_t bytes = td->rate_io_issue_bytes[ddir];
uint64_t secs = bytes / bps;
uint64_t remainder = bytes % bps;
return remainder * 1000000 / bps + secs * 1000000;
}
return 0;
}
static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir,
struct timespec *time)
{
unsigned long long b;
uint64_t total;
int left;
b = ddir_rw_sum(td->thinktime_blocks_counter);
if (b % td->o.thinktime_blocks || !b)
return;
io_u_quiesce(td);
total = 0;
if (td->o.thinktime_spin)
total = usec_spin(td->o.thinktime_spin);
left = td->o.thinktime - total;
if (left)
total += usec_sleep(td, left);
/*
* If we're ignoring thinktime for the rate, add the number of bytes
* we would have done while sleeping, minus one block to ensure we
* start issuing immediately after the sleep.
*/
if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
uint64_t bs = td->o.min_bs[ddir];
uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
uint64_t over;
if (usperop <= total)
over = bs;
else
over = (usperop - total) / usperop * -bs;
td->rate_io_issue_bytes[ddir] += (missed - over);
/* adjust for rate_process=poisson */
td->last_usec[ddir] += total;
}
if (time && should_check_rate(td))
fio_gettime(time, NULL);
}
/*
* Main IO worker function. It retrieves io_u's to process and queues
* and reaps them, checking for rate and errors along the way.
*
* Returns number of bytes written and trimmed.
*/
static void do_io(struct thread_data *td, uint64_t *bytes_done)
{
unsigned int i;
int ret = 0;
uint64_t total_bytes, bytes_issued = 0;
for (i = 0; i < DDIR_RWDIR_CNT; i++)
bytes_done[i] = td->bytes_done[i];
if (in_ramp_time(td))
td_set_runstate(td, TD_RAMP);
else
td_set_runstate(td, TD_RUNNING);
lat_target_init(td);
total_bytes = td->o.size;
/*
* Allow random overwrite workloads to write up to io_size
* before starting verification phase as 'size' doesn't apply.
*/
if (td_write(td) && td_random(td) && td->o.norandommap)
total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
/*
* If verify_backlog is enabled, we'll run the verify in this
* handler as well. For that case, we may need up to twice the
* amount of bytes.
*/
if (td->o.verify != VERIFY_NONE &&
(td_write(td) && td->o.verify_backlog))
total_bytes += td->o.size;
/* In trimwrite mode, each byte is trimmed and then written, so
* allow total_bytes to be twice as big */
if (td_trimwrite(td))
total_bytes += td->total_io_size;
while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
(!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
td->o.time_based) {
struct timespec comp_time;
struct io_u *io_u;
int full;
enum fio_ddir ddir;
check_update_rusage(td);
if (td->terminate || td->done)
break;
update_ts_cache(td);
if (runtime_exceeded(td, &td->ts_cache)) {
__update_ts_cache(td);
if (runtime_exceeded(td, &td->ts_cache)) {
fio_mark_td_terminate(td);
break;
}
}
if (flow_threshold_exceeded(td))
continue;
/*
* Break if we exceeded the bytes. The exception is time
* based runs, but we still need to break out of the loop
* for those to run verification, if enabled.
* Jobs read from iolog do not use this stop condition.
*/
if (bytes_issued >= total_bytes &&
!td->o.read_iolog_file &&
(!td->o.time_based ||
(td->o.time_based && td->o.verify != VERIFY_NONE)))
break;
io_u = get_io_u(td);
if (IS_ERR_OR_NULL(io_u)) {
int err = PTR_ERR(io_u);
io_u = NULL;
ddir = DDIR_INVAL;
if (err == -EBUSY) {
ret = FIO_Q_BUSY;
goto reap;
}
if (td->o.latency_target)
goto reap;
break;
}
if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY)
populate_verify_io_u(td, io_u);
ddir = io_u->ddir;
/*
* Add verification end_io handler if:
* - Asked to verify (!td_rw(td))
* - Or the io_u is from our verify list (mixed write/ver)
*/
if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
if (verify_state_should_stop(td, io_u)) {
put_io_u(td, io_u);
break;
}
if (td->o.verify_async)
io_u->end_io = verify_io_u_async;
else
io_u->end_io = verify_io_u;
td_set_runstate(td, TD_VERIFYING);
} else if (in_ramp_time(td))
td_set_runstate(td, TD_RAMP);
else
td_set_runstate(td, TD_RUNNING);
/*
* Always log IO before it's issued, so we know the specific
* order of it. The logged unit will track when the IO has
* completed.
*/
if (td_write(td) && io_u->ddir == DDIR_WRITE &&
td->o.do_verify &&
td->o.verify != VERIFY_NONE &&
!td->o.experimental_verify)
log_io_piece(td, io_u);
if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
const unsigned long long blen = io_u->xfer_buflen;
const enum fio_ddir __ddir = acct_ddir(io_u);
if (td->error)
break;
workqueue_enqueue(&td->io_wq, &io_u->work);
ret = FIO_Q_QUEUED;
if (ddir_rw(__ddir)) {
td->io_issues[__ddir]++;
td->io_issue_bytes[__ddir] += blen;
td->rate_io_issue_bytes[__ddir] += blen;
}
if (should_check_rate(td))
td->rate_next_io_time[__ddir] = usec_for_io(td, __ddir);
} else {
ret = io_u_submit(td, io_u);
if (should_check_rate(td))
td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
break;
/*
* See if we need to complete some commands. Note that
* we can get BUSY even without IO queued, if the
* system is resource starved.
*/
reap:
full = queue_full(td) ||
(ret == FIO_Q_BUSY && td->cur_depth);
if (full || io_in_polling(td))
ret = wait_for_completions(td, &comp_time);
}
if (ret < 0)
break;
if (ddir_rw(ddir) && td->o.thinktime)
handle_thinktime(td, ddir, &comp_time);
if (!ddir_rw_sum(td->bytes_done) &&
!td_ioengine_flagged(td, FIO_NOIO))
continue;
if (!in_ramp_time(td) && should_check_rate(td)) {
if (check_min_rate(td, &comp_time)) {
if (exitall_on_terminate || td->o.exitall_error)
fio_terminate_threads(td->groupid, td->o.exit_what);
td_verror(td, EIO, "check_min_rate");
break;
}
}
if (!in_ramp_time(td) && td->o.latency_target)
lat_target_check(td);
}
check_update_rusage(td);
if (td->trim_entries)
log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
if (td->o.fill_device && td->error == ENOSPC) {
td->error = 0;
fio_mark_td_terminate(td);
}
if (!td->error) {
struct fio_file *f;
if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
workqueue_flush(&td->io_wq);
i = 0;
} else
i = td->cur_depth;
if (i) {
ret = io_u_queued_complete(td, i);
if (td->o.fill_device && td->error == ENOSPC)
td->error = 0;
}
if (should_fsync(td) && (td->o.end_fsync || td->o.fsync_on_close)) {
td_set_runstate(td, TD_FSYNCING);
for_each_file(td, f, i) {
if (!fio_file_fsync(td, f))
continue;
log_err("fio: end_fsync failed for file %s\n",
f->file_name);
}
}
} else
cleanup_pending_aio(td);
/*
* stop job if we failed doing any IO
*/
if (!ddir_rw_sum(td->this_io_bytes))
td->done = 1;
for (i = 0; i < DDIR_RWDIR_CNT; i++)
bytes_done[i] = td->bytes_done[i] - bytes_done[i];
}
static void free_file_completion_logging(struct thread_data *td)
{
struct fio_file *f;
unsigned int i;
for_each_file(td, f, i) {
if (!f->last_write_comp)
break;
sfree(f->last_write_comp);
}
}
static int init_file_completion_logging(struct thread_data *td,
unsigned int depth)
{
struct fio_file *f;
unsigned int i;
if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
return 0;
for_each_file(td, f, i) {
f->last_write_comp = scalloc(depth, sizeof(uint64_t));
if (!f->last_write_comp)
goto cleanup;
}
return 0;
cleanup:
free_file_completion_logging(td);
log_err("fio: failed to alloc write comp data\n");
return 1;
}
static void cleanup_io_u(struct thread_data *td)
{
struct io_u *io_u;
while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
if (td->io_ops->io_u_free)
td->io_ops->io_u_free(td, io_u);
fio_memfree(io_u, sizeof(*io_u), td_offload_overlap(td));
}
free_io_mem(td);
io_u_rexit(&td->io_u_requeues);
io_u_qexit(&td->io_u_freelist, false);
io_u_qexit(&td->io_u_all, td_offload_overlap(td));
free_file_completion_logging(td);
}
static int init_io_u(struct thread_data *td)
{
struct io_u *io_u;
int cl_align, i, max_units;
int err;
max_units = td->o.iodepth;
err = 0;
err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth, false);
err += !io_u_qinit(&td->io_u_all, td->o.iodepth, td_offload_overlap(td));
if (err) {
log_err("fio: failed setting up IO queues\n");
return 1;
}
cl_align = os_cache_line_size();
for (i = 0; i < max_units; i++) {
void *ptr;
if (td->terminate)
return 1;
ptr = fio_memalign(cl_align, sizeof(*io_u), td_offload_overlap(td));
if (!ptr) {
log_err("fio: unable to allocate aligned memory\n");
return 1;
}
io_u = ptr;
memset(io_u, 0, sizeof(*io_u));
INIT_FLIST_HEAD(&io_u->verify_list);
dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
io_u->index = i;
io_u->flags = IO_U_F_FREE;
io_u_qpush(&td->io_u_freelist, io_u);
/*
* io_u never leaves this stack, used for iteration of all
* io_u buffers.
*/
io_u_qpush(&td->io_u_all, io_u);
if (td->io_ops->io_u_init) {
int ret = td->io_ops->io_u_init(td, io_u);
if (ret) {
log_err("fio: failed to init engine data: %d\n", ret);
return 1;
}
}
}
init_io_u_buffers(td);
if (init_file_completion_logging(td, max_units))
return 1;
return 0;
}
int init_io_u_buffers(struct thread_data *td)
{
struct io_u *io_u;
unsigned long long max_bs, min_write;
int i, max_units;
int data_xfer = 1;
char *p;
max_units = td->o.iodepth;
max_bs = td_max_bs(td);
min_write = td->o.min_bs[DDIR_WRITE];
td->orig_buffer_size = (unsigned long long) max_bs
* (unsigned long long) max_units;
if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
data_xfer = 0;
/*
* if we may later need to do address alignment, then add any
* possible adjustment here so that we don't cause a buffer
* overflow later. this adjustment may be too much if we get
* lucky and the allocator gives us an aligned address.
*/
if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
td_ioengine_flagged(td, FIO_RAWIO))
td->orig_buffer_size += page_mask + td->o.mem_align;
if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
unsigned long long bs;
bs = td->orig_buffer_size + td->o.hugepage_size - 1;
td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
}
if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
return 1;
}
if (data_xfer && allocate_io_mem(td))
return 1;
if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
td_ioengine_flagged(td, FIO_RAWIO))
p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
else
p = td->orig_buffer;
for (i = 0; i < max_units; i++) {
io_u = td->io_u_all.io_us[i];
dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
if (data_xfer) {
io_u->buf = p;
dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
if (td_write(td))
io_u_fill_buffer(td, io_u, min_write, max_bs);
if (td_write(td) && td->o.verify_pattern_bytes) {
/*
* Fill the buffer with the pattern if we are
* going to be doing writes.
*/
fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
}
}
p += max_bs;
}
return 0;
}
/*
* This function is Linux specific.
* FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
*/
static int switch_ioscheduler(struct thread_data *td)
{
#ifdef FIO_HAVE_IOSCHED_SWITCH
char tmp[256], tmp2[128], *p;
FILE *f;
int ret;
if (td_ioengine_flagged(td, FIO_DISKLESSIO))
return 0;
assert(td->files && td->files[0]);
sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
f = fopen(tmp, "r+");
if (!f) {
if (errno == ENOENT) {
log_err("fio: os or kernel doesn't support IO scheduler"
" switching\n");
return 0;
}
td_verror(td, errno, "fopen iosched");
return 1;
}
/*
* Set io scheduler.
*/
ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
if (ferror(f) || ret != 1) {
td_verror(td, errno, "fwrite");
fclose(f);
return 1;
}
rewind(f);
/*
* Read back and check that the selected scheduler is now the default.
*/
ret = fread(tmp, 1, sizeof(tmp) - 1, f);
if (ferror(f) || ret < 0) {
td_verror(td, errno, "fread");
fclose(f);
return 1;
}
tmp[ret] = '\0';
/*
* either a list of io schedulers or "none\n" is expected. Strip the
* trailing newline.
*/
p = tmp;
strsep(&p, "\n");
/*
* Write to "none" entry doesn't fail, so check the result here.
*/
if (!strcmp(tmp, "none")) {
log_err("fio: io scheduler is not tunable\n");
fclose(f);
return 0;
}
sprintf(tmp2, "[%s]", td->o.ioscheduler);
if (!strstr(tmp, tmp2)) {
log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
td_verror(td, EINVAL, "iosched_switch");
fclose(f);
return 1;
}
fclose(f);
return 0;
#else
return 0;
#endif
}
static bool keep_running(struct thread_data *td)
{
unsigned long long limit;
if (td->done)
return false;
if (td->terminate)
return false;
if (td->o.time_based)
return true;
if (td->o.loops) {
td->o.loops--;
return true;
}
if (exceeds_number_ios(td))
return false;
if (td->o.io_size)
limit = td->o.io_size;
else
limit = td->o.size;
if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
uint64_t diff;
/*
* If the difference is less than the maximum IO size, we
* are done.
*/
diff = limit - ddir_rw_sum(td->io_bytes);
if (diff < td_max_bs(td))
return false;
if (fio_files_done(td) && !td->o.io_size)
return false;
return true;
}
return false;
}
static int exec_string(struct thread_options *o, const char *string,
const char *mode)
{
int ret;
char *str;
if (asprintf(&str, "%s > %s.%s.txt 2>&1", string, o->name, mode) < 0)
return -1;
log_info("%s : Saving output of %s in %s.%s.txt\n", o->name, mode,
o->name, mode);
ret = system(str);
if (ret == -1)
log_err("fio: exec of cmd <%s> failed\n", str);
free(str);
return ret;
}
/*
* Dry run to compute correct state of numberio for verification.
*/
static uint64_t do_dry_run(struct thread_data *td)
{
td_set_runstate(td, TD_RUNNING);
while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
(!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
struct io_u *io_u;
int ret;
if (td->terminate || td->done)
break;
io_u = get_io_u(td);
if (IS_ERR_OR_NULL(io_u))
break;
io_u_set(td, io_u, IO_U_F_FLIGHT);
io_u->error = 0;
io_u->resid = 0;
if (ddir_rw(acct_ddir(io_u)))
td->io_issues[acct_ddir(io_u)]++;
if (ddir_rw(io_u->ddir)) {
io_u_mark_depth(td, 1);
td->ts.total_io_u[io_u->ddir]++;
}
if (td_write(td) && io_u->ddir == DDIR_WRITE &&
td->o.do_verify &&
td->o.verify != VERIFY_NONE &&
!td->o.experimental_verify)
log_io_piece(td, io_u);
ret = io_u_sync_complete(td, io_u);
(void) ret;
}
return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
}
struct fork_data {
struct thread_data *td;
struct sk_out *sk_out;
};
/*
* Entry point for the thread based jobs. The process based jobs end up
* here as well, after a little setup.
*/
static void *thread_main(void *data)
{
struct fork_data *fd = data;
unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
struct thread_data *td = fd->td;
struct thread_options *o = &td->o;
struct sk_out *sk_out = fd->sk_out;
uint64_t bytes_done[DDIR_RWDIR_CNT];
int deadlock_loop_cnt;
bool clear_state;
int res, ret;
sk_out_assign(sk_out);
free(fd);
if (!o->use_thread) {
setsid();
td->pid = getpid();
} else
td->pid = gettid();
fio_local_clock_init();
dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
if (is_backend)
fio_server_send_start(td);
INIT_FLIST_HEAD(&td->io_log_list);
INIT_FLIST_HEAD(&td->io_hist_list);
INIT_FLIST_HEAD(&td->verify_list);
INIT_FLIST_HEAD(&td->trim_list);
td->io_hist_tree = RB_ROOT;
ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
if (ret) {
td_verror(td, ret, "mutex_cond_init_pshared");
goto err;
}
ret = cond_init_pshared(&td->verify_cond);
if (ret) {
td_verror(td, ret, "mutex_cond_pshared");
goto err;
}
td_set_runstate(td, TD_INITIALIZED);
dprint(FD_MUTEX, "up startup_sem\n");
fio_sem_up(startup_sem);
dprint(FD_MUTEX, "wait on td->sem\n");
fio_sem_down(td->sem);
dprint(FD_MUTEX, "done waiting on td->sem\n");
/*
* A new gid requires privilege, so we need to do this before setting
* the uid.
*/
if (o->gid != -1U && setgid(o->gid)) {
td_verror(td, errno, "setgid");
goto err;
}
if (o->uid != -1U && setuid(o->uid)) {
td_verror(td, errno, "setuid");
goto err;
}
td_zone_gen_index(td);
/*
* Do this early, we don't want the compress threads to be limited
* to the same CPUs as the IO workers. So do this before we set
* any potential CPU affinity
*/
if (iolog_compress_init(td, sk_out))
goto err;
/*
* If we have a gettimeofday() thread, make sure we exclude that
* thread from this job
*/
if (o->gtod_cpu)
fio_cpu_clear(&o->cpumask, o->gtod_cpu);
/*
* Set affinity first, in case it has an impact on the memory
* allocations.
*/
if (fio_option_is_set(o, cpumask)) {
if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
if (!ret) {
log_err("fio: no CPUs set\n");
log_err("fio: Try increasing number of available CPUs\n");
td_verror(td, EINVAL, "cpus_split");
goto err;
}
}
ret = fio_setaffinity(td->pid, o->cpumask);
if (ret == -1) {
td_verror(td, errno, "cpu_set_affinity");
goto err;
}
}
#ifdef CONFIG_LIBNUMA
/* numa node setup */
if (fio_option_is_set(o, numa_cpunodes) ||
fio_option_is_set(o, numa_memnodes)) {
struct bitmask *mask;
if (numa_available() < 0) {
td_verror(td, errno, "Does not support NUMA API\n");
goto err;
}
if (fio_option_is_set(o, numa_cpunodes)) {
mask = numa_parse_nodestring(o->numa_cpunodes);
ret = numa_run_on_node_mask(mask);
numa_free_nodemask(mask);
if (ret == -1) {
td_verror(td, errno, \
"numa_run_on_node_mask failed\n");
goto err;
}
}
if (fio_option_is_set(o, numa_memnodes)) {
mask = NULL;
if (o->numa_memnodes)
mask = numa_parse_nodestring(o->numa_memnodes);
switch (o->numa_mem_mode) {
case MPOL_INTERLEAVE:
numa_set_interleave_mask(mask);
break;
case MPOL_BIND:
numa_set_membind(mask);
break;
case MPOL_LOCAL:
numa_set_localalloc();
break;
case MPOL_PREFERRED:
numa_set_preferred(o->numa_mem_prefer_node);
break;
case MPOL_DEFAULT:
default:
break;
}
if (mask)
numa_free_nodemask(mask);
}
}
#endif
if (fio_pin_memory(td))
goto err;
/*
* May alter parameters that init_io_u() will use, so we need to
* do this first.
*/
if (!init_iolog(td))
goto err;
if (td_io_init(td))
goto err;
if (init_io_u(td))
goto err;
if (td->io_ops->post_init && td->io_ops->post_init(td))
goto err;
if (o->verify_async && verify_async_init(td))
goto err;
if (fio_option_is_set(o, ioprio) ||
fio_option_is_set(o, ioprio_class)) {
ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
if (ret == -1) {
td_verror(td, errno, "ioprio_set");
goto err;
}
}
if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
goto err;
errno = 0;
if (nice(o->nice) == -1 && errno != 0) {
td_verror(td, errno, "nice");
goto err;
}
if (o->ioscheduler && switch_ioscheduler(td))
goto err;
if (!o->create_serialize && setup_files(td))
goto err;
if (!init_random_map(td))
goto err;
if (o->exec_prerun && exec_string(o, o->exec_prerun, "prerun"))
goto err;
if (o->pre_read && !pre_read_files(td))
goto err;
fio_verify_init(td);
if (rate_submit_init(td, sk_out))
goto err;
if (td->o.thinktime_blocks_type == THINKTIME_BLOCKS_TYPE_COMPLETE)
td->thinktime_blocks_counter = td->io_blocks;
else
td->thinktime_blocks_counter = td->io_issues;
set_epoch_time(td, o->log_unix_epoch);
fio_getrusage(&td->ru_start);
memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
o->ratemin[DDIR_TRIM]) {
memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
sizeof(td->bw_sample_time));
memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
sizeof(td->bw_sample_time));
memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
sizeof(td->bw_sample_time));
}
memset(bytes_done, 0, sizeof(bytes_done));
clear_state = false;
while (keep_running(td)) {
uint64_t verify_bytes;
fio_gettime(&td->start, NULL);
memcpy(&td->ts_cache, &td->start, sizeof(td->start));
if (clear_state) {
clear_io_state(td, 0);
if (o->unlink_each_loop && unlink_all_files(td))
break;
}
prune_io_piece_log(td);
if (td->o.verify_only && td_write(td))
verify_bytes = do_dry_run(td);
else {
do_io(td, bytes_done);
if (!ddir_rw_sum(bytes_done)) {
fio_mark_td_terminate(td);
verify_bytes = 0;
} else {
verify_bytes = bytes_done[DDIR_WRITE] +
bytes_done[DDIR_TRIM];
}
}
/*
* If we took too long to shut down, the main thread could
* already consider us reaped/exited. If that happens, break
* out and clean up.
*/
if (td->runstate >= TD_EXITED)
break;
clear_state = true;
/*
* Make sure we've successfully updated the rusage stats
* before waiting on the stat mutex. Otherwise we could have
* the stat thread holding stat mutex and waiting for
* the rusage_sem, which would never get upped because
* this thread is waiting for the stat mutex.
*/
deadlock_loop_cnt = 0;
do {
check_update_rusage(td);
if (!fio_sem_down_trylock(stat_sem))
break;
usleep(1000);
if (deadlock_loop_cnt++ > 5000) {
log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
td->error = EDEADLK;
goto err;
}
} while (1);
if (td_read(td) && td->io_bytes[DDIR_READ])
update_runtime(td, elapsed_us, DDIR_READ);
if (td_write(td) && td->io_bytes[DDIR_WRITE])
update_runtime(td, elapsed_us, DDIR_WRITE);
if (td_trim(td) && td->io_bytes[DDIR_TRIM])
update_runtime(td, elapsed_us, DDIR_TRIM);
fio_gettime(&td->start, NULL);
fio_sem_up(stat_sem);
if (td->error || td->terminate)
break;
if (!o->do_verify ||
o->verify == VERIFY_NONE ||
td_ioengine_flagged(td, FIO_UNIDIR))
continue;
clear_io_state(td, 0);
fio_gettime(&td->start, NULL);
do_verify(td, verify_bytes);
/*
* See comment further up for why this is done here.
*/
check_update_rusage(td);
fio_sem_down(stat_sem);
update_runtime(td, elapsed_us, DDIR_READ);
fio_gettime(&td->start, NULL);
fio_sem_up(stat_sem);
if (td->error || td->terminate)
break;
}
/*
* Acquire this lock if we were doing overlap checking in
* offload mode so that we don't clean up this job while
* another thread is checking its io_u's for overlap
*/
if (td_offload_overlap(td)) {
int res = pthread_mutex_lock(&overlap_check);
assert(res == 0);
}
td_set_runstate(td, TD_FINISHING);
if (td_offload_overlap(td)) {
res = pthread_mutex_unlock(&overlap_check);
assert(res == 0);
}
update_rusage_stat(td);
td->ts.total_run_time = mtime_since_now(&td->epoch);
for_each_rw_ddir(ddir) {
td->ts.io_bytes[ddir] = td->io_bytes[ddir];
}
if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
(td->o.verify != VERIFY_NONE && td_write(td)))
verify_save_state(td->thread_number);
fio_unpin_memory(td);
td_writeout_logs(td, true);
iolog_compress_exit(td);
rate_submit_exit(td);
if (o->exec_postrun)
exec_string(o, o->exec_postrun, "postrun");
if (exitall_on_terminate || (o->exitall_error && td->error))
fio_terminate_threads(td->groupid, td->o.exit_what);
err:
if (td->error)
log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
td->verror);
if (o->verify_async)
verify_async_exit(td);
close_and_free_files(td);
cleanup_io_u(td);
close_ioengine(td);
cgroup_shutdown(td, cgroup_mnt);
verify_free_state(td);
td_zone_free_index(td);
if (fio_option_is_set(o, cpumask)) {
ret = fio_cpuset_exit(&o->cpumask);
if (ret)
td_verror(td, ret, "fio_cpuset_exit");
}
/*
* do this very late, it will log file closing as well
*/
if (o->write_iolog_file)
write_iolog_close(td);
if (td->io_log_rfile)
fclose(td->io_log_rfile);
td_set_runstate(td, TD_EXITED);
/*
* Do this last after setting our runstate to exited, so we
* know that the stat thread is signaled.
*/
check_update_rusage(td);
sk_out_drop();
return (void *) (uintptr_t) td->error;
}
/*
* Run over the job map and reap the threads that have exited, if any.
*/
static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
uint64_t *m_rate)
{
struct thread_data *td;
unsigned int cputhreads, realthreads, pending;
int i, status, ret;
/*
* reap exited threads (TD_EXITED -> TD_REAPED)
*/
realthreads = pending = cputhreads = 0;
for_each_td(td, i) {
int flags = 0;
if (!strcmp(td->o.ioengine, "cpuio"))
cputhreads++;
else
realthreads++;
if (!td->pid) {
pending++;
continue;
}
if (td->runstate == TD_REAPED)
continue;
if (td->o.use_thread) {
if (td->runstate == TD_EXITED) {
td_set_runstate(td, TD_REAPED);
goto reaped;
}
continue;
}
flags = WNOHANG;
if (td->runstate == TD_EXITED)
flags = 0;
/*
* check if someone quit or got killed in an unusual way
*/
ret = waitpid(td->pid, &status, flags);
if (ret < 0) {
if (errno == ECHILD) {
log_err("fio: pid=%d disappeared %d\n",
(int) td->pid, td->runstate);
td->sig = ECHILD;
td_set_runstate(td, TD_REAPED);
goto reaped;
}
perror("waitpid");
} else if (ret == td->pid) {
if (WIFSIGNALED(status)) {
int sig = WTERMSIG(status);
if (sig != SIGTERM && sig != SIGUSR2)
log_err("fio: pid=%d, got signal=%d\n",
(int) td->pid, sig);
td->sig = sig;
td_set_runstate(td, TD_REAPED);
goto reaped;
}
if (WIFEXITED(status)) {
if (WEXITSTATUS(status) && !td->error)
td->error = WEXITSTATUS(status);
td_set_runstate(td, TD_REAPED);
goto reaped;
}
}
/*
* If the job is stuck, do a forceful timeout of it and
* move on.
*/
if (td->terminate &&
td->runstate < TD_FSYNCING &&
time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
log_err("fio: job '%s' (state=%d) hasn't exited in "
"%lu seconds, it appears to be stuck. Doing "
"forceful exit of this job.\n",
td->o.name, td->runstate,
(unsigned long) time_since_now(&td->terminate_time));
td_set_runstate(td, TD_REAPED);
goto reaped;
}
/*
* thread is not dead, continue
*/
pending++;
continue;
reaped:
(*nr_running)--;
(*m_rate) -= ddir_rw_sum(td->o.ratemin);
(*t_rate) -= ddir_rw_sum(td->o.rate);
if (!td->pid)
pending--;
if (td->error)
exit_value++;
done_secs += mtime_since_now(&td->epoch) / 1000;
profile_td_exit(td);
flow_exit_job(td);
}
if (*nr_running == cputhreads && !pending && realthreads)
fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
}
static bool __check_trigger_file(void)
{
struct stat sb;
if (!trigger_file)
return false;
if (stat(trigger_file, &sb))
return false;
if (unlink(trigger_file) < 0)
log_err("fio: failed to unlink %s: %s\n", trigger_file,
strerror(errno));
return true;
}
static bool trigger_timedout(void)
{
if (trigger_timeout)
if (time_since_genesis() >= trigger_timeout) {
trigger_timeout = 0;
return true;
}
return false;
}
void exec_trigger(const char *cmd)
{
int ret;
if (!cmd || cmd[0] == '\0')
return;
ret = system(cmd);
if (ret == -1)
log_err("fio: failed executing %s trigger\n", cmd);
}
void check_trigger_file(void)
{
if (__check_trigger_file() || trigger_timedout()) {
if (nr_clients)
fio_clients_send_trigger(trigger_remote_cmd);
else {
verify_save_state(IO_LIST_ALL);
fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
exec_trigger(trigger_cmd);
}
}
}
static int fio_verify_load_state(struct thread_data *td)
{
int ret;
if (!td->o.verify_state)
return 0;
if (is_backend) {
void *data;
ret = fio_server_get_verify_state(td->o.name,
td->thread_number - 1, &data);
if (!ret)
verify_assign_state(td, data);
} else {
char prefix[PATH_MAX];
if (aux_path)
sprintf(prefix, "%s%clocal", aux_path,
FIO_OS_PATH_SEPARATOR);
else
strcpy(prefix, "local");
ret = verify_load_state(td, prefix);
}
return ret;
}
static void do_usleep(unsigned int usecs)
{
check_for_running_stats();
check_trigger_file();
usleep(usecs);
}
static bool check_mount_writes(struct thread_data *td)
{
struct fio_file *f;
unsigned int i;
if (!td_write(td) || td->o.allow_mounted_write)
return false;
/*
* If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
* are mkfs'd and mounted.
*/
for_each_file(td, f, i) {
#ifdef FIO_HAVE_CHARDEV_SIZE
if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
#else
if (f->filetype != FIO_TYPE_BLOCK)
#endif
continue;
if (device_is_mounted(f->file_name))
goto mounted;
}
return false;
mounted:
log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
return true;
}
static bool waitee_running(struct thread_data *me)
{
const char *waitee = me->o.wait_for;
const char *self = me->o.name;
struct thread_data *td;
int i;
if (!waitee)
return false;
for_each_td(td, i) {
if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
continue;
if (td->runstate < TD_EXITED) {
dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
self, td->o.name,
runstate_to_name(td->runstate));
return true;
}
}
dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
return false;
}
/*
* Main function for kicking off and reaping jobs, as needed.
*/
static void run_threads(struct sk_out *sk_out)
{
struct thread_data *td;
unsigned int i, todo, nr_running, nr_started;
uint64_t m_rate, t_rate;
uint64_t spent;
if (fio_gtod_offload && fio_start_gtod_thread())
return;
fio_idle_prof_init();
set_sig_handlers();
nr_thread = nr_process = 0;
for_each_td(td, i) {
if (check_mount_writes(td))
return;
if (td->o.use_thread)
nr_thread++;
else
nr_process++;
}
if (output_format & FIO_OUTPUT_NORMAL) {
struct buf_output out;
buf_output_init(&out);
__log_buf(&out, "Starting ");
if (nr_thread)
__log_buf(&out, "%d thread%s", nr_thread,
nr_thread > 1 ? "s" : "");
if (nr_process) {
if (nr_thread)
__log_buf(&out, " and ");
__log_buf(&out, "%d process%s", nr_process,
nr_process > 1 ? "es" : "");
}
__log_buf(&out, "\n");
log_info_buf(out.buf, out.buflen);
buf_output_free(&out);
}
todo = thread_number;
nr_running = 0;
nr_started = 0;
m_rate = t_rate = 0;
for_each_td(td, i) {
print_status_init(td->thread_number - 1);
if (!td->o.create_serialize)
continue;
if (fio_verify_load_state(td))
goto reap;
/*
* do file setup here so it happens sequentially,
* we don't want X number of threads getting their
* client data interspersed on disk
*/
if (setup_files(td)) {
reap:
exit_value++;
if (td->error)
log_err("fio: pid=%d, err=%d/%s\n",
(int) td->pid, td->error, td->verror);
td_set_runstate(td, TD_REAPED);
todo--;
} else {
struct fio_file *f;
unsigned int j;
/*
* for sharing to work, each job must always open
* its own files. so close them, if we opened them
* for creation
*/
for_each_file(td, f, j) {
if (fio_file_open(f))
td_io_close_file(td, f);
}
}
}
/* start idle threads before io threads start to run */
fio_idle_prof_start();
set_genesis_time();
while (todo) {
struct thread_data *map[REAL_MAX_JOBS];
struct timespec this_start;
int this_jobs = 0, left;
struct fork_data *fd;
/*
* create threads (TD_NOT_CREATED -> TD_CREATED)
*/
for_each_td(td, i) {
if (td->runstate != TD_NOT_CREATED)
continue;
/*
* never got a chance to start, killed by other
* thread for some reason
*/
if (td->terminate) {
todo--;
continue;
}
if (td->o.start_delay) {
spent = utime_since_genesis();
if (td->o.start_delay > spent)
continue;
}
if (td->o.stonewall && (nr_started || nr_running)) {
dprint(FD_PROCESS, "%s: stonewall wait\n",
td->o.name);
break;
}
if (waitee_running(td)) {
dprint(FD_PROCESS, "%s: waiting for %s\n",
td->o.name, td->o.wait_for);
continue;
}
init_disk_util(td);
td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
td->update_rusage = 0;
/*
* Set state to created. Thread will transition
* to TD_INITIALIZED when it's done setting up.
*/
td_set_runstate(td, TD_CREATED);
map[this_jobs++] = td;
nr_started++;
fd = calloc(1, sizeof(*fd));
fd->td = td;
fd->sk_out = sk_out;
if (td->o.use_thread) {
int ret;
dprint(FD_PROCESS, "will pthread_create\n");
ret = pthread_create(&td->thread, NULL,
thread_main, fd);
if (ret) {
log_err("pthread_create: %s\n",
strerror(ret));
free(fd);
nr_started--;
break;
}
fd = NULL;
ret = pthread_detach(td->thread);
if (ret)
log_err("pthread_detach: %s",
strerror(ret));
} else {
pid_t pid;
dprint(FD_PROCESS, "will fork\n");
pid = fork();
if (!pid) {
int ret;
ret = (int)(uintptr_t)thread_main(fd);
_exit(ret);
} else if (i == fio_debug_jobno)
*fio_debug_jobp = pid;
}
dprint(FD_MUTEX, "wait on startup_sem\n");
if (fio_sem_down_timeout(startup_sem, 10000)) {
log_err("fio: job startup hung? exiting.\n");
fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
fio_abort = true;
nr_started--;
free(fd);
break;
}
dprint(FD_MUTEX, "done waiting on startup_sem\n");
}
/*
* Wait for the started threads to transition to
* TD_INITIALIZED.
*/
fio_gettime(&this_start, NULL);
left = this_jobs;
while (left && !fio_abort) {
if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
break;
do_usleep(100000);
for (i = 0; i < this_jobs; i++) {
td = map[i];
if (!td)
continue;
if (td->runstate == TD_INITIALIZED) {
map[i] = NULL;
left--;
} else if (td->runstate >= TD_EXITED) {
map[i] = NULL;
left--;
todo--;
nr_running++; /* work-around... */
}
}
}
if (left) {
log_err("fio: %d job%s failed to start\n", left,
left > 1 ? "s" : "");
for (i = 0; i < this_jobs; i++) {
td = map[i];
if (!td)
continue;
kill(td->pid, SIGTERM);
}
break;
}
/*
* start created threads (TD_INITIALIZED -> TD_RUNNING).
*/
for_each_td(td, i) {
if (td->runstate != TD_INITIALIZED)
continue;
if (in_ramp_time(td))
td_set_runstate(td, TD_RAMP);
else
td_set_runstate(td, TD_RUNNING);
nr_running++;
nr_started--;
m_rate += ddir_rw_sum(td->o.ratemin);
t_rate += ddir_rw_sum(td->o.rate);
todo--;
fio_sem_up(td->sem);
}
reap_threads(&nr_running, &t_rate, &m_rate);
if (todo)
do_usleep(100000);
}
while (nr_running) {
reap_threads(&nr_running, &t_rate, &m_rate);
do_usleep(10000);
}
fio_idle_prof_stop();
update_io_ticks();
}
static void free_disk_util(void)
{
disk_util_prune_entries();
helper_thread_destroy();
}
int fio_backend(struct sk_out *sk_out)
{
struct thread_data *td;
int i;
if (exec_profile) {
if (load_profile(exec_profile))
return 1;
free(exec_profile);
exec_profile = NULL;
}
if (!thread_number)
return 0;
if (write_bw_log) {
struct log_params p = {
.log_type = IO_LOG_TYPE_BW,
};
setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
}
startup_sem = fio_sem_init(FIO_SEM_LOCKED);
if (!sk_out)
is_local_backend = true;
if (startup_sem == NULL)
return 1;
set_genesis_time();
stat_init();
if (helper_thread_create(startup_sem, sk_out))
log_err("fio: failed to create helper thread\n");
cgroup_list = smalloc(sizeof(*cgroup_list));
if (cgroup_list)
INIT_FLIST_HEAD(cgroup_list);
run_threads(sk_out);
helper_thread_exit();
if (!fio_abort) {
__show_run_stats();
if (write_bw_log) {
for (i = 0; i < DDIR_RWDIR_CNT; i++) {
struct io_log *log = agg_io_log[i];
flush_log(log, false);
free_log(log);
}
}
}
for_each_td(td, i) {
steadystate_free(td);
fio_options_free(td);
fio_dump_options_free(td);
if (td->rusage_sem) {
fio_sem_remove(td->rusage_sem);
td->rusage_sem = NULL;
}
fio_sem_remove(td->sem);
td->sem = NULL;
}
free_disk_util();
if (cgroup_list) {
cgroup_kill(cgroup_list);
sfree(cgroup_list);
}
fio_sem_remove(startup_sem);
stat_exit();
return exit_value;
}