blob: 4a79fc4667fc13eff4c62b9206a0dfefe0a5dfd4 [file] [log] [blame]
/*
* Code related to writing an iolog of what a thread is doing, and to
* later read that back and replay
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#ifdef CONFIG_ZLIB
#include <zlib.h>
#endif
#include "flist.h"
#include "fio.h"
#include "trim.h"
#include "filelock.h"
#include "smalloc.h"
#include "blktrace.h"
#include "pshared.h"
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <sys/un.h>
static int iolog_flush(struct io_log *log);
static const char iolog_ver2[] = "fio version 2 iolog";
void queue_io_piece(struct thread_data *td, struct io_piece *ipo)
{
flist_add_tail(&ipo->list, &td->io_log_list);
td->total_io_size += ipo->len;
}
void log_io_u(const struct thread_data *td, const struct io_u *io_u)
{
if (!td->o.write_iolog_file)
return;
fprintf(td->iolog_f, "%s %s %llu %llu\n", io_u->file->file_name,
io_ddir_name(io_u->ddir),
io_u->offset, io_u->buflen);
}
void log_file(struct thread_data *td, struct fio_file *f,
enum file_log_act what)
{
const char *act[] = { "add", "open", "close" };
assert(what < 3);
if (!td->o.write_iolog_file)
return;
/*
* this happens on the pre-open/close done before the job starts
*/
if (!td->iolog_f)
return;
fprintf(td->iolog_f, "%s %s\n", f->file_name, act[what]);
}
static void iolog_delay(struct thread_data *td, unsigned long delay)
{
uint64_t usec = utime_since_now(&td->last_issue);
unsigned long orig_delay = delay;
uint64_t this_delay;
struct timespec ts;
if (delay < td->time_offset) {
td->time_offset = 0;
return;
}
delay -= td->time_offset;
if (delay < usec)
return;
delay -= usec;
fio_gettime(&ts, NULL);
while (delay && !td->terminate) {
this_delay = delay;
if (this_delay > 500000)
this_delay = 500000;
usec_sleep(td, this_delay);
delay -= this_delay;
}
usec = utime_since_now(&ts);
if (usec > orig_delay)
td->time_offset = usec - orig_delay;
else
td->time_offset = 0;
}
static int ipo_special(struct thread_data *td, struct io_piece *ipo)
{
struct fio_file *f;
int ret;
/*
* Not a special ipo
*/
if (ipo->ddir != DDIR_INVAL)
return 0;
f = td->files[ipo->fileno];
switch (ipo->file_action) {
case FIO_LOG_OPEN_FILE:
if (td->o.replay_redirect && fio_file_open(f)) {
dprint(FD_FILE, "iolog: ignoring re-open of file %s\n",
f->file_name);
break;
}
ret = td_io_open_file(td, f);
if (!ret)
break;
td_verror(td, ret, "iolog open file");
return -1;
case FIO_LOG_CLOSE_FILE:
td_io_close_file(td, f);
break;
case FIO_LOG_UNLINK_FILE:
td_io_unlink_file(td, f);
break;
default:
log_err("fio: bad file action %d\n", ipo->file_action);
break;
}
return 1;
}
static bool read_iolog2(struct thread_data *td);
int read_iolog_get(struct thread_data *td, struct io_u *io_u)
{
struct io_piece *ipo;
unsigned long elapsed;
while (!flist_empty(&td->io_log_list)) {
int ret;
if (td->o.read_iolog_chunked) {
if (td->io_log_checkmark == td->io_log_current) {
if (!read_iolog2(td))
return 1;
}
td->io_log_current--;
}
ipo = flist_first_entry(&td->io_log_list, struct io_piece, list);
flist_del(&ipo->list);
remove_trim_entry(td, ipo);
ret = ipo_special(td, ipo);
if (ret < 0) {
free(ipo);
break;
} else if (ret > 0) {
free(ipo);
continue;
}
io_u->ddir = ipo->ddir;
if (ipo->ddir != DDIR_WAIT) {
io_u->offset = ipo->offset;
io_u->buflen = ipo->len;
io_u->file = td->files[ipo->fileno];
get_file(io_u->file);
dprint(FD_IO, "iolog: get %llu/%llu/%s\n", io_u->offset,
io_u->buflen, io_u->file->file_name);
if (ipo->delay)
iolog_delay(td, ipo->delay);
} else {
elapsed = mtime_since_genesis();
if (ipo->delay > elapsed)
usec_sleep(td, (ipo->delay - elapsed) * 1000);
}
free(ipo);
if (io_u->ddir != DDIR_WAIT)
return 0;
}
td->done = 1;
return 1;
}
void prune_io_piece_log(struct thread_data *td)
{
struct io_piece *ipo;
struct fio_rb_node *n;
while ((n = rb_first(&td->io_hist_tree)) != NULL) {
ipo = rb_entry(n, struct io_piece, rb_node);
rb_erase(n, &td->io_hist_tree);
remove_trim_entry(td, ipo);
td->io_hist_len--;
free(ipo);
}
while (!flist_empty(&td->io_hist_list)) {
ipo = flist_first_entry(&td->io_hist_list, struct io_piece, list);
flist_del(&ipo->list);
remove_trim_entry(td, ipo);
td->io_hist_len--;
free(ipo);
}
}
/*
* log a successful write, so we can unwind the log for verify
*/
void log_io_piece(struct thread_data *td, struct io_u *io_u)
{
struct fio_rb_node **p, *parent;
struct io_piece *ipo, *__ipo;
ipo = calloc(1, sizeof(struct io_piece));
init_ipo(ipo);
ipo->file = io_u->file;
ipo->offset = io_u->offset;
ipo->len = io_u->buflen;
ipo->numberio = io_u->numberio;
ipo->flags = IP_F_IN_FLIGHT;
io_u->ipo = ipo;
if (io_u_should_trim(td, io_u)) {
flist_add_tail(&ipo->trim_list, &td->trim_list);
td->trim_entries++;
}
/*
* Only sort writes if we don't have a random map in which case we need
* to check for duplicate blocks and drop the old one, which we rely on
* the rb insert/lookup for handling.
*/
if (file_randommap(td, ipo->file)) {
INIT_FLIST_HEAD(&ipo->list);
flist_add_tail(&ipo->list, &td->io_hist_list);
ipo->flags |= IP_F_ONLIST;
td->io_hist_len++;
return;
}
RB_CLEAR_NODE(&ipo->rb_node);
/*
* Sort the entry into the verification list
*/
restart:
p = &td->io_hist_tree.rb_node;
parent = NULL;
while (*p) {
int overlap = 0;
parent = *p;
__ipo = rb_entry(parent, struct io_piece, rb_node);
if (ipo->file < __ipo->file)
p = &(*p)->rb_left;
else if (ipo->file > __ipo->file)
p = &(*p)->rb_right;
else if (ipo->offset < __ipo->offset) {
p = &(*p)->rb_left;
overlap = ipo->offset + ipo->len > __ipo->offset;
}
else if (ipo->offset > __ipo->offset) {
p = &(*p)->rb_right;
overlap = __ipo->offset + __ipo->len > ipo->offset;
}
else
overlap = 1;
if (overlap) {
dprint(FD_IO, "iolog: overlap %llu/%lu, %llu/%lu\n",
__ipo->offset, __ipo->len,
ipo->offset, ipo->len);
td->io_hist_len--;
rb_erase(parent, &td->io_hist_tree);
remove_trim_entry(td, __ipo);
if (!(__ipo->flags & IP_F_IN_FLIGHT))
free(__ipo);
goto restart;
}
}
rb_link_node(&ipo->rb_node, parent, p);
rb_insert_color(&ipo->rb_node, &td->io_hist_tree);
ipo->flags |= IP_F_ONRB;
td->io_hist_len++;
}
void unlog_io_piece(struct thread_data *td, struct io_u *io_u)
{
struct io_piece *ipo = io_u->ipo;
if (td->ts.nr_block_infos) {
uint32_t *info = io_u_block_info(td, io_u);
if (BLOCK_INFO_STATE(*info) < BLOCK_STATE_TRIM_FAILURE) {
if (io_u->ddir == DDIR_TRIM)
*info = BLOCK_INFO_SET_STATE(*info,
BLOCK_STATE_TRIM_FAILURE);
else if (io_u->ddir == DDIR_WRITE)
*info = BLOCK_INFO_SET_STATE(*info,
BLOCK_STATE_WRITE_FAILURE);
}
}
if (!ipo)
return;
if (ipo->flags & IP_F_ONRB)
rb_erase(&ipo->rb_node, &td->io_hist_tree);
else if (ipo->flags & IP_F_ONLIST)
flist_del(&ipo->list);
free(ipo);
io_u->ipo = NULL;
td->io_hist_len--;
}
void trim_io_piece(const struct io_u *io_u)
{
struct io_piece *ipo = io_u->ipo;
if (!ipo)
return;
ipo->len = io_u->xfer_buflen - io_u->resid;
}
void write_iolog_close(struct thread_data *td)
{
if (!td->iolog_f)
return;
fflush(td->iolog_f);
fclose(td->iolog_f);
free(td->iolog_buf);
td->iolog_f = NULL;
td->iolog_buf = NULL;
}
static int64_t iolog_items_to_fetch(struct thread_data *td)
{
struct timespec now;
uint64_t elapsed;
uint64_t for_1s;
int64_t items_to_fetch;
if (!td->io_log_highmark)
return 10;
fio_gettime(&now, NULL);
elapsed = ntime_since(&td->io_log_highmark_time, &now);
if (elapsed) {
for_1s = (td->io_log_highmark - td->io_log_current) * 1000000000 / elapsed;
items_to_fetch = for_1s - td->io_log_current;
if (items_to_fetch < 0)
items_to_fetch = 0;
} else
items_to_fetch = 0;
td->io_log_highmark = td->io_log_current + items_to_fetch;
td->io_log_checkmark = (td->io_log_highmark + 1) / 2;
fio_gettime(&td->io_log_highmark_time, NULL);
return items_to_fetch;
}
/*
* Read version 2 iolog data. It is enhanced to include per-file logging,
* syncs, etc.
*/
static bool read_iolog2(struct thread_data *td)
{
unsigned long long offset;
unsigned int bytes;
int reads, writes, waits, fileno = 0, file_action = 0; /* stupid gcc */
char *rfname, *fname, *act;
char *str, *p;
enum fio_ddir rw;
bool realloc = false;
int64_t items_to_fetch = 0;
if (td->o.read_iolog_chunked) {
items_to_fetch = iolog_items_to_fetch(td);
if (!items_to_fetch)
return true;
}
/*
* Read in the read iolog and store it, reuse the infrastructure
* for doing verifications.
*/
str = malloc(4096);
rfname = fname = malloc(256+16);
act = malloc(256+16);
reads = writes = waits = 0;
while ((p = fgets(str, 4096, td->io_log_rfile)) != NULL) {
struct io_piece *ipo;
int r;
r = sscanf(p, "%256s %256s %llu %u", rfname, act, &offset,
&bytes);
if (td->o.replay_redirect)
fname = td->o.replay_redirect;
if (r == 4) {
/*
* Check action first
*/
if (!strcmp(act, "wait"))
rw = DDIR_WAIT;
else if (!strcmp(act, "read"))
rw = DDIR_READ;
else if (!strcmp(act, "write"))
rw = DDIR_WRITE;
else if (!strcmp(act, "sync"))
rw = DDIR_SYNC;
else if (!strcmp(act, "datasync"))
rw = DDIR_DATASYNC;
else if (!strcmp(act, "trim"))
rw = DDIR_TRIM;
else {
log_err("fio: bad iolog file action: %s\n",
act);
continue;
}
fileno = get_fileno(td, fname);
} else if (r == 2) {
rw = DDIR_INVAL;
if (!strcmp(act, "add")) {
if (td->o.replay_redirect &&
get_fileno(td, fname) != -1) {
dprint(FD_FILE, "iolog: ignoring"
" re-add of file %s\n", fname);
} else {
fileno = add_file(td, fname, td->subjob_number, 1);
file_action = FIO_LOG_ADD_FILE;
}
continue;
} else if (!strcmp(act, "open")) {
fileno = get_fileno(td, fname);
file_action = FIO_LOG_OPEN_FILE;
} else if (!strcmp(act, "close")) {
fileno = get_fileno(td, fname);
file_action = FIO_LOG_CLOSE_FILE;
} else {
log_err("fio: bad iolog file action: %s\n",
act);
continue;
}
} else {
log_err("bad iolog2: %s\n", p);
continue;
}
if (rw == DDIR_READ)
reads++;
else if (rw == DDIR_WRITE) {
/*
* Don't add a write for ro mode
*/
if (read_only)
continue;
writes++;
} else if (rw == DDIR_WAIT) {
if (td->o.no_stall)
continue;
waits++;
} else if (rw == DDIR_INVAL) {
} else if (!ddir_sync(rw)) {
log_err("bad ddir: %d\n", rw);
continue;
}
/*
* Make note of file
*/
ipo = calloc(1, sizeof(*ipo));
init_ipo(ipo);
ipo->ddir = rw;
if (rw == DDIR_WAIT) {
ipo->delay = offset;
} else {
if (td->o.replay_scale)
ipo->offset = offset / td->o.replay_scale;
else
ipo->offset = offset;
ipo_bytes_align(td->o.replay_align, ipo);
ipo->len = bytes;
if (rw != DDIR_INVAL && bytes > td->o.max_bs[rw]) {
realloc = true;
td->o.max_bs[rw] = bytes;
}
ipo->fileno = fileno;
ipo->file_action = file_action;
td->o.size += bytes;
}
queue_io_piece(td, ipo);
if (td->o.read_iolog_chunked) {
td->io_log_current++;
items_to_fetch--;
if (items_to_fetch == 0)
break;
}
}
free(str);
free(act);
free(rfname);
if (td->o.read_iolog_chunked) {
td->io_log_highmark = td->io_log_current;
td->io_log_checkmark = (td->io_log_highmark + 1) / 2;
fio_gettime(&td->io_log_highmark_time, NULL);
}
if (writes && read_only) {
log_err("fio: <%s> skips replay of %d writes due to"
" read-only\n", td->o.name, writes);
writes = 0;
}
if (td->o.read_iolog_chunked) {
if (td->io_log_current == 0) {
return false;
}
td->o.td_ddir = TD_DDIR_RW;
if (realloc && td->orig_buffer)
{
io_u_quiesce(td);
free_io_mem(td);
init_io_u_buffers(td);
}
return true;
}
if (!reads && !writes && !waits)
return false;
else if (reads && !writes)
td->o.td_ddir = TD_DDIR_READ;
else if (!reads && writes)
td->o.td_ddir = TD_DDIR_WRITE;
else
td->o.td_ddir = TD_DDIR_RW;
return true;
}
static bool is_socket(const char *path)
{
struct stat buf;
int r;
r = stat(path, &buf);
if (r == -1)
return false;
return S_ISSOCK(buf.st_mode);
}
static int open_socket(const char *path)
{
struct sockaddr_un addr;
int ret, fd;
fd = socket(AF_UNIX, SOCK_STREAM, 0);
if (fd < 0)
return fd;
addr.sun_family = AF_UNIX;
if (snprintf(addr.sun_path, sizeof(addr.sun_path), "%s", path) >=
sizeof(addr.sun_path)) {
log_err("%s: path name %s is too long for a Unix socket\n",
__func__, path);
}
ret = connect(fd, (const struct sockaddr *)&addr, strlen(path) + sizeof(addr.sun_family));
if (!ret)
return fd;
close(fd);
return -1;
}
/*
* open iolog, check version, and call appropriate parser
*/
static bool init_iolog_read(struct thread_data *td)
{
char buffer[256], *p, *fname;
FILE *f = NULL;
fname = get_name_by_idx(td->o.read_iolog_file, td->subjob_number);
dprint(FD_IO, "iolog: name=%s\n", fname);
if (is_socket(fname)) {
int fd;
fd = open_socket(fname);
if (fd >= 0)
f = fdopen(fd, "r");
} else
f = fopen(fname, "r");
free(fname);
if (!f) {
perror("fopen read iolog");
return false;
}
p = fgets(buffer, sizeof(buffer), f);
if (!p) {
td_verror(td, errno, "iolog read");
log_err("fio: unable to read iolog\n");
fclose(f);
return false;
}
/*
* version 2 of the iolog stores a specific string as the
* first line, check for that
*/
if (!strncmp(iolog_ver2, buffer, strlen(iolog_ver2))) {
free_release_files(td);
td->io_log_rfile = f;
return read_iolog2(td);
}
log_err("fio: iolog version 1 is no longer supported\n");
fclose(f);
return false;
}
/*
* Set up a log for storing io patterns.
*/
static bool init_iolog_write(struct thread_data *td)
{
struct fio_file *ff;
FILE *f;
unsigned int i;
f = fopen(td->o.write_iolog_file, "a");
if (!f) {
perror("fopen write iolog");
return false;
}
/*
* That's it for writing, setup a log buffer and we're done.
*/
td->iolog_f = f;
td->iolog_buf = malloc(8192);
setvbuf(f, td->iolog_buf, _IOFBF, 8192);
/*
* write our version line
*/
if (fprintf(f, "%s\n", iolog_ver2) < 0) {
perror("iolog init\n");
return false;
}
/*
* add all known files
*/
for_each_file(td, ff, i)
log_file(td, ff, FIO_LOG_ADD_FILE);
return true;
}
bool init_iolog(struct thread_data *td)
{
bool ret;
if (td->o.read_iolog_file) {
int need_swap;
/*
* Check if it's a blktrace file and load that if possible.
* Otherwise assume it's a normal log file and load that.
*/
if (is_blktrace(td->o.read_iolog_file, &need_swap))
ret = load_blktrace(td, td->o.read_iolog_file, need_swap);
else
ret = init_iolog_read(td);
} else if (td->o.write_iolog_file)
ret = init_iolog_write(td);
else
ret = true;
if (!ret)
td_verror(td, EINVAL, "failed initializing iolog");
return ret;
}
void setup_log(struct io_log **log, struct log_params *p,
const char *filename)
{
struct io_log *l;
int i;
struct io_u_plat_entry *entry;
struct flist_head *list;
l = scalloc(1, sizeof(*l));
INIT_FLIST_HEAD(&l->io_logs);
l->log_type = p->log_type;
l->log_offset = p->log_offset;
l->log_gz = p->log_gz;
l->log_gz_store = p->log_gz_store;
l->avg_msec = p->avg_msec;
l->hist_msec = p->hist_msec;
l->hist_coarseness = p->hist_coarseness;
l->filename = strdup(filename);
l->td = p->td;
/* Initialize histogram lists for each r/w direction,
* with initial io_u_plat of all zeros:
*/
for (i = 0; i < DDIR_RWDIR_CNT; i++) {
list = &l->hist_window[i].list;
INIT_FLIST_HEAD(list);
entry = calloc(1, sizeof(struct io_u_plat_entry));
flist_add(&entry->list, list);
}
if (l->td && l->td->o.io_submit_mode != IO_MODE_OFFLOAD) {
struct io_logs *__p;
__p = calloc(1, sizeof(*l->pending));
__p->max_samples = DEF_LOG_ENTRIES;
__p->log = calloc(__p->max_samples, log_entry_sz(l));
l->pending = __p;
}
if (l->log_offset)
l->log_ddir_mask = LOG_OFFSET_SAMPLE_BIT;
INIT_FLIST_HEAD(&l->chunk_list);
if (l->log_gz && !p->td)
l->log_gz = 0;
else if (l->log_gz || l->log_gz_store) {
mutex_init_pshared(&l->chunk_lock);
mutex_init_pshared(&l->deferred_free_lock);
p->td->flags |= TD_F_COMPRESS_LOG;
}
*log = l;
}
#ifdef CONFIG_SETVBUF
static void *set_file_buffer(FILE *f)
{
size_t size = 1048576;
void *buf;
buf = malloc(size);
setvbuf(f, buf, _IOFBF, size);
return buf;
}
static void clear_file_buffer(void *buf)
{
free(buf);
}
#else
static void *set_file_buffer(FILE *f)
{
return NULL;
}
static void clear_file_buffer(void *buf)
{
}
#endif
void free_log(struct io_log *log)
{
while (!flist_empty(&log->io_logs)) {
struct io_logs *cur_log;
cur_log = flist_first_entry(&log->io_logs, struct io_logs, list);
flist_del_init(&cur_log->list);
free(cur_log->log);
sfree(cur_log);
}
if (log->pending) {
free(log->pending->log);
free(log->pending);
log->pending = NULL;
}
free(log->pending);
free(log->filename);
sfree(log);
}
uint64_t hist_sum(int j, int stride, uint64_t *io_u_plat,
uint64_t *io_u_plat_last)
{
uint64_t sum;
int k;
if (io_u_plat_last) {
for (k = sum = 0; k < stride; k++)
sum += io_u_plat[j + k] - io_u_plat_last[j + k];
} else {
for (k = sum = 0; k < stride; k++)
sum += io_u_plat[j + k];
}
return sum;
}
static void flush_hist_samples(FILE *f, int hist_coarseness, void *samples,
uint64_t sample_size)
{
struct io_sample *s;
int log_offset;
uint64_t i, j, nr_samples;
struct io_u_plat_entry *entry, *entry_before;
uint64_t *io_u_plat;
uint64_t *io_u_plat_before;
int stride = 1 << hist_coarseness;
if (!sample_size)
return;
s = __get_sample(samples, 0, 0);
log_offset = (s->__ddir & LOG_OFFSET_SAMPLE_BIT) != 0;
nr_samples = sample_size / __log_entry_sz(log_offset);
for (i = 0; i < nr_samples; i++) {
s = __get_sample(samples, log_offset, i);
entry = s->data.plat_entry;
io_u_plat = entry->io_u_plat;
entry_before = flist_first_entry(&entry->list, struct io_u_plat_entry, list);
io_u_plat_before = entry_before->io_u_plat;
fprintf(f, "%lu, %u, %llu, ", (unsigned long) s->time,
io_sample_ddir(s), (unsigned long long) s->bs);
for (j = 0; j < FIO_IO_U_PLAT_NR - stride; j += stride) {
fprintf(f, "%llu, ", (unsigned long long)
hist_sum(j, stride, io_u_plat, io_u_plat_before));
}
fprintf(f, "%llu\n", (unsigned long long)
hist_sum(FIO_IO_U_PLAT_NR - stride, stride, io_u_plat,
io_u_plat_before));
flist_del(&entry_before->list);
free(entry_before);
}
}
void flush_samples(FILE *f, void *samples, uint64_t sample_size)
{
struct io_sample *s;
int log_offset;
uint64_t i, nr_samples;
if (!sample_size)
return;
s = __get_sample(samples, 0, 0);
log_offset = (s->__ddir & LOG_OFFSET_SAMPLE_BIT) != 0;
nr_samples = sample_size / __log_entry_sz(log_offset);
for (i = 0; i < nr_samples; i++) {
s = __get_sample(samples, log_offset, i);
if (!log_offset) {
fprintf(f, "%lu, %" PRId64 ", %u, %llu, %u\n",
(unsigned long) s->time,
s->data.val,
io_sample_ddir(s), (unsigned long long) s->bs, s->priority_bit);
} else {
struct io_sample_offset *so = (void *) s;
fprintf(f, "%lu, %" PRId64 ", %u, %llu, %llu, %u\n",
(unsigned long) s->time,
s->data.val,
io_sample_ddir(s), (unsigned long long) s->bs,
(unsigned long long) so->offset, s->priority_bit);
}
}
}
#ifdef CONFIG_ZLIB
struct iolog_flush_data {
struct workqueue_work work;
struct io_log *log;
void *samples;
uint32_t nr_samples;
bool free;
};
#define GZ_CHUNK 131072
static struct iolog_compress *get_new_chunk(unsigned int seq)
{
struct iolog_compress *c;
c = malloc(sizeof(*c));
INIT_FLIST_HEAD(&c->list);
c->buf = malloc(GZ_CHUNK);
c->len = 0;
c->seq = seq;
return c;
}
static void free_chunk(struct iolog_compress *ic)
{
free(ic->buf);
free(ic);
}
static int z_stream_init(z_stream *stream, int gz_hdr)
{
int wbits = 15;
memset(stream, 0, sizeof(*stream));
stream->zalloc = Z_NULL;
stream->zfree = Z_NULL;
stream->opaque = Z_NULL;
stream->next_in = Z_NULL;
/*
* zlib magic - add 32 for auto-detection of gz header or not,
* if we decide to store files in a gzip friendly format.
*/
if (gz_hdr)
wbits += 32;
if (inflateInit2(stream, wbits) != Z_OK)
return 1;
return 0;
}
struct inflate_chunk_iter {
unsigned int seq;
int err;
void *buf;
size_t buf_size;
size_t buf_used;
size_t chunk_sz;
};
static void finish_chunk(z_stream *stream, FILE *f,
struct inflate_chunk_iter *iter)
{
int ret;
ret = inflateEnd(stream);
if (ret != Z_OK)
log_err("fio: failed to end log inflation seq %d (%d)\n",
iter->seq, ret);
flush_samples(f, iter->buf, iter->buf_used);
free(iter->buf);
iter->buf = NULL;
iter->buf_size = iter->buf_used = 0;
}
/*
* Iterative chunk inflation. Handles cases where we cross into a new
* sequence, doing flush finish of previous chunk if needed.
*/
static size_t inflate_chunk(struct iolog_compress *ic, int gz_hdr, FILE *f,
z_stream *stream, struct inflate_chunk_iter *iter)
{
size_t ret;
dprint(FD_COMPRESS, "inflate chunk size=%lu, seq=%u\n",
(unsigned long) ic->len, ic->seq);
if (ic->seq != iter->seq) {
if (iter->seq)
finish_chunk(stream, f, iter);
z_stream_init(stream, gz_hdr);
iter->seq = ic->seq;
}
stream->avail_in = ic->len;
stream->next_in = ic->buf;
if (!iter->buf_size) {
iter->buf_size = iter->chunk_sz;
iter->buf = malloc(iter->buf_size);
}
while (stream->avail_in) {
size_t this_out = iter->buf_size - iter->buf_used;
int err;
stream->avail_out = this_out;
stream->next_out = iter->buf + iter->buf_used;
err = inflate(stream, Z_NO_FLUSH);
if (err < 0) {
log_err("fio: failed inflating log: %d\n", err);
iter->err = err;
break;
}
iter->buf_used += this_out - stream->avail_out;
if (!stream->avail_out) {
iter->buf_size += iter->chunk_sz;
iter->buf = realloc(iter->buf, iter->buf_size);
continue;
}
if (err == Z_STREAM_END)
break;
}
ret = (void *) stream->next_in - ic->buf;
dprint(FD_COMPRESS, "inflated to size=%lu\n", (unsigned long) iter->buf_size);
return ret;
}
/*
* Inflate stored compressed chunks, or write them directly to the log
* file if so instructed.
*/
static int inflate_gz_chunks(struct io_log *log, FILE *f)
{
struct inflate_chunk_iter iter = { .chunk_sz = log->log_gz, };
z_stream stream;
while (!flist_empty(&log->chunk_list)) {
struct iolog_compress *ic;
ic = flist_first_entry(&log->chunk_list, struct iolog_compress, list);
flist_del(&ic->list);
if (log->log_gz_store) {
size_t ret;
dprint(FD_COMPRESS, "log write chunk size=%lu, "
"seq=%u\n", (unsigned long) ic->len, ic->seq);
ret = fwrite(ic->buf, ic->len, 1, f);
if (ret != 1 || ferror(f)) {
iter.err = errno;
log_err("fio: error writing compressed log\n");
}
} else
inflate_chunk(ic, log->log_gz_store, f, &stream, &iter);
free_chunk(ic);
}
if (iter.seq) {
finish_chunk(&stream, f, &iter);
free(iter.buf);
}
return iter.err;
}
/*
* Open compressed log file and decompress the stored chunks and
* write them to stdout. The chunks are stored sequentially in the
* file, so we iterate over them and do them one-by-one.
*/
int iolog_file_inflate(const char *file)
{
struct inflate_chunk_iter iter = { .chunk_sz = 64 * 1024 * 1024, };
struct iolog_compress ic;
z_stream stream;
struct stat sb;
size_t ret;
size_t total;
void *buf;
FILE *f;
f = fopen(file, "r");
if (!f) {
perror("fopen");
return 1;
}
if (stat(file, &sb) < 0) {
fclose(f);
perror("stat");
return 1;
}
ic.buf = buf = malloc(sb.st_size);
ic.len = sb.st_size;
ic.seq = 1;
ret = fread(ic.buf, ic.len, 1, f);
if (ret == 0 && ferror(f)) {
perror("fread");
fclose(f);
free(buf);
return 1;
} else if (ferror(f) || (!feof(f) && ret != 1)) {
log_err("fio: short read on reading log\n");
fclose(f);
free(buf);
return 1;
}
fclose(f);
/*
* Each chunk will return Z_STREAM_END. We don't know how many
* chunks are in the file, so we just keep looping and incrementing
* the sequence number until we have consumed the whole compressed
* file.
*/
total = ic.len;
do {
size_t iret;
iret = inflate_chunk(&ic, 1, stdout, &stream, &iter);
total -= iret;
if (!total)
break;
if (iter.err)
break;
ic.seq++;
ic.len -= iret;
ic.buf += iret;
} while (1);
if (iter.seq) {
finish_chunk(&stream, stdout, &iter);
free(iter.buf);
}
free(buf);
return iter.err;
}
#else
static int inflate_gz_chunks(struct io_log *log, FILE *f)
{
return 0;
}
int iolog_file_inflate(const char *file)
{
log_err("fio: log inflation not possible without zlib\n");
return 1;
}
#endif
void flush_log(struct io_log *log, bool do_append)
{
void *buf;
FILE *f;
if (!do_append)
f = fopen(log->filename, "w");
else
f = fopen(log->filename, "a");
if (!f) {
perror("fopen log");
return;
}
buf = set_file_buffer(f);
inflate_gz_chunks(log, f);
while (!flist_empty(&log->io_logs)) {
struct io_logs *cur_log;
cur_log = flist_first_entry(&log->io_logs, struct io_logs, list);
flist_del_init(&cur_log->list);
if (log->td && log == log->td->clat_hist_log)
flush_hist_samples(f, log->hist_coarseness, cur_log->log,
log_sample_sz(log, cur_log));
else
flush_samples(f, cur_log->log, log_sample_sz(log, cur_log));
sfree(cur_log);
}
fclose(f);
clear_file_buffer(buf);
}
static int finish_log(struct thread_data *td, struct io_log *log, int trylock)
{
if (td->flags & TD_F_COMPRESS_LOG)
iolog_flush(log);
if (trylock) {
if (fio_trylock_file(log->filename))
return 1;
} else
fio_lock_file(log->filename);
if (td->client_type == FIO_CLIENT_TYPE_GUI || is_backend)
fio_send_iolog(td, log, log->filename);
else
flush_log(log, !td->o.per_job_logs);
fio_unlock_file(log->filename);
free_log(log);
return 0;
}
size_t log_chunk_sizes(struct io_log *log)
{
struct flist_head *entry;
size_t ret;
if (flist_empty(&log->chunk_list))
return 0;
ret = 0;
pthread_mutex_lock(&log->chunk_lock);
flist_for_each(entry, &log->chunk_list) {
struct iolog_compress *c;
c = flist_entry(entry, struct iolog_compress, list);
ret += c->len;
}
pthread_mutex_unlock(&log->chunk_lock);
return ret;
}
#ifdef CONFIG_ZLIB
static void iolog_put_deferred(struct io_log *log, void *ptr)
{
if (!ptr)
return;
pthread_mutex_lock(&log->deferred_free_lock);
if (log->deferred < IOLOG_MAX_DEFER) {
log->deferred_items[log->deferred] = ptr;
log->deferred++;
} else if (!fio_did_warn(FIO_WARN_IOLOG_DROP))
log_err("fio: had to drop log entry free\n");
pthread_mutex_unlock(&log->deferred_free_lock);
}
static void iolog_free_deferred(struct io_log *log)
{
int i;
if (!log->deferred)
return;
pthread_mutex_lock(&log->deferred_free_lock);
for (i = 0; i < log->deferred; i++) {
free(log->deferred_items[i]);
log->deferred_items[i] = NULL;
}
log->deferred = 0;
pthread_mutex_unlock(&log->deferred_free_lock);
}
static int gz_work(struct iolog_flush_data *data)
{
struct iolog_compress *c = NULL;
struct flist_head list;
unsigned int seq;
z_stream stream;
size_t total = 0;
int ret;
INIT_FLIST_HEAD(&list);
memset(&stream, 0, sizeof(stream));
stream.zalloc = Z_NULL;
stream.zfree = Z_NULL;
stream.opaque = Z_NULL;
ret = deflateInit(&stream, Z_DEFAULT_COMPRESSION);
if (ret != Z_OK) {
log_err("fio: failed to init gz stream\n");
goto err;
}
seq = ++data->log->chunk_seq;
stream.next_in = (void *) data->samples;
stream.avail_in = data->nr_samples * log_entry_sz(data->log);
dprint(FD_COMPRESS, "deflate input size=%lu, seq=%u, log=%s\n",
(unsigned long) stream.avail_in, seq,
data->log->filename);
do {
if (c)
dprint(FD_COMPRESS, "seq=%d, chunk=%lu\n", seq,
(unsigned long) c->len);
c = get_new_chunk(seq);
stream.avail_out = GZ_CHUNK;
stream.next_out = c->buf;
ret = deflate(&stream, Z_NO_FLUSH);
if (ret < 0) {
log_err("fio: deflate log (%d)\n", ret);
free_chunk(c);
goto err;
}
c->len = GZ_CHUNK - stream.avail_out;
flist_add_tail(&c->list, &list);
total += c->len;
} while (stream.avail_in);
stream.next_out = c->buf + c->len;
stream.avail_out = GZ_CHUNK - c->len;
ret = deflate(&stream, Z_FINISH);
if (ret < 0) {
/*
* Z_BUF_ERROR is special, it just means we need more
* output space. We'll handle that below. Treat any other
* error as fatal.
*/
if (ret != Z_BUF_ERROR) {
log_err("fio: deflate log (%d)\n", ret);
flist_del(&c->list);
free_chunk(c);
goto err;
}
}
total -= c->len;
c->len = GZ_CHUNK - stream.avail_out;
total += c->len;
dprint(FD_COMPRESS, "seq=%d, chunk=%lu\n", seq, (unsigned long) c->len);
if (ret != Z_STREAM_END) {
do {
c = get_new_chunk(seq);
stream.avail_out = GZ_CHUNK;
stream.next_out = c->buf;
ret = deflate(&stream, Z_FINISH);
c->len = GZ_CHUNK - stream.avail_out;
total += c->len;
flist_add_tail(&c->list, &list);
dprint(FD_COMPRESS, "seq=%d, chunk=%lu\n", seq,
(unsigned long) c->len);
} while (ret != Z_STREAM_END);
}
dprint(FD_COMPRESS, "deflated to size=%lu\n", (unsigned long) total);
ret = deflateEnd(&stream);
if (ret != Z_OK)
log_err("fio: deflateEnd %d\n", ret);
iolog_put_deferred(data->log, data->samples);
if (!flist_empty(&list)) {
pthread_mutex_lock(&data->log->chunk_lock);
flist_splice_tail(&list, &data->log->chunk_list);
pthread_mutex_unlock(&data->log->chunk_lock);
}
ret = 0;
done:
if (data->free)
sfree(data);
return ret;
err:
while (!flist_empty(&list)) {
c = flist_first_entry(list.next, struct iolog_compress, list);
flist_del(&c->list);
free_chunk(c);
}
ret = 1;
goto done;
}
/*
* Invoked from our compress helper thread, when logging would have exceeded
* the specified memory limitation. Compresses the previously stored
* entries.
*/
static int gz_work_async(struct submit_worker *sw, struct workqueue_work *work)
{
return gz_work(container_of(work, struct iolog_flush_data, work));
}
static int gz_init_worker(struct submit_worker *sw)
{
struct thread_data *td = sw->wq->td;
if (!fio_option_is_set(&td->o, log_gz_cpumask))
return 0;
if (fio_setaffinity(gettid(), td->o.log_gz_cpumask) == -1) {
log_err("gz: failed to set CPU affinity\n");
return 1;
}
return 0;
}
static struct workqueue_ops log_compress_wq_ops = {
.fn = gz_work_async,
.init_worker_fn = gz_init_worker,
.nice = 1,
};
int iolog_compress_init(struct thread_data *td, struct sk_out *sk_out)
{
if (!(td->flags & TD_F_COMPRESS_LOG))
return 0;
workqueue_init(td, &td->log_compress_wq, &log_compress_wq_ops, 1, sk_out);
return 0;
}
void iolog_compress_exit(struct thread_data *td)
{
if (!(td->flags & TD_F_COMPRESS_LOG))
return;
workqueue_exit(&td->log_compress_wq);
}
/*
* Queue work item to compress the existing log entries. We reset the
* current log to a small size, and reference the existing log in the
* data that we queue for compression. Once compression has been done,
* this old log is freed. If called with finish == true, will not return
* until the log compression has completed, and will flush all previous
* logs too
*/
static int iolog_flush(struct io_log *log)
{
struct iolog_flush_data *data;
data = malloc(sizeof(*data));
if (!data)
return 1;
data->log = log;
data->free = false;
while (!flist_empty(&log->io_logs)) {
struct io_logs *cur_log;
cur_log = flist_first_entry(&log->io_logs, struct io_logs, list);
flist_del_init(&cur_log->list);
data->samples = cur_log->log;
data->nr_samples = cur_log->nr_samples;
sfree(cur_log);
gz_work(data);
}
free(data);
return 0;
}
int iolog_cur_flush(struct io_log *log, struct io_logs *cur_log)
{
struct iolog_flush_data *data;
data = smalloc(sizeof(*data));
if (!data)
return 1;
data->log = log;
data->samples = cur_log->log;
data->nr_samples = cur_log->nr_samples;
data->free = true;
cur_log->nr_samples = cur_log->max_samples = 0;
cur_log->log = NULL;
workqueue_enqueue(&log->td->log_compress_wq, &data->work);
iolog_free_deferred(log);
return 0;
}
#else
static int iolog_flush(struct io_log *log)
{
return 1;
}
int iolog_cur_flush(struct io_log *log, struct io_logs *cur_log)
{
return 1;
}
int iolog_compress_init(struct thread_data *td, struct sk_out *sk_out)
{
return 0;
}
void iolog_compress_exit(struct thread_data *td)
{
}
#endif
struct io_logs *iolog_cur_log(struct io_log *log)
{
if (flist_empty(&log->io_logs))
return NULL;
return flist_last_entry(&log->io_logs, struct io_logs, list);
}
uint64_t iolog_nr_samples(struct io_log *iolog)
{
struct flist_head *entry;
uint64_t ret = 0;
flist_for_each(entry, &iolog->io_logs) {
struct io_logs *cur_log;
cur_log = flist_entry(entry, struct io_logs, list);
ret += cur_log->nr_samples;
}
return ret;
}
static int __write_log(struct thread_data *td, struct io_log *log, int try)
{
if (log)
return finish_log(td, log, try);
return 0;
}
static int write_iops_log(struct thread_data *td, int try, bool unit_log)
{
int ret;
if (per_unit_log(td->iops_log) != unit_log)
return 0;
ret = __write_log(td, td->iops_log, try);
if (!ret)
td->iops_log = NULL;
return ret;
}
static int write_slat_log(struct thread_data *td, int try, bool unit_log)
{
int ret;
if (!unit_log)
return 0;
ret = __write_log(td, td->slat_log, try);
if (!ret)
td->slat_log = NULL;
return ret;
}
static int write_clat_log(struct thread_data *td, int try, bool unit_log)
{
int ret;
if (!unit_log)
return 0;
ret = __write_log(td, td->clat_log, try);
if (!ret)
td->clat_log = NULL;
return ret;
}
static int write_clat_hist_log(struct thread_data *td, int try, bool unit_log)
{
int ret;
if (!unit_log)
return 0;
ret = __write_log(td, td->clat_hist_log, try);
if (!ret)
td->clat_hist_log = NULL;
return ret;
}
static int write_lat_log(struct thread_data *td, int try, bool unit_log)
{
int ret;
if (!unit_log)
return 0;
ret = __write_log(td, td->lat_log, try);
if (!ret)
td->lat_log = NULL;
return ret;
}
static int write_bandw_log(struct thread_data *td, int try, bool unit_log)
{
int ret;
if (per_unit_log(td->bw_log) != unit_log)
return 0;
ret = __write_log(td, td->bw_log, try);
if (!ret)
td->bw_log = NULL;
return ret;
}
enum {
BW_LOG_MASK = 1,
LAT_LOG_MASK = 2,
SLAT_LOG_MASK = 4,
CLAT_LOG_MASK = 8,
IOPS_LOG_MASK = 16,
CLAT_HIST_LOG_MASK = 32,
ALL_LOG_NR = 6,
};
struct log_type {
unsigned int mask;
int (*fn)(struct thread_data *, int, bool);
};
static struct log_type log_types[] = {
{
.mask = BW_LOG_MASK,
.fn = write_bandw_log,
},
{
.mask = LAT_LOG_MASK,
.fn = write_lat_log,
},
{
.mask = SLAT_LOG_MASK,
.fn = write_slat_log,
},
{
.mask = CLAT_LOG_MASK,
.fn = write_clat_log,
},
{
.mask = IOPS_LOG_MASK,
.fn = write_iops_log,
},
{
.mask = CLAT_HIST_LOG_MASK,
.fn = write_clat_hist_log,
}
};
void td_writeout_logs(struct thread_data *td, bool unit_logs)
{
unsigned int log_mask = 0;
unsigned int log_left = ALL_LOG_NR;
int old_state, i;
old_state = td_bump_runstate(td, TD_FINISHING);
finalize_logs(td, unit_logs);
while (log_left) {
int prev_log_left = log_left;
for (i = 0; i < ALL_LOG_NR && log_left; i++) {
struct log_type *lt = &log_types[i];
int ret;
if (!(log_mask & lt->mask)) {
ret = lt->fn(td, log_left != 1, unit_logs);
if (!ret) {
log_left--;
log_mask |= lt->mask;
}
}
}
if (prev_log_left == log_left)
usleep(5000);
}
td_restore_runstate(td, old_state);
}
void fio_writeout_logs(bool unit_logs)
{
struct thread_data *td;
int i;
for_each_td(td, i)
td_writeout_logs(td, unit_logs);
}