blob: ee8bcb30416a0fdc12af8a9ce79d5e9d1e341427 [file] [log] [blame]
/*
* Copyright (C) 2018 Western Digital Corporation or its affiliates.
*
* This file is released under the GPL.
*/
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <dirent.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <unistd.h>
#include <linux/blkzoned.h>
#include "file.h"
#include "fio.h"
#include "lib/pow2.h"
#include "log.h"
#include "oslib/asprintf.h"
#include "smalloc.h"
#include "verify.h"
#include "zbd.h"
/**
* zbd_zone_idx - convert an offset into a zone number
* @f: file pointer.
* @offset: offset in bytes. If this offset is in the first zone_size bytes
* past the disk size then the index of the sentinel is returned.
*/
static uint32_t zbd_zone_idx(const struct fio_file *f, uint64_t offset)
{
uint32_t zone_idx;
if (f->zbd_info->zone_size_log2 > 0)
zone_idx = offset >> f->zbd_info->zone_size_log2;
else
zone_idx = offset / f->zbd_info->zone_size;
return min(zone_idx, f->zbd_info->nr_zones);
}
/**
* zbd_zone_full - verify whether a minimum number of bytes remain in a zone
* @f: file pointer.
* @z: zone info pointer.
* @required: minimum number of bytes that must remain in a zone.
*
* The caller must hold z->mutex.
*/
static bool zbd_zone_full(const struct fio_file *f, struct fio_zone_info *z,
uint64_t required)
{
assert((required & 511) == 0);
return z->type == BLK_ZONE_TYPE_SEQWRITE_REQ &&
z->wp + required > z->start + f->zbd_info->zone_size;
}
static bool is_valid_offset(const struct fio_file *f, uint64_t offset)
{
return (uint64_t)(offset - f->file_offset) < f->io_size;
}
/* Verify whether direct I/O is used for all host-managed zoned drives. */
static bool zbd_using_direct_io(void)
{
struct thread_data *td;
struct fio_file *f;
int i, j;
for_each_td(td, i) {
if (td->o.odirect || !(td->o.td_ddir & TD_DDIR_WRITE))
continue;
for_each_file(td, f, j) {
if (f->zbd_info &&
f->zbd_info->model == ZBD_DM_HOST_MANAGED)
return false;
}
}
return true;
}
/* Whether or not the I/O range for f includes one or more sequential zones */
static bool zbd_is_seq_job(struct fio_file *f)
{
uint32_t zone_idx, zone_idx_b, zone_idx_e;
assert(f->zbd_info);
if (f->io_size == 0)
return false;
zone_idx_b = zbd_zone_idx(f, f->file_offset);
zone_idx_e = zbd_zone_idx(f, f->file_offset + f->io_size - 1);
for (zone_idx = zone_idx_b; zone_idx <= zone_idx_e; zone_idx++)
if (f->zbd_info->zone_info[zone_idx].type ==
BLK_ZONE_TYPE_SEQWRITE_REQ)
return true;
return false;
}
/*
* Verify whether offset and size parameters are aligned with zone boundaries.
*/
static bool zbd_verify_sizes(void)
{
const struct fio_zone_info *z;
struct thread_data *td;
struct fio_file *f;
uint64_t new_offset, new_end;
uint32_t zone_idx;
int i, j;
for_each_td(td, i) {
for_each_file(td, f, j) {
if (!f->zbd_info)
continue;
if (f->file_offset >= f->real_file_size)
continue;
if (!zbd_is_seq_job(f))
continue;
if (!td->o.zone_size) {
td->o.zone_size = f->zbd_info->zone_size;
if (!td->o.zone_size) {
log_err("%s: invalid 0 zone size\n",
f->file_name);
return false;
}
} else if (td->o.zone_size != f->zbd_info->zone_size) {
log_err("%s: job parameter zonesize %llu does not match disk zone size %llu.\n",
f->file_name, (unsigned long long) td->o.zone_size,
(unsigned long long) f->zbd_info->zone_size);
return false;
}
if (td->o.zone_skip &&
(td->o.zone_skip < td->o.zone_size ||
td->o.zone_skip % td->o.zone_size)) {
log_err("%s: zoneskip %llu is not a multiple of the device zone size %llu.\n",
f->file_name, (unsigned long long) td->o.zone_skip,
(unsigned long long) td->o.zone_size);
return false;
}
zone_idx = zbd_zone_idx(f, f->file_offset);
z = &f->zbd_info->zone_info[zone_idx];
if (f->file_offset != z->start) {
new_offset = (z+1)->start;
if (new_offset >= f->file_offset + f->io_size) {
log_info("%s: io_size must be at least one zone\n",
f->file_name);
return false;
}
log_info("%s: rounded up offset from %llu to %llu\n",
f->file_name, (unsigned long long) f->file_offset,
(unsigned long long) new_offset);
f->io_size -= (new_offset - f->file_offset);
f->file_offset = new_offset;
}
zone_idx = zbd_zone_idx(f, f->file_offset + f->io_size);
z = &f->zbd_info->zone_info[zone_idx];
new_end = z->start;
if (f->file_offset + f->io_size != new_end) {
if (new_end <= f->file_offset) {
log_info("%s: io_size must be at least one zone\n",
f->file_name);
return false;
}
log_info("%s: rounded down io_size from %llu to %llu\n",
f->file_name, (unsigned long long) f->io_size,
(unsigned long long) new_end - f->file_offset);
f->io_size = new_end - f->file_offset;
}
}
}
return true;
}
static bool zbd_verify_bs(void)
{
struct thread_data *td;
struct fio_file *f;
uint32_t zone_size;
int i, j, k;
for_each_td(td, i) {
for_each_file(td, f, j) {
if (!f->zbd_info)
continue;
zone_size = f->zbd_info->zone_size;
for (k = 0; k < ARRAY_SIZE(td->o.bs); k++) {
if (td->o.verify != VERIFY_NONE &&
zone_size % td->o.bs[k] != 0) {
log_info("%s: block size %llu is not a divisor of the zone size %d\n",
f->file_name, td->o.bs[k],
zone_size);
return false;
}
}
}
}
return true;
}
/*
* Read zone information into @buf starting from sector @start_sector.
* @fd is a file descriptor that refers to a block device and @bufsz is the
* size of @buf.
*
* Returns 0 upon success and a negative error code upon failure.
* If the zone report is empty, always assume an error (device problem) and
* return -EIO.
*/
static int read_zone_info(int fd, uint64_t start_sector,
void *buf, unsigned int bufsz)
{
struct blk_zone_report *hdr = buf;
int ret;
if (bufsz < sizeof(*hdr))
return -EINVAL;
memset(hdr, 0, sizeof(*hdr));
hdr->nr_zones = (bufsz - sizeof(*hdr)) / sizeof(struct blk_zone);
hdr->sector = start_sector;
ret = ioctl(fd, BLKREPORTZONE, hdr);
if (ret)
return -errno;
if (!hdr->nr_zones)
return -EIO;
return 0;
}
/*
* Read up to 255 characters from the first line of a file. Strip the trailing
* newline.
*/
static char *read_file(const char *path)
{
char line[256], *p = line;
FILE *f;
f = fopen(path, "rb");
if (!f)
return NULL;
if (!fgets(line, sizeof(line), f))
line[0] = '\0';
strsep(&p, "\n");
fclose(f);
return strdup(line);
}
static enum blk_zoned_model get_zbd_model(const char *file_name)
{
enum blk_zoned_model model = ZBD_DM_NONE;
char *zoned_attr_path = NULL;
char *model_str = NULL;
struct stat statbuf;
char *sys_devno_path = NULL;
char *part_attr_path = NULL;
char *part_str = NULL;
char sys_path[PATH_MAX];
ssize_t sz;
char *delim = NULL;
if (stat(file_name, &statbuf) < 0)
goto out;
if (asprintf(&sys_devno_path, "/sys/dev/block/%d:%d",
major(statbuf.st_rdev), minor(statbuf.st_rdev)) < 0)
goto out;
sz = readlink(sys_devno_path, sys_path, sizeof(sys_path) - 1);
if (sz < 0)
goto out;
sys_path[sz] = '\0';
/*
* If the device is a partition device, cut the device name in the
* canonical sysfs path to obtain the sysfs path of the holder device.
* e.g.: /sys/devices/.../sda/sda1 -> /sys/devices/.../sda
*/
if (asprintf(&part_attr_path, "/sys/dev/block/%s/partition",
sys_path) < 0)
goto out;
part_str = read_file(part_attr_path);
if (part_str && *part_str == '1') {
delim = strrchr(sys_path, '/');
if (!delim)
goto out;
*delim = '\0';
}
if (asprintf(&zoned_attr_path,
"/sys/dev/block/%s/queue/zoned", sys_path) < 0)
goto out;
model_str = read_file(zoned_attr_path);
if (!model_str)
goto out;
dprint(FD_ZBD, "%s: zbd model string: %s\n", file_name, model_str);
if (strcmp(model_str, "host-aware") == 0)
model = ZBD_DM_HOST_AWARE;
else if (strcmp(model_str, "host-managed") == 0)
model = ZBD_DM_HOST_MANAGED;
out:
free(model_str);
free(zoned_attr_path);
free(part_str);
free(part_attr_path);
free(sys_devno_path);
return model;
}
static int ilog2(uint64_t i)
{
int log = -1;
while (i) {
i >>= 1;
log++;
}
return log;
}
/*
* Initialize f->zbd_info for devices that are not zoned block devices. This
* allows to execute a ZBD workload against a non-ZBD device.
*/
static int init_zone_info(struct thread_data *td, struct fio_file *f)
{
uint32_t nr_zones;
struct fio_zone_info *p;
uint64_t zone_size = td->o.zone_size;
struct zoned_block_device_info *zbd_info = NULL;
pthread_mutexattr_t attr;
int i;
if (zone_size == 0) {
log_err("%s: Specifying the zone size is mandatory for regular block devices with --zonemode=zbd\n\n",
f->file_name);
return 1;
}
if (zone_size < 512) {
log_err("%s: zone size must be at least 512 bytes for --zonemode=zbd\n\n",
f->file_name);
return 1;
}
nr_zones = (f->real_file_size + zone_size - 1) / zone_size;
zbd_info = scalloc(1, sizeof(*zbd_info) +
(nr_zones + 1) * sizeof(zbd_info->zone_info[0]));
if (!zbd_info)
return -ENOMEM;
pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
pthread_mutexattr_setpshared(&attr, true);
pthread_mutex_init(&zbd_info->mutex, &attr);
zbd_info->refcount = 1;
p = &zbd_info->zone_info[0];
for (i = 0; i < nr_zones; i++, p++) {
pthread_mutex_init(&p->mutex, &attr);
p->start = i * zone_size;
p->wp = p->start + zone_size;
p->type = BLK_ZONE_TYPE_SEQWRITE_REQ;
p->cond = BLK_ZONE_COND_EMPTY;
}
/* a sentinel */
p->start = nr_zones * zone_size;
f->zbd_info = zbd_info;
f->zbd_info->zone_size = zone_size;
f->zbd_info->zone_size_log2 = is_power_of_2(zone_size) ?
ilog2(zone_size) : -1;
f->zbd_info->nr_zones = nr_zones;
pthread_mutexattr_destroy(&attr);
return 0;
}
/*
* Parse the BLKREPORTZONE output and store it in f->zbd_info. Must be called
* only for devices that support this ioctl, namely zoned block devices.
*/
static int parse_zone_info(struct thread_data *td, struct fio_file *f)
{
const unsigned int bufsz = sizeof(struct blk_zone_report) +
4096 * sizeof(struct blk_zone);
uint32_t nr_zones;
struct blk_zone_report *hdr;
const struct blk_zone *z;
struct fio_zone_info *p;
uint64_t zone_size, start_sector;
struct zoned_block_device_info *zbd_info = NULL;
pthread_mutexattr_t attr;
void *buf;
int fd, i, j, ret = 0;
pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
pthread_mutexattr_setpshared(&attr, true);
buf = malloc(bufsz);
if (!buf)
goto out;
fd = open(f->file_name, O_RDONLY | O_LARGEFILE);
if (fd < 0) {
ret = -errno;
goto free;
}
ret = read_zone_info(fd, 0, buf, bufsz);
if (ret < 0) {
log_info("fio: BLKREPORTZONE(%lu) failed for %s (%d).\n",
0UL, f->file_name, -ret);
goto close;
}
hdr = buf;
if (hdr->nr_zones < 1) {
log_info("fio: %s has invalid zone information.\n",
f->file_name);
goto close;
}
z = (void *)(hdr + 1);
zone_size = z->len << 9;
nr_zones = (f->real_file_size + zone_size - 1) / zone_size;
if (td->o.zone_size == 0) {
td->o.zone_size = zone_size;
} else if (td->o.zone_size != zone_size) {
log_err("fio: %s job parameter zonesize %llu does not match disk zone size %llu.\n",
f->file_name, (unsigned long long) td->o.zone_size,
(unsigned long long) zone_size);
ret = -EINVAL;
goto close;
}
dprint(FD_ZBD, "Device %s has %d zones of size %llu KB\n", f->file_name,
nr_zones, (unsigned long long) zone_size / 1024);
zbd_info = scalloc(1, sizeof(*zbd_info) +
(nr_zones + 1) * sizeof(zbd_info->zone_info[0]));
ret = -ENOMEM;
if (!zbd_info)
goto close;
pthread_mutex_init(&zbd_info->mutex, &attr);
zbd_info->refcount = 1;
p = &zbd_info->zone_info[0];
for (start_sector = 0, j = 0; j < nr_zones;) {
z = (void *)(hdr + 1);
for (i = 0; i < hdr->nr_zones; i++, j++, z++, p++) {
pthread_mutex_init(&p->mutex, &attr);
p->start = z->start << 9;
switch (z->cond) {
case BLK_ZONE_COND_NOT_WP:
case BLK_ZONE_COND_FULL:
p->wp = p->start + zone_size;
break;
default:
assert(z->start <= z->wp);
assert(z->wp <= z->start + (zone_size >> 9));
p->wp = z->wp << 9;
break;
}
p->type = z->type;
p->cond = z->cond;
if (j > 0 && p->start != p[-1].start + zone_size) {
log_info("%s: invalid zone data\n",
f->file_name);
ret = -EINVAL;
goto close;
}
}
z--;
start_sector = z->start + z->len;
if (j >= nr_zones)
break;
ret = read_zone_info(fd, start_sector, buf, bufsz);
if (ret < 0) {
log_info("fio: BLKREPORTZONE(%llu) failed for %s (%d).\n",
(unsigned long long) start_sector, f->file_name, -ret);
goto close;
}
}
/* a sentinel */
zbd_info->zone_info[nr_zones].start = start_sector << 9;
f->zbd_info = zbd_info;
f->zbd_info->zone_size = zone_size;
f->zbd_info->zone_size_log2 = is_power_of_2(zone_size) ?
ilog2(zone_size) : -1;
f->zbd_info->nr_zones = nr_zones;
zbd_info = NULL;
ret = 0;
close:
sfree(zbd_info);
close(fd);
free:
free(buf);
out:
pthread_mutexattr_destroy(&attr);
return ret;
}
/*
* Allocate zone information and store it into f->zbd_info if zonemode=zbd.
*
* Returns 0 upon success and a negative error code upon failure.
*/
static int zbd_create_zone_info(struct thread_data *td, struct fio_file *f)
{
enum blk_zoned_model zbd_model;
int ret = 0;
assert(td->o.zone_mode == ZONE_MODE_ZBD);
zbd_model = get_zbd_model(f->file_name);
switch (zbd_model) {
case ZBD_DM_HOST_AWARE:
case ZBD_DM_HOST_MANAGED:
ret = parse_zone_info(td, f);
break;
case ZBD_DM_NONE:
ret = init_zone_info(td, f);
break;
}
if (ret == 0)
f->zbd_info->model = zbd_model;
return ret;
}
void zbd_free_zone_info(struct fio_file *f)
{
uint32_t refcount;
if (!f->zbd_info)
return;
pthread_mutex_lock(&f->zbd_info->mutex);
refcount = --f->zbd_info->refcount;
pthread_mutex_unlock(&f->zbd_info->mutex);
assert((int32_t)refcount >= 0);
if (refcount == 0)
sfree(f->zbd_info);
f->zbd_info = NULL;
}
/*
* Initialize f->zbd_info.
*
* Returns 0 upon success and a negative error code upon failure.
*
* Note: this function can only work correctly if it is called before the first
* fio fork() call.
*/
static int zbd_init_zone_info(struct thread_data *td, struct fio_file *file)
{
struct thread_data *td2;
struct fio_file *f2;
int i, j, ret;
for_each_td(td2, i) {
for_each_file(td2, f2, j) {
if (td2 == td && f2 == file)
continue;
if (!f2->zbd_info ||
strcmp(f2->file_name, file->file_name) != 0)
continue;
file->zbd_info = f2->zbd_info;
file->zbd_info->refcount++;
return 0;
}
}
ret = zbd_create_zone_info(td, file);
if (ret < 0)
td_verror(td, -ret, "zbd_create_zone_info() failed");
return ret;
}
int zbd_init(struct thread_data *td)
{
struct fio_file *f;
int i;
for_each_file(td, f, i) {
if (f->filetype != FIO_TYPE_BLOCK)
continue;
if (zbd_init_zone_info(td, f))
return 1;
}
if (!zbd_using_direct_io()) {
log_err("Using direct I/O is mandatory for writing to ZBD drives\n\n");
return 1;
}
if (!zbd_verify_sizes())
return 1;
if (!zbd_verify_bs())
return 1;
return 0;
}
/**
* zbd_reset_range - reset zones for a range of sectors
* @td: FIO thread data.
* @f: Fio file for which to reset zones
* @sector: Starting sector in units of 512 bytes
* @nr_sectors: Number of sectors in units of 512 bytes
*
* Returns 0 upon success and a negative error code upon failure.
*/
static int zbd_reset_range(struct thread_data *td, const struct fio_file *f,
uint64_t offset, uint64_t length)
{
struct blk_zone_range zr = {
.sector = offset >> 9,
.nr_sectors = length >> 9,
};
uint32_t zone_idx_b, zone_idx_e;
struct fio_zone_info *zb, *ze, *z;
int ret = 0;
assert(f->fd != -1);
assert(is_valid_offset(f, offset + length - 1));
switch (f->zbd_info->model) {
case ZBD_DM_HOST_AWARE:
case ZBD_DM_HOST_MANAGED:
ret = ioctl(f->fd, BLKRESETZONE, &zr);
if (ret < 0) {
td_verror(td, errno, "resetting wp failed");
log_err("%s: resetting wp for %llu sectors at sector %llu failed (%d).\n",
f->file_name, zr.nr_sectors, zr.sector, errno);
return ret;
}
break;
case ZBD_DM_NONE:
break;
}
zone_idx_b = zbd_zone_idx(f, offset);
zb = &f->zbd_info->zone_info[zone_idx_b];
zone_idx_e = zbd_zone_idx(f, offset + length);
ze = &f->zbd_info->zone_info[zone_idx_e];
for (z = zb; z < ze; z++) {
pthread_mutex_lock(&z->mutex);
pthread_mutex_lock(&f->zbd_info->mutex);
f->zbd_info->sectors_with_data -= z->wp - z->start;
pthread_mutex_unlock(&f->zbd_info->mutex);
z->wp = z->start;
z->verify_block = 0;
pthread_mutex_unlock(&z->mutex);
}
td->ts.nr_zone_resets += ze - zb;
return ret;
}
static unsigned int zbd_zone_nr(struct zoned_block_device_info *zbd_info,
struct fio_zone_info *zone)
{
return zone - zbd_info->zone_info;
}
/**
* zbd_reset_zone - reset the write pointer of a single zone
* @td: FIO thread data.
* @f: FIO file associated with the disk for which to reset a write pointer.
* @z: Zone to reset.
*
* Returns 0 upon success and a negative error code upon failure.
*/
static int zbd_reset_zone(struct thread_data *td, const struct fio_file *f,
struct fio_zone_info *z)
{
dprint(FD_ZBD, "%s: resetting wp of zone %u.\n", f->file_name,
zbd_zone_nr(f->zbd_info, z));
return zbd_reset_range(td, f, z->start, (z+1)->start - z->start);
}
/*
* Reset a range of zones. Returns 0 upon success and 1 upon failure.
* @td: fio thread data.
* @f: fio file for which to reset zones
* @zb: first zone to reset.
* @ze: first zone not to reset.
* @all_zones: whether to reset all zones or only those zones for which the
* write pointer is not a multiple of td->o.min_bs[DDIR_WRITE].
*/
static int zbd_reset_zones(struct thread_data *td, struct fio_file *f,
struct fio_zone_info *const zb,
struct fio_zone_info *const ze, bool all_zones)
{
struct fio_zone_info *z, *start_z = ze;
const uint32_t min_bs = td->o.min_bs[DDIR_WRITE];
bool reset_wp;
int res = 0;
dprint(FD_ZBD, "%s: examining zones %u .. %u\n", f->file_name,
zbd_zone_nr(f->zbd_info, zb), zbd_zone_nr(f->zbd_info, ze));
assert(f->fd != -1);
for (z = zb; z < ze; z++) {
pthread_mutex_lock(&z->mutex);
switch (z->type) {
case BLK_ZONE_TYPE_SEQWRITE_REQ:
reset_wp = all_zones ? z->wp != z->start :
(td->o.td_ddir & TD_DDIR_WRITE) &&
z->wp % min_bs != 0;
if (start_z == ze && reset_wp) {
start_z = z;
} else if (start_z < ze && !reset_wp) {
dprint(FD_ZBD,
"%s: resetting zones %u .. %u\n",
f->file_name,
zbd_zone_nr(f->zbd_info, start_z),
zbd_zone_nr(f->zbd_info, z));
if (zbd_reset_range(td, f, start_z->start,
z->start - start_z->start) < 0)
res = 1;
start_z = ze;
}
break;
default:
if (start_z == ze)
break;
dprint(FD_ZBD, "%s: resetting zones %u .. %u\n",
f->file_name, zbd_zone_nr(f->zbd_info, start_z),
zbd_zone_nr(f->zbd_info, z));
if (zbd_reset_range(td, f, start_z->start,
z->start - start_z->start) < 0)
res = 1;
start_z = ze;
break;
}
}
if (start_z < ze) {
dprint(FD_ZBD, "%s: resetting zones %u .. %u\n", f->file_name,
zbd_zone_nr(f->zbd_info, start_z),
zbd_zone_nr(f->zbd_info, z));
if (zbd_reset_range(td, f, start_z->start,
z->start - start_z->start) < 0)
res = 1;
}
for (z = zb; z < ze; z++)
pthread_mutex_unlock(&z->mutex);
return res;
}
/*
* Reset zbd_info.write_cnt, the counter that counts down towards the next
* zone reset.
*/
static void zbd_reset_write_cnt(const struct thread_data *td,
const struct fio_file *f)
{
assert(0 <= td->o.zrf.u.f && td->o.zrf.u.f <= 1);
pthread_mutex_lock(&f->zbd_info->mutex);
f->zbd_info->write_cnt = td->o.zrf.u.f ?
min(1.0 / td->o.zrf.u.f, 0.0 + UINT_MAX) : UINT_MAX;
pthread_mutex_unlock(&f->zbd_info->mutex);
}
static bool zbd_dec_and_reset_write_cnt(const struct thread_data *td,
const struct fio_file *f)
{
uint32_t write_cnt = 0;
pthread_mutex_lock(&f->zbd_info->mutex);
assert(f->zbd_info->write_cnt);
if (f->zbd_info->write_cnt)
write_cnt = --f->zbd_info->write_cnt;
if (write_cnt == 0)
zbd_reset_write_cnt(td, f);
pthread_mutex_unlock(&f->zbd_info->mutex);
return write_cnt == 0;
}
enum swd_action {
CHECK_SWD,
SET_SWD,
};
/* Calculate the number of sectors with data (swd) and perform action 'a' */
static uint64_t zbd_process_swd(const struct fio_file *f, enum swd_action a)
{
struct fio_zone_info *zb, *ze, *z;
uint64_t swd = 0;
zb = &f->zbd_info->zone_info[zbd_zone_idx(f, f->file_offset)];
ze = &f->zbd_info->zone_info[zbd_zone_idx(f, f->file_offset +
f->io_size)];
for (z = zb; z < ze; z++) {
pthread_mutex_lock(&z->mutex);
swd += z->wp - z->start;
}
pthread_mutex_lock(&f->zbd_info->mutex);
switch (a) {
case CHECK_SWD:
assert(f->zbd_info->sectors_with_data == swd);
break;
case SET_SWD:
f->zbd_info->sectors_with_data = swd;
break;
}
pthread_mutex_unlock(&f->zbd_info->mutex);
for (z = zb; z < ze; z++)
pthread_mutex_unlock(&z->mutex);
return swd;
}
/*
* The swd check is useful for debugging but takes too much time to leave
* it enabled all the time. Hence it is disabled by default.
*/
static const bool enable_check_swd = false;
/* Check whether the value of zbd_info.sectors_with_data is correct. */
static void zbd_check_swd(const struct fio_file *f)
{
if (!enable_check_swd)
return;
zbd_process_swd(f, CHECK_SWD);
}
static void zbd_init_swd(struct fio_file *f)
{
uint64_t swd;
swd = zbd_process_swd(f, SET_SWD);
dprint(FD_ZBD, "%s(%s): swd = %" PRIu64 "\n", __func__, f->file_name,
swd);
}
void zbd_file_reset(struct thread_data *td, struct fio_file *f)
{
struct fio_zone_info *zb, *ze;
uint32_t zone_idx_e;
if (!f->zbd_info)
return;
zb = &f->zbd_info->zone_info[zbd_zone_idx(f, f->file_offset)];
zone_idx_e = zbd_zone_idx(f, f->file_offset + f->io_size);
ze = &f->zbd_info->zone_info[zone_idx_e];
zbd_init_swd(f);
/*
* If data verification is enabled reset the affected zones before
* writing any data to avoid that a zone reset has to be issued while
* writing data, which causes data loss.
*/
zbd_reset_zones(td, f, zb, ze, td->o.verify != VERIFY_NONE &&
(td->o.td_ddir & TD_DDIR_WRITE) &&
td->runstate != TD_VERIFYING);
zbd_reset_write_cnt(td, f);
}
/* The caller must hold f->zbd_info->mutex. */
static bool is_zone_open(const struct thread_data *td, const struct fio_file *f,
unsigned int zone_idx)
{
struct zoned_block_device_info *zbdi = f->zbd_info;
int i;
assert(td->o.max_open_zones <= ARRAY_SIZE(zbdi->open_zones));
assert(zbdi->num_open_zones <= td->o.max_open_zones);
for (i = 0; i < zbdi->num_open_zones; i++)
if (zbdi->open_zones[i] == zone_idx)
return true;
return false;
}
/*
* Open a ZBD zone if it was not yet open. Returns true if either the zone was
* already open or if opening a new zone is allowed. Returns false if the zone
* was not yet open and opening a new zone would cause the zone limit to be
* exceeded.
*/
static bool zbd_open_zone(struct thread_data *td, const struct io_u *io_u,
uint32_t zone_idx)
{
const uint32_t min_bs = td->o.min_bs[DDIR_WRITE];
const struct fio_file *f = io_u->file;
struct fio_zone_info *z = &f->zbd_info->zone_info[zone_idx];
bool res = true;
if (z->cond == BLK_ZONE_COND_OFFLINE)
return false;
/*
* Skip full zones with data verification enabled because resetting a
* zone causes data loss and hence causes verification to fail.
*/
if (td->o.verify != VERIFY_NONE && zbd_zone_full(f, z, min_bs))
return false;
/* Zero means no limit */
if (!td->o.max_open_zones)
return true;
pthread_mutex_lock(&f->zbd_info->mutex);
if (is_zone_open(td, f, zone_idx))
goto out;
res = false;
if (f->zbd_info->num_open_zones >= td->o.max_open_zones)
goto out;
dprint(FD_ZBD, "%s: opening zone %d\n", f->file_name, zone_idx);
f->zbd_info->open_zones[f->zbd_info->num_open_zones++] = zone_idx;
z->open = 1;
res = true;
out:
pthread_mutex_unlock(&f->zbd_info->mutex);
return res;
}
/* The caller must hold f->zbd_info->mutex */
static void zbd_close_zone(struct thread_data *td, const struct fio_file *f,
unsigned int open_zone_idx)
{
uint32_t zone_idx;
assert(open_zone_idx < f->zbd_info->num_open_zones);
zone_idx = f->zbd_info->open_zones[open_zone_idx];
memmove(f->zbd_info->open_zones + open_zone_idx,
f->zbd_info->open_zones + open_zone_idx + 1,
(FIO_MAX_OPEN_ZBD_ZONES - (open_zone_idx + 1)) *
sizeof(f->zbd_info->open_zones[0]));
f->zbd_info->num_open_zones--;
f->zbd_info->zone_info[zone_idx].open = 0;
}
/*
* Modify the offset of an I/O unit that does not refer to an open zone such
* that it refers to an open zone. Close an open zone and open a new zone if
* necessary. This algorithm can only work correctly if all write pointers are
* a multiple of the fio block size. The caller must neither hold z->mutex
* nor f->zbd_info->mutex. Returns with z->mutex held upon success.
*/
static struct fio_zone_info *zbd_convert_to_open_zone(struct thread_data *td,
struct io_u *io_u)
{
const uint32_t min_bs = td->o.min_bs[io_u->ddir];
const struct fio_file *f = io_u->file;
struct fio_zone_info *z;
unsigned int open_zone_idx = -1;
uint32_t zone_idx, new_zone_idx;
int i;
assert(is_valid_offset(f, io_u->offset));
if (td->o.max_open_zones) {
/*
* This statement accesses f->zbd_info->open_zones[] on purpose
* without locking.
*/
zone_idx = f->zbd_info->open_zones[(io_u->offset -
f->file_offset) *
f->zbd_info->num_open_zones / f->io_size];
} else {
zone_idx = zbd_zone_idx(f, io_u->offset);
}
dprint(FD_ZBD, "%s(%s): starting from zone %d (offset %lld, buflen %lld)\n",
__func__, f->file_name, zone_idx, io_u->offset, io_u->buflen);
/*
* Since z->mutex is the outer lock and f->zbd_info->mutex the inner
* lock it can happen that the state of the zone with index zone_idx
* has changed after 'z' has been assigned and before f->zbd_info->mutex
* has been obtained. Hence the loop.
*/
for (;;) {
z = &f->zbd_info->zone_info[zone_idx];
pthread_mutex_lock(&z->mutex);
pthread_mutex_lock(&f->zbd_info->mutex);
if (td->o.max_open_zones == 0)
goto examine_zone;
if (f->zbd_info->num_open_zones == 0) {
pthread_mutex_unlock(&f->zbd_info->mutex);
pthread_mutex_unlock(&z->mutex);
dprint(FD_ZBD, "%s(%s): no zones are open\n",
__func__, f->file_name);
return NULL;
}
open_zone_idx = (io_u->offset - f->file_offset) *
f->zbd_info->num_open_zones / f->io_size;
assert(open_zone_idx < f->zbd_info->num_open_zones);
new_zone_idx = f->zbd_info->open_zones[open_zone_idx];
if (new_zone_idx == zone_idx)
break;
zone_idx = new_zone_idx;
pthread_mutex_unlock(&f->zbd_info->mutex);
pthread_mutex_unlock(&z->mutex);
}
/* Both z->mutex and f->zbd_info->mutex are held. */
examine_zone:
if (z->wp + min_bs <= (z+1)->start) {
pthread_mutex_unlock(&f->zbd_info->mutex);
goto out;
}
dprint(FD_ZBD, "%s(%s): closing zone %d\n", __func__, f->file_name,
zone_idx);
if (td->o.max_open_zones)
zbd_close_zone(td, f, open_zone_idx);
pthread_mutex_unlock(&f->zbd_info->mutex);
/* Only z->mutex is held. */
/* Zone 'z' is full, so try to open a new zone. */
for (i = f->io_size / f->zbd_info->zone_size; i > 0; i--) {
zone_idx++;
pthread_mutex_unlock(&z->mutex);
z++;
if (!is_valid_offset(f, z->start)) {
/* Wrap-around. */
zone_idx = zbd_zone_idx(f, f->file_offset);
z = &f->zbd_info->zone_info[zone_idx];
}
assert(is_valid_offset(f, z->start));
pthread_mutex_lock(&z->mutex);
if (z->open)
continue;
if (zbd_open_zone(td, io_u, zone_idx))
goto out;
}
/* Only z->mutex is held. */
/* Check whether the write fits in any of the already opened zones. */
pthread_mutex_lock(&f->zbd_info->mutex);
for (i = 0; i < f->zbd_info->num_open_zones; i++) {
zone_idx = f->zbd_info->open_zones[i];
pthread_mutex_unlock(&f->zbd_info->mutex);
pthread_mutex_unlock(&z->mutex);
z = &f->zbd_info->zone_info[zone_idx];
pthread_mutex_lock(&z->mutex);
if (z->wp + min_bs <= (z+1)->start)
goto out;
pthread_mutex_lock(&f->zbd_info->mutex);
}
pthread_mutex_unlock(&f->zbd_info->mutex);
pthread_mutex_unlock(&z->mutex);
dprint(FD_ZBD, "%s(%s): did not open another zone\n", __func__,
f->file_name);
return NULL;
out:
dprint(FD_ZBD, "%s(%s): returning zone %d\n", __func__, f->file_name,
zone_idx);
io_u->offset = z->start;
return z;
}
/* The caller must hold z->mutex. */
static struct fio_zone_info *zbd_replay_write_order(struct thread_data *td,
struct io_u *io_u,
struct fio_zone_info *z)
{
const struct fio_file *f = io_u->file;
const uint32_t min_bs = td->o.min_bs[DDIR_WRITE];
if (!zbd_open_zone(td, io_u, z - f->zbd_info->zone_info)) {
pthread_mutex_unlock(&z->mutex);
z = zbd_convert_to_open_zone(td, io_u);
assert(z);
}
if (z->verify_block * min_bs >= f->zbd_info->zone_size)
log_err("%s: %d * %d >= %llu\n", f->file_name, z->verify_block,
min_bs, (unsigned long long) f->zbd_info->zone_size);
io_u->offset = z->start + z->verify_block++ * min_bs;
return z;
}
/*
* Find another zone for which @io_u fits below the write pointer. Start
* searching in zones @zb + 1 .. @zl and continue searching in zones
* @zf .. @zb - 1.
*
* Either returns NULL or returns a zone pointer and holds the mutex for that
* zone.
*/
static struct fio_zone_info *
zbd_find_zone(struct thread_data *td, struct io_u *io_u,
struct fio_zone_info *zb, struct fio_zone_info *zl)
{
const uint32_t min_bs = td->o.min_bs[io_u->ddir];
const struct fio_file *f = io_u->file;
struct fio_zone_info *z1, *z2;
const struct fio_zone_info *const zf =
&f->zbd_info->zone_info[zbd_zone_idx(f, f->file_offset)];
/*
* Skip to the next non-empty zone in case of sequential I/O and to
* the nearest non-empty zone in case of random I/O.
*/
for (z1 = zb + 1, z2 = zb - 1; z1 < zl || z2 >= zf; z1++, z2--) {
if (z1 < zl && z1->cond != BLK_ZONE_COND_OFFLINE) {
pthread_mutex_lock(&z1->mutex);
if (z1->start + min_bs <= z1->wp)
return z1;
pthread_mutex_unlock(&z1->mutex);
} else if (!td_random(td)) {
break;
}
if (td_random(td) && z2 >= zf &&
z2->cond != BLK_ZONE_COND_OFFLINE) {
pthread_mutex_lock(&z2->mutex);
if (z2->start + min_bs <= z2->wp)
return z2;
pthread_mutex_unlock(&z2->mutex);
}
}
dprint(FD_ZBD, "%s: adjusting random read offset failed\n",
f->file_name);
return NULL;
}
/**
* zbd_queue_io - update the write pointer of a sequential zone
* @io_u: I/O unit
* @success: Whether or not the I/O unit has been queued successfully
* @q: queueing status (busy, completed or queued).
*
* For write and trim operations, update the write pointer of the I/O unit
* target zone.
*/
static void zbd_queue_io(struct io_u *io_u, int q, bool success)
{
const struct fio_file *f = io_u->file;
struct zoned_block_device_info *zbd_info = f->zbd_info;
struct fio_zone_info *z;
uint32_t zone_idx;
uint64_t zone_end;
if (!zbd_info)
return;
zone_idx = zbd_zone_idx(f, io_u->offset);
assert(zone_idx < zbd_info->nr_zones);
z = &zbd_info->zone_info[zone_idx];
if (z->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
return;
if (!success)
goto unlock;
dprint(FD_ZBD,
"%s: queued I/O (%lld, %llu) for zone %u\n",
f->file_name, io_u->offset, io_u->buflen, zone_idx);
switch (io_u->ddir) {
case DDIR_WRITE:
zone_end = min((uint64_t)(io_u->offset + io_u->buflen),
(z + 1)->start);
pthread_mutex_lock(&zbd_info->mutex);
/*
* z->wp > zone_end means that one or more I/O errors
* have occurred.
*/
if (z->wp <= zone_end)
zbd_info->sectors_with_data += zone_end - z->wp;
pthread_mutex_unlock(&zbd_info->mutex);
z->wp = zone_end;
break;
case DDIR_TRIM:
assert(z->wp == z->start);
break;
default:
break;
}
unlock:
if (!success || q != FIO_Q_QUEUED) {
/* BUSY or COMPLETED: unlock the zone */
pthread_mutex_unlock(&z->mutex);
io_u->zbd_put_io = NULL;
}
}
/**
* zbd_put_io - Unlock an I/O unit target zone lock
* @io_u: I/O unit
*/
static void zbd_put_io(const struct io_u *io_u)
{
const struct fio_file *f = io_u->file;
struct zoned_block_device_info *zbd_info = f->zbd_info;
struct fio_zone_info *z;
uint32_t zone_idx;
if (!zbd_info)
return;
zone_idx = zbd_zone_idx(f, io_u->offset);
assert(zone_idx < zbd_info->nr_zones);
z = &zbd_info->zone_info[zone_idx];
if (z->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
return;
dprint(FD_ZBD,
"%s: terminate I/O (%lld, %llu) for zone %u\n",
f->file_name, io_u->offset, io_u->buflen, zone_idx);
assert(pthread_mutex_unlock(&z->mutex) == 0);
zbd_check_swd(f);
}
bool zbd_unaligned_write(int error_code)
{
switch (error_code) {
case EIO:
case EREMOTEIO:
return true;
}
return false;
}
/**
* setup_zbd_zone_mode - handle zoneskip as necessary for ZBD drives
* @td: FIO thread data.
* @io_u: FIO I/O unit.
*
* For sequential workloads, change the file offset to skip zoneskip bytes when
* no more IO can be performed in the current zone.
* - For read workloads, zoneskip is applied when the io has reached the end of
* the zone or the zone write position (when td->o.read_beyond_wp is false).
* - For write workloads, zoneskip is applied when the zone is full.
* This applies only to read and write operations.
*/
void setup_zbd_zone_mode(struct thread_data *td, struct io_u *io_u)
{
struct fio_file *f = io_u->file;
enum fio_ddir ddir = io_u->ddir;
struct fio_zone_info *z;
uint32_t zone_idx;
assert(td->o.zone_mode == ZONE_MODE_ZBD);
assert(td->o.zone_size);
/*
* zone_skip is valid only for sequential workloads.
*/
if (td_random(td) || !td->o.zone_skip)
return;
/*
* It is time to switch to a new zone if:
* - zone_bytes == zone_size bytes have already been accessed
* - The last position reached the end of the current zone.
* - For reads with td->o.read_beyond_wp == false, the last position
* reached the zone write pointer.
*/
zone_idx = zbd_zone_idx(f, f->last_pos[ddir]);
z = &f->zbd_info->zone_info[zone_idx];
if (td->zone_bytes >= td->o.zone_size ||
f->last_pos[ddir] >= (z+1)->start ||
(ddir == DDIR_READ &&
(!td->o.read_beyond_wp) && f->last_pos[ddir] >= z->wp)) {
/*
* Skip zones.
*/
td->zone_bytes = 0;
f->file_offset += td->o.zone_size + td->o.zone_skip;
/*
* Wrap from the beginning, if we exceed the file size
*/
if (f->file_offset >= f->real_file_size)
f->file_offset = get_start_offset(td, f);
f->last_pos[ddir] = f->file_offset;
td->io_skip_bytes += td->o.zone_skip;
}
}
/**
* zbd_adjust_block - adjust the offset and length as necessary for ZBD drives
* @td: FIO thread data.
* @io_u: FIO I/O unit.
*
* Locking strategy: returns with z->mutex locked if and only if z refers
* to a sequential zone and if io_u_accept is returned. z is the zone that
* corresponds to io_u->offset at the end of this function.
*/
enum io_u_action zbd_adjust_block(struct thread_data *td, struct io_u *io_u)
{
const struct fio_file *f = io_u->file;
uint32_t zone_idx_b;
struct fio_zone_info *zb, *zl, *orig_zb;
uint32_t orig_len = io_u->buflen;
uint32_t min_bs = td->o.min_bs[io_u->ddir];
uint64_t new_len;
int64_t range;
if (!f->zbd_info)
return io_u_accept;
assert(is_valid_offset(f, io_u->offset));
assert(io_u->buflen);
zone_idx_b = zbd_zone_idx(f, io_u->offset);
zb = &f->zbd_info->zone_info[zone_idx_b];
orig_zb = zb;
/* Accept the I/O offset for conventional zones. */
if (zb->type == BLK_ZONE_TYPE_CONVENTIONAL)
return io_u_accept;
/*
* Accept the I/O offset for reads if reading beyond the write pointer
* is enabled.
*/
if (zb->cond != BLK_ZONE_COND_OFFLINE &&
io_u->ddir == DDIR_READ && td->o.read_beyond_wp)
return io_u_accept;
zbd_check_swd(f);
/*
* Lock the io_u target zone. The zone will be unlocked if io_u offset
* is changed or when io_u completes and zbd_put_io() executed.
* To avoid multiple jobs doing asynchronous I/Os from deadlocking each
* other waiting for zone locks when building an io_u batch, first
* only trylock the zone. If the zone is already locked by another job,
* process the currently queued I/Os so that I/O progress is made and
* zones unlocked.
*/
if (pthread_mutex_trylock(&zb->mutex) != 0) {
if (!td_ioengine_flagged(td, FIO_SYNCIO))
io_u_quiesce(td);
pthread_mutex_lock(&zb->mutex);
}
switch (io_u->ddir) {
case DDIR_READ:
if (td->runstate == TD_VERIFYING) {
zb = zbd_replay_write_order(td, io_u, zb);
goto accept;
}
/*
* Check that there is enough written data in the zone to do an
* I/O of at least min_bs B. If there isn't, find a new zone for
* the I/O.
*/
range = zb->cond != BLK_ZONE_COND_OFFLINE ?
zb->wp - zb->start : 0;
if (range < min_bs ||
((!td_random(td)) && (io_u->offset + min_bs > zb->wp))) {
pthread_mutex_unlock(&zb->mutex);
zl = &f->zbd_info->zone_info[zbd_zone_idx(f,
f->file_offset + f->io_size)];
zb = zbd_find_zone(td, io_u, zb, zl);
if (!zb) {
dprint(FD_ZBD,
"%s: zbd_find_zone(%lld, %llu) failed\n",
f->file_name, io_u->offset,
io_u->buflen);
goto eof;
}
/*
* zbd_find_zone() returned a zone with a range of at
* least min_bs.
*/
range = zb->wp - zb->start;
assert(range >= min_bs);
if (!td_random(td))
io_u->offset = zb->start;
}
/*
* Make sure the I/O is within the zone valid data range while
* maximizing the I/O size and preserving randomness.
*/
if (range <= io_u->buflen)
io_u->offset = zb->start;
else if (td_random(td))
io_u->offset = zb->start +
((io_u->offset - orig_zb->start) %
(range - io_u->buflen)) / min_bs * min_bs;
/*
* Make sure the I/O does not cross over the zone wp position.
*/
new_len = min((unsigned long long)io_u->buflen,
(unsigned long long)(zb->wp - io_u->offset));
new_len = new_len / min_bs * min_bs;
if (new_len < io_u->buflen) {
io_u->buflen = new_len;
dprint(FD_IO, "Changed length from %u into %llu\n",
orig_len, io_u->buflen);
}
assert(zb->start <= io_u->offset);
assert(io_u->offset + io_u->buflen <= zb->wp);
goto accept;
case DDIR_WRITE:
if (io_u->buflen > f->zbd_info->zone_size)
goto eof;
if (!zbd_open_zone(td, io_u, zone_idx_b)) {
pthread_mutex_unlock(&zb->mutex);
zb = zbd_convert_to_open_zone(td, io_u);
if (!zb)
goto eof;
zone_idx_b = zb - f->zbd_info->zone_info;
}
/* Check whether the zone reset threshold has been exceeded */
if (td->o.zrf.u.f) {
if (f->zbd_info->sectors_with_data >=
f->io_size * td->o.zrt.u.f &&
zbd_dec_and_reset_write_cnt(td, f)) {
zb->reset_zone = 1;
}
}
/* Reset the zone pointer if necessary */
if (zb->reset_zone || zbd_zone_full(f, zb, min_bs)) {
assert(td->o.verify == VERIFY_NONE);
/*
* Since previous write requests may have been submitted
* asynchronously and since we will submit the zone
* reset synchronously, wait until previously submitted
* write requests have completed before issuing a
* zone reset.
*/
io_u_quiesce(td);
zb->reset_zone = 0;
if (zbd_reset_zone(td, f, zb) < 0)
goto eof;
}
/* Make writes occur at the write pointer */
assert(!zbd_zone_full(f, zb, min_bs));
io_u->offset = zb->wp;
if (!is_valid_offset(f, io_u->offset)) {
dprint(FD_ZBD, "Dropped request with offset %llu\n",
io_u->offset);
goto eof;
}
/*
* Make sure that the buflen is a multiple of the minimal
* block size. Give up if shrinking would make the request too
* small.
*/
new_len = min((unsigned long long)io_u->buflen,
(zb + 1)->start - io_u->offset);
new_len = new_len / min_bs * min_bs;
if (new_len == io_u->buflen)
goto accept;
if (new_len >= min_bs) {
io_u->buflen = new_len;
dprint(FD_IO, "Changed length from %u into %llu\n",
orig_len, io_u->buflen);
goto accept;
}
log_err("Zone remainder %lld smaller than minimum block size %d\n",
((zb + 1)->start - io_u->offset),
min_bs);
goto eof;
case DDIR_TRIM:
/* fall-through */
case DDIR_SYNC:
case DDIR_DATASYNC:
case DDIR_SYNC_FILE_RANGE:
case DDIR_WAIT:
case DDIR_LAST:
case DDIR_INVAL:
goto accept;
}
assert(false);
accept:
assert(zb);
assert(zb->cond != BLK_ZONE_COND_OFFLINE);
assert(!io_u->zbd_queue_io);
assert(!io_u->zbd_put_io);
io_u->zbd_queue_io = zbd_queue_io;
io_u->zbd_put_io = zbd_put_io;
return io_u_accept;
eof:
if (zb)
pthread_mutex_unlock(&zb->mutex);
return io_u_eof;
}
/* Return a string with ZBD statistics */
char *zbd_write_status(const struct thread_stat *ts)
{
char *res;
if (asprintf(&res, "; %llu zone resets", (unsigned long long) ts->nr_zone_resets) < 0)
return NULL;
return res;
}