blob: a74d9206f2344ed653bb6f540b247e69342f615b [file] [log] [blame]
/*
* Carry out arithmetic to explore conversion of CPU clock ticks to nsec
*
* When we use the CPU clock for timing, we do the following:
*
* 1) Calibrate the CPU clock to relate the frequency of CPU clock ticks
* to actual time.
*
* Using gettimeofday() or clock_gettime(), count how many CPU clock
* ticks occur per usec
*
* 2) Calculate conversion factors so that we can ultimately convert
* from clocks ticks to nsec with
* nsec = (ticks * clock_mult) >> clock_shift
*
* This is equivalent to
* nsec = ticks * (MULTIPLIER / cycles_per_nsec) / MULTIPLIER
* where
* clock_mult = MULTIPLIER / cycles_per_nsec
* MULTIPLIER = 2^clock_shift
*
* It would be simpler to just calculate nsec = ticks / cycles_per_nsec,
* but all of this is necessary because of rounding when calculating
* cycles_per_nsec. With a 3.0GHz CPU, cycles_per_nsec would simply
* be 3. But with a 3.33GHz CPU or a 4.5GHz CPU, the fractional
* portion is lost with integer arithmetic.
*
* This multiply and shift calculation also has a performance benefit
* as multiplication and bit shift operations are faster than integer
* division.
*
* 3) Dynamically determine clock_shift and clock_mult at run time based
* on MAX_CLOCK_SEC and cycles_per_usec. MAX_CLOCK_SEC is the maximum
* duration for which the conversion will be valid.
*
* The primary constraint is that (ticks * clock_mult) must not overflow
* when ticks is at its maximum value.
*
* So we have
* max_ticks = MAX_CLOCK_SEC * 1000000000 * cycles_per_nsec
* max_ticks * clock_mult <= ULLONG_MAX
* max_ticks * MULTIPLIER / cycles_per_nsec <= ULLONG_MAX
* MULTIPLIER <= ULLONG_MAX * cycles_per_nsec / max_ticks
*
* Then choose the largest clock_shift that satisfies
* 2^clock_shift <= ULLONG_MAX * cycles_per_nsec / max_ticks
*
* Finally calculate the appropriate clock_mult associated with clock_shift
* clock_mult = 2^clock_shift / cycles_per_nsec
*
* 4) In the code below we have cycles_per_usec and use
* cycles_per_nsec = cycles_per_usec / 1000
*
*
* The code below implements 4 clock tick to nsec conversion strategies
*
* i) 64-bit arithmetic for the (ticks * clock_mult) product with the
* conversion valid for at most MAX_CLOCK_SEC
*
* ii) NOT IMPLEMENTED Use 64-bit integers to emulate 128-bit multiplication
* for the (ticks * clock_mult) product
*
* iii) 64-bit arithmetic with clock ticks to nsec conversion occurring in
* two stages. The first stage counts the number of discrete, large chunks
* of time that have elapsed. To this is added the time represented by
* the remaining clock ticks. The advantage of this strategy is better
* accuracy because the (ticks * clock_mult) product used for final
* fractional chunk
*
* iv) 64-bit arithmetic with the clock ticks to nsec conversion occuring in
* two stages. This is carried out using locks to update the number of
* large time chunks (MAX_CLOCK_SEC_2STAGE) that have elapsed.
*
* v) 128-bit arithmetic used for the clock ticks to nsec conversion.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <assert.h>
#include <stdlib.h>
#include "lib/seqlock.h"
#define DEBUG 0
#define MAX_CLOCK_SEC 365*24*60*60ULL
#define MAX_CLOCK_SEC_2STAGE 60*60ULL
#define dprintf(...) if (DEBUG) { printf(__VA_ARGS__); }
enum {
__CLOCK64_BIT = 1 << 0,
__CLOCK128_BIT = 1 << 1,
__CLOCK_MULT_SHIFT = 1 << 2,
__CLOCK_EMULATE_128 = 1 << 3,
__CLOCK_2STAGE = 1 << 4,
__CLOCK_LOCK = 1 << 5,
CLOCK64_MULT_SHIFT = __CLOCK64_BIT | __CLOCK_MULT_SHIFT,
CLOCK64_EMULATE_128 = __CLOCK64_BIT | __CLOCK_EMULATE_128,
CLOCK64_2STAGE = __CLOCK64_BIT | __CLOCK_2STAGE,
CLOCK64_LOCK = __CLOCK64_BIT | __CLOCK_LOCK,
CLOCK128_MULT_SHIFT = __CLOCK128_BIT | __CLOCK_MULT_SHIFT,
};
static struct seqlock clock_seqlock;
static unsigned long long cycles_start;
static unsigned long long elapsed_nsec;
static unsigned int max_cycles_shift;
static unsigned long long max_cycles_mask;
static unsigned long long nsecs_for_max_cycles;
static unsigned int clock_shift;
static unsigned long long clock_mult;
static unsigned long long *nsecs;
static unsigned long long clock_mult64_128[2];
static __uint128_t clock_mult128;
/*
* Functions for carrying out 128-bit
* arithmetic using 64-bit integers
*
* 128-bit integers are stored as
* arrays of two 64-bit integers
*
* Ordering is little endian
*
* a[0] has the less significant bits
* a[1] has the more significant bits
*
* NOT FULLY IMPLEMENTED
*/
static void do_mult(unsigned long long a[2], unsigned long long b,
unsigned long long product[2])
{
product[0] = product[1] = 0;
return;
}
static void do_div(unsigned long long a[2], unsigned long long b,
unsigned long long c[2])
{
return;
}
static void do_shift64(unsigned long long a[2], unsigned int count)
{
a[0] = a[1] >> (count-64);
a[1] = 0;
}
static void do_shift(unsigned long long a[2], unsigned int count)
{
if (count > 64)
do_shift64(a, count);
else {
while (count--) {
a[0] >>= 1;
a[0] |= a[1] << 63;
a[1] >>= 1;
}
}
}
static void update_clock(unsigned long long t)
{
write_seqlock_begin(&clock_seqlock);
elapsed_nsec = (t >> max_cycles_shift) * nsecs_for_max_cycles;
cycles_start = t & ~max_cycles_mask;
write_seqlock_end(&clock_seqlock);
}
static unsigned long long _get_nsec(int mode, unsigned long long t)
{
switch(mode) {
case CLOCK64_MULT_SHIFT:
return (t * clock_mult) >> clock_shift;
case CLOCK64_EMULATE_128: {
unsigned long long product[2] = { };
do_mult(clock_mult64_128, t, product);
do_shift(product, clock_shift);
return product[0];
}
case CLOCK64_2STAGE: {
unsigned long long multiples, nsec;
multiples = t >> max_cycles_shift;
dprintf("multiples=%llu\n", multiples);
nsec = multiples * nsecs_for_max_cycles;
nsec += ((t & max_cycles_mask) * clock_mult) >> clock_shift;
return nsec;
}
case CLOCK64_LOCK: {
unsigned int seq;
unsigned long long nsec;
do {
seq = read_seqlock_begin(&clock_seqlock);
nsec = elapsed_nsec;
nsec += ((t - cycles_start) * clock_mult) >> clock_shift;
} while (read_seqlock_retry(&clock_seqlock, seq));
return nsec;
}
case CLOCK128_MULT_SHIFT:
return (unsigned long long)((t * clock_mult128) >> clock_shift);
default:
assert(0);
}
}
static unsigned long long get_nsec(int mode, unsigned long long t)
{
if (mode == CLOCK64_LOCK) {
update_clock(t);
}
return _get_nsec(mode, t);
}
static void calc_mult_shift(int mode, void *mult, unsigned int *shift,
unsigned long long max_sec,
unsigned long long cycles_per_usec)
{
unsigned long long max_ticks;
max_ticks = max_sec * cycles_per_usec * 1000000ULL;
switch (mode) {
case CLOCK64_MULT_SHIFT: {
unsigned long long max_mult, tmp;
unsigned int sft = 0;
/*
* Calculate the largest multiplier that will not
* produce a 64-bit overflow in the multiplication
* step of the clock ticks to nsec conversion
*/
max_mult = ULLONG_MAX / max_ticks;
dprintf("max_ticks=%llu, __builtin_clzll=%d, max_mult=%llu\n", max_ticks, __builtin_clzll(max_ticks), max_mult);
/*
* Find the largest shift count that will produce
* a multiplier less than max_mult
*/
tmp = max_mult * cycles_per_usec / 1000;
while (tmp > 1) {
tmp >>= 1;
sft++;
dprintf("tmp=%llu, sft=%u\n", tmp, sft);
}
*shift = sft;
*((unsigned long long *)mult) = (unsigned long long) ((1ULL << sft) * 1000 / cycles_per_usec);
break;
}
case CLOCK64_EMULATE_128: {
unsigned long long max_mult[2], tmp[2] = { };
unsigned int sft = 0;
/*
* Calculate the largest multiplier that will not
* produce a 128-bit overflow in the multiplication
* step of the clock ticks to nsec conversion,
* but use only 64-bit integers in the process
*/
max_mult[0] = max_mult[1] = ULLONG_MAX;
do_div(max_mult, max_ticks, max_mult);
dprintf("max_ticks=%llu, __builtin_clzll=%d, max_mult=0x%016llx%016llx\n",
max_ticks, __builtin_clzll(max_ticks), max_mult[1], max_mult[0]);
/*
* Find the largest shift count that will produce
* a multiplier less than max_mult
*/
do_div(max_mult, cycles_per_usec, tmp);
do_div(tmp, 1000ULL, tmp);
while (tmp[0] > 1 || tmp[1] > 1) {
do_shift(tmp, 1);
sft++;
dprintf("tmp=0x%016llx%016llx, sft=%u\n", tmp[1], tmp[0], sft);
}
*shift = sft;
// *((unsigned long long *)mult) = (__uint128_t) (((__uint128_t)1 << sft) * 1000 / cycles_per_usec);
break;
}
case CLOCK64_2STAGE: {
unsigned long long tmp;
/*
* This clock tick to nsec conversion requires two stages.
*
* Stage 1: Determine how many ~MAX_CLOCK_SEC_2STAGE periods worth of clock ticks
* have elapsed and set nsecs to the appropriate value for those
* ~MAX_CLOCK_SEC_2STAGE periods.
* Stage 2: Subtract the ticks for the elapsed ~MAX_CLOCK_SEC_2STAGE periods from
* Stage 1. Convert remaining clock ticks to nsecs and add to previously
* set nsec value.
*
* To optimize the arithmetic operations, use the greatest power of 2 ticks
* less than the number of ticks in MAX_CLOCK_SEC_2STAGE seconds.
*
*/
// Use a period shorter than MAX_CLOCK_SEC here for better accuracy
calc_mult_shift(CLOCK64_MULT_SHIFT, mult, shift, MAX_CLOCK_SEC_2STAGE, cycles_per_usec);
// Find the greatest power of 2 clock ticks that is less than the ticks in MAX_CLOCK_SEC_2STAGE
max_cycles_shift = max_cycles_mask = 0;
tmp = MAX_CLOCK_SEC_2STAGE * 1000000ULL * cycles_per_usec;
dprintf("tmp=%llu, max_cycles_shift=%u\n", tmp, max_cycles_shift);
while (tmp > 1) {
tmp >>= 1;
max_cycles_shift++;
dprintf("tmp=%llu, max_cycles_shift=%u\n", tmp, max_cycles_shift);
}
// if use use (1ULL << max_cycles_shift) * 1000 / cycles_per_usec here we will
// have a discontinuity every (1ULL << max_cycles_shift) cycles
nsecs_for_max_cycles = (1ULL << max_cycles_shift) * *((unsigned long long *)mult) >> *shift;
// Use a bitmask to calculate ticks % (1ULL << max_cycles_shift)
for (tmp = 0; tmp < max_cycles_shift; tmp++)
max_cycles_mask |= 1ULL << tmp;
dprintf("max_cycles_shift=%u, 2^max_cycles_shift=%llu, nsecs_for_max_cycles=%llu, max_cycles_mask=%016llx\n",
max_cycles_shift, (1ULL << max_cycles_shift),
nsecs_for_max_cycles, max_cycles_mask);
break;
}
case CLOCK64_LOCK: {
/*
* This clock tick to nsec conversion also requires two stages.
*
* Stage 1: Add to nsec the current running total of elapsed long periods
* Stage 2: Subtract from clock ticks the tick count corresponding to the
* most recently elapsed long period. Convert the remaining ticks to
* nsec and add to the previous nsec value.
*
* In practice the elapsed nsec from Stage 1 and the tick count subtracted
* in Stage 2 will be maintained in a separate thread.
*
*/
calc_mult_shift(CLOCK64_2STAGE, mult, shift, MAX_CLOCK_SEC, cycles_per_usec);
cycles_start = 0;
break;
}
case CLOCK128_MULT_SHIFT: {
__uint128_t max_mult, tmp;
unsigned int sft = 0;
/*
* Calculate the largest multiplier that will not
* produce a 128-bit overflow in the multiplication
* step of the clock ticks to nsec conversion
*/
max_mult = ((__uint128_t) ULLONG_MAX) << 64 | ULLONG_MAX;
max_mult /= max_ticks;
dprintf("max_ticks=%llu, __builtin_clzll=%d, max_mult=0x%016llx%016llx\n",
max_ticks, __builtin_clzll(max_ticks),
(unsigned long long) (max_mult >> 64),
(unsigned long long) max_mult);
/*
* Find the largest shift count that will produce
* a multiplier less than max_mult
*/
tmp = max_mult * cycles_per_usec / 1000;
while (tmp > 1) {
tmp >>= 1;
sft++;
dprintf("tmp=0x%016llx%016llx, sft=%u\n",
(unsigned long long) (tmp >> 64),
(unsigned long long) tmp, sft);
}
*shift = sft;
*((__uint128_t *)mult) = (__uint128_t) (((__uint128_t)1 << sft) * 1000 / cycles_per_usec);
break;
}
}
}
static int discontinuity(int mode, int delta_ticks, int delta_nsec,
unsigned long long start, unsigned long len)
{
int i;
unsigned long mismatches = 0, bad_mismatches = 0;
unsigned long long delta, max_mismatch = 0;
unsigned long long *ns = nsecs;
for (i = 0; i < len; ns++, i++) {
*ns = get_nsec(mode, start + i);
if (i - delta_ticks >= 0) {
if (*ns > *(ns - delta_ticks))
delta = *ns - *(ns - delta_ticks);
else
delta = *(ns - delta_ticks) - *ns;
if (delta > delta_nsec)
delta -= delta_nsec;
else
delta = delta_nsec - delta;
if (delta) {
mismatches++;
if (delta > 1)
bad_mismatches++;
if (delta > max_mismatch)
max_mismatch = delta;
}
}
if (!bad_mismatches)
assert(max_mismatch == 0 || max_mismatch == 1);
if (!mismatches)
assert(max_mismatch == 0);
}
printf("%lu discontinuities (%lu%%) (%lu errors > 1ns, max delta = %lluns) for ticks = %llu...%llu\n",
mismatches, (mismatches * 100) / len, bad_mismatches, max_mismatch, start,
start + len - 1);
return mismatches;
}
#define MIN_TICKS 1ULL
#define LEN 1000000000ULL
#define NSEC_ONE_SEC 1000000000ULL
#define TESTLEN 9
static long long test_clock(int mode, int cycles_per_usec, int fast_test,
int quiet, int delta_ticks, int delta_nsec)
{
int i;
long long delta;
unsigned long long max_ticks;
unsigned long long nsecs;
void *mult;
unsigned long long test_ns[TESTLEN] =
{NSEC_ONE_SEC, NSEC_ONE_SEC,
NSEC_ONE_SEC, NSEC_ONE_SEC*60, NSEC_ONE_SEC*60*60,
NSEC_ONE_SEC*60*60*2, NSEC_ONE_SEC*60*60*4,
NSEC_ONE_SEC*60*60*8, NSEC_ONE_SEC*60*60*24};
unsigned long long test_ticks[TESTLEN];
max_ticks = MAX_CLOCK_SEC * (unsigned long long) cycles_per_usec * 1000000ULL;
switch(mode) {
case CLOCK64_MULT_SHIFT:
mult = &clock_mult;
break;
case CLOCK64_EMULATE_128:
mult = clock_mult64_128;
break;
case CLOCK64_2STAGE:
mult = &clock_mult;
break;
case CLOCK64_LOCK:
mult = &clock_mult;
break;
case CLOCK128_MULT_SHIFT:
mult = &clock_mult128;
break;
default:
assert(0);
}
calc_mult_shift(mode, mult, &clock_shift, MAX_CLOCK_SEC, cycles_per_usec);
nsecs = get_nsec(mode, max_ticks);
delta = nsecs/1000000 - MAX_CLOCK_SEC*1000;
if (mode == CLOCK64_2STAGE) {
test_ns[0] = nsecs_for_max_cycles - 1;
test_ns[1] = nsecs_for_max_cycles;
test_ticks[0] = (1ULL << max_cycles_shift) - 1;
test_ticks[1] = (1ULL << max_cycles_shift);
for (i = 2; i < TESTLEN; i++)
test_ticks[i] = test_ns[i] / 1000 * cycles_per_usec;
}
else {
for (i = 0; i < TESTLEN; i++)
test_ticks[i] = test_ns[i] / 1000 * cycles_per_usec;
}
if (!quiet) {
printf("cycles_per_usec=%d, delta_ticks=%d, delta_nsec=%d, max_ticks=%llu, shift=%u, 2^shift=%llu\n",
cycles_per_usec, delta_ticks, delta_nsec, max_ticks, clock_shift, (1ULL << clock_shift));
switch(mode) {
case CLOCK64_LOCK:
case CLOCK64_2STAGE:
case CLOCK64_MULT_SHIFT: {
printf("clock_mult=%llu, clock_mult / 2^clock_shift=%f\n",
clock_mult, (double) clock_mult / (1ULL << clock_shift));
break;
}
case CLOCK64_EMULATE_128: {
printf("clock_mult=0x%016llx%016llx\n",
clock_mult64_128[1], clock_mult64_128[0]);
break;
}
case CLOCK128_MULT_SHIFT: {
printf("clock_mult=0x%016llx%016llx\n",
(unsigned long long) (clock_mult128 >> 64),
(unsigned long long) clock_mult128);
break;
}
}
printf("get_nsec(max_ticks) = %lluns, should be %lluns, error<=abs(%lld)ms\n",
nsecs, MAX_CLOCK_SEC*1000000000ULL, delta);
}
for (i = 0; i < TESTLEN; i++)
{
nsecs = get_nsec(mode, test_ticks[i]);
delta = nsecs > test_ns[i] ? nsecs - test_ns[i] : test_ns[i] - nsecs;
if (!quiet || delta > 0)
printf("get_nsec(%llu)=%llu, expected %llu, delta=%llu\n",
test_ticks[i], nsecs, test_ns[i], delta);
}
if (!fast_test) {
discontinuity(mode, delta_ticks, delta_nsec, max_ticks - LEN + 1, LEN);
discontinuity(mode, delta_ticks, delta_nsec, MIN_TICKS, LEN);
}
if (!quiet)
printf("\n\n");
return delta;
}
int main(int argc, char *argv[])
{
nsecs = malloc(LEN * sizeof(unsigned long long));
test_clock(CLOCK64_LOCK, 3333, 1, 0, 0, 0);
test_clock(CLOCK64_LOCK, 1000, 1, 0, 1, 1);
test_clock(CLOCK64_LOCK, 1100, 1, 0, 11, 10);
test_clock(CLOCK64_LOCK, 3000, 1, 0, 3, 1);
test_clock(CLOCK64_LOCK, 3333, 1, 0, 3333, 1000);
test_clock(CLOCK64_LOCK, 3392, 1, 0, 424, 125);
test_clock(CLOCK64_LOCK, 4500, 1, 0, 9, 2);
test_clock(CLOCK64_LOCK, 5000, 1, 0, 5, 1);
free(nsecs);
return 0;
}