blob: d776ded9830d922188d87873268ac522697e6228 [file] [log] [blame]
/*
* linux/arch/arm/mach-omap2/gpmc-onenand.c
*
* Copyright (C) 2006 - 2009 Nokia Corporation
* Contacts: Juha Yrjola
* Tony Lindgren
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/mtd/onenand_regs.h>
#include <linux/io.h>
#include <asm/mach/flash.h>
#include <plat/onenand.h>
#include <plat/board.h>
#include <plat/gpmc.h>
static struct omap_onenand_platform_data *gpmc_onenand_data;
static struct platform_device gpmc_onenand_device = {
.name = "omap2-onenand",
.id = -1,
};
static int omap2_onenand_set_async_mode(int cs, void __iomem *onenand_base)
{
struct gpmc_timings t;
u32 reg;
int err;
const int t_cer = 15;
const int t_avdp = 12;
const int t_aavdh = 7;
const int t_ce = 76;
const int t_aa = 76;
const int t_oe = 20;
const int t_cez = 20; /* max of t_cez, t_oez */
const int t_ds = 30;
const int t_wpl = 40;
const int t_wph = 30;
/* Ensure sync read and sync write are disabled */
reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
reg &= ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE;
writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
memset(&t, 0, sizeof(t));
t.sync_clk = 0;
t.cs_on = 0;
t.adv_on = 0;
/* Read */
t.adv_rd_off = gpmc_round_ns_to_ticks(max_t(int, t_avdp, t_cer));
t.oe_on = t.adv_rd_off + gpmc_round_ns_to_ticks(t_aavdh);
t.access = t.adv_on + gpmc_round_ns_to_ticks(t_aa);
t.access = max_t(int, t.access, t.cs_on + gpmc_round_ns_to_ticks(t_ce));
t.access = max_t(int, t.access, t.oe_on + gpmc_round_ns_to_ticks(t_oe));
t.oe_off = t.access + gpmc_round_ns_to_ticks(1);
t.cs_rd_off = t.oe_off;
t.rd_cycle = t.cs_rd_off + gpmc_round_ns_to_ticks(t_cez);
/* Write */
t.adv_wr_off = t.adv_rd_off;
t.we_on = t.oe_on;
if (cpu_is_omap34xx()) {
t.wr_data_mux_bus = t.we_on;
t.wr_access = t.we_on + gpmc_round_ns_to_ticks(t_ds);
}
t.we_off = t.we_on + gpmc_round_ns_to_ticks(t_wpl);
t.cs_wr_off = t.we_off + gpmc_round_ns_to_ticks(t_wph);
t.wr_cycle = t.cs_wr_off + gpmc_round_ns_to_ticks(t_cez);
/* Configure GPMC for asynchronous read */
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1,
GPMC_CONFIG1_DEVICESIZE_16 |
GPMC_CONFIG1_MUXADDDATA);
err = gpmc_cs_set_timings(cs, &t);
if (err)
return err;
/* Ensure sync read and sync write are disabled */
reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
reg &= ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE;
writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
return 0;
}
static void set_onenand_cfg(void __iomem *onenand_base, int latency,
int sync_read, int sync_write, int hf, int vhf)
{
u32 reg;
reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
reg &= ~((0x7 << ONENAND_SYS_CFG1_BRL_SHIFT) | (0x7 << 9));
reg |= (latency << ONENAND_SYS_CFG1_BRL_SHIFT) |
ONENAND_SYS_CFG1_BL_16;
if (sync_read)
reg |= ONENAND_SYS_CFG1_SYNC_READ;
else
reg &= ~ONENAND_SYS_CFG1_SYNC_READ;
if (sync_write)
reg |= ONENAND_SYS_CFG1_SYNC_WRITE;
else
reg &= ~ONENAND_SYS_CFG1_SYNC_WRITE;
if (hf)
reg |= ONENAND_SYS_CFG1_HF;
else
reg &= ~ONENAND_SYS_CFG1_HF;
if (vhf)
reg |= ONENAND_SYS_CFG1_VHF;
else
reg &= ~ONENAND_SYS_CFG1_VHF;
writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
}
static int omap2_onenand_get_freq(struct omap_onenand_platform_data *cfg,
void __iomem *onenand_base, bool *clk_dep)
{
u16 ver = readw(onenand_base + ONENAND_REG_VERSION_ID);
int freq = 0;
if (cfg->get_freq) {
struct onenand_freq_info fi;
fi.maf_id = readw(onenand_base + ONENAND_REG_MANUFACTURER_ID);
fi.dev_id = readw(onenand_base + ONENAND_REG_DEVICE_ID);
fi.ver_id = ver;
freq = cfg->get_freq(&fi, clk_dep);
if (freq)
return freq;
}
switch ((ver >> 4) & 0xf) {
case 0:
freq = 40;
break;
case 1:
freq = 54;
break;
case 2:
freq = 66;
break;
case 3:
freq = 83;
break;
case 4:
freq = 104;
break;
default:
freq = 54;
break;
}
return freq;
}
static int omap2_onenand_set_sync_mode(struct omap_onenand_platform_data *cfg,
void __iomem *onenand_base,
int *freq_ptr)
{
struct gpmc_timings t;
const int t_cer = 15;
const int t_avdp = 12;
const int t_cez = 20; /* max of t_cez, t_oez */
const int t_ds = 30;
const int t_wpl = 40;
const int t_wph = 30;
int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo;
int tick_ns, div, fclk_offset_ns, fclk_offset, gpmc_clk_ns, latency;
int first_time = 0, hf = 0, vhf = 0, sync_read = 0, sync_write = 0;
int err, ticks_cez;
int cs = cfg->cs, freq = *freq_ptr;
u32 reg;
bool clk_dep = false;
if (cfg->flags & ONENAND_SYNC_READ) {
sync_read = 1;
} else if (cfg->flags & ONENAND_SYNC_READWRITE) {
sync_read = 1;
sync_write = 1;
} else
return omap2_onenand_set_async_mode(cs, onenand_base);
if (!freq) {
/* Very first call freq is not known */
err = omap2_onenand_set_async_mode(cs, onenand_base);
if (err)
return err;
freq = omap2_onenand_get_freq(cfg, onenand_base, &clk_dep);
first_time = 1;
}
switch (freq) {
case 104:
min_gpmc_clk_period = 9600; /* 104 MHz */
t_ces = 3;
t_avds = 4;
t_avdh = 2;
t_ach = 3;
t_aavdh = 6;
t_rdyo = 6;
break;
case 83:
min_gpmc_clk_period = 12000; /* 83 MHz */
t_ces = 5;
t_avds = 4;
t_avdh = 2;
t_ach = 6;
t_aavdh = 6;
t_rdyo = 9;
break;
case 66:
min_gpmc_clk_period = 15000; /* 66 MHz */
t_ces = 6;
t_avds = 5;
t_avdh = 2;
t_ach = 6;
t_aavdh = 6;
t_rdyo = 11;
break;
default:
min_gpmc_clk_period = 18500; /* 54 MHz */
t_ces = 7;
t_avds = 7;
t_avdh = 7;
t_ach = 9;
t_aavdh = 7;
t_rdyo = 15;
sync_write = 0;
break;
}
tick_ns = gpmc_ticks_to_ns(1);
div = gpmc_cs_calc_divider(cs, min_gpmc_clk_period);
gpmc_clk_ns = gpmc_ticks_to_ns(div);
if (gpmc_clk_ns < 15) /* >66Mhz */
hf = 1;
if (gpmc_clk_ns < 12) /* >83Mhz */
vhf = 1;
if (vhf)
latency = 8;
else if (hf)
latency = 6;
else if (gpmc_clk_ns >= 25) /* 40 MHz*/
latency = 3;
else
latency = 4;
if (clk_dep) {
if (gpmc_clk_ns < 12) { /* >83Mhz */
t_ces = 3;
t_avds = 4;
} else if (gpmc_clk_ns < 15) { /* >66Mhz */
t_ces = 5;
t_avds = 4;
} else if (gpmc_clk_ns < 25) { /* >40Mhz */
t_ces = 6;
t_avds = 5;
} else {
t_ces = 7;
t_avds = 7;
}
}
if (first_time)
set_onenand_cfg(onenand_base, latency,
sync_read, sync_write, hf, vhf);
if (div == 1) {
reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG2);
reg |= (1 << 7);
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG2, reg);
reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG3);
reg |= (1 << 7);
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG3, reg);
reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG4);
reg |= (1 << 7);
reg |= (1 << 23);
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG4, reg);
} else {
reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG2);
reg &= ~(1 << 7);
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG2, reg);
reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG3);
reg &= ~(1 << 7);
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG3, reg);
reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG4);
reg &= ~(1 << 7);
reg &= ~(1 << 23);
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG4, reg);
}
/* Set synchronous read timings */
memset(&t, 0, sizeof(t));
t.sync_clk = min_gpmc_clk_period;
t.cs_on = 0;
t.adv_on = 0;
fclk_offset_ns = gpmc_round_ns_to_ticks(max_t(int, t_ces, t_avds));
fclk_offset = gpmc_ns_to_ticks(fclk_offset_ns);
t.page_burst_access = gpmc_clk_ns;
/* Read */
t.adv_rd_off = gpmc_ticks_to_ns(fclk_offset + gpmc_ns_to_ticks(t_avdh));
t.oe_on = gpmc_ticks_to_ns(fclk_offset + gpmc_ns_to_ticks(t_ach));
/* Force at least 1 clk between AVD High to OE Low */
if (t.oe_on <= t.adv_rd_off)
t.oe_on = t.adv_rd_off + gpmc_round_ns_to_ticks(1);
t.access = gpmc_ticks_to_ns(fclk_offset + (latency + 1) * div);
t.oe_off = t.access + gpmc_round_ns_to_ticks(1);
t.cs_rd_off = t.oe_off;
ticks_cez = ((gpmc_ns_to_ticks(t_cez) + div - 1) / div) * div;
t.rd_cycle = gpmc_ticks_to_ns(fclk_offset + (latency + 1) * div +
ticks_cez);
/* Write */
if (sync_write) {
t.adv_wr_off = t.adv_rd_off;
t.we_on = 0;
t.we_off = t.cs_rd_off;
t.cs_wr_off = t.cs_rd_off;
t.wr_cycle = t.rd_cycle;
if (cpu_is_omap34xx()) {
t.wr_data_mux_bus = gpmc_ticks_to_ns(fclk_offset +
gpmc_ps_to_ticks(min_gpmc_clk_period +
t_rdyo * 1000));
t.wr_access = t.access;
}
} else {
t.adv_wr_off = gpmc_round_ns_to_ticks(max_t(int,
t_avdp, t_cer));
t.we_on = t.adv_wr_off + gpmc_round_ns_to_ticks(t_aavdh);
t.we_off = t.we_on + gpmc_round_ns_to_ticks(t_wpl);
t.cs_wr_off = t.we_off + gpmc_round_ns_to_ticks(t_wph);
t.wr_cycle = t.cs_wr_off + gpmc_round_ns_to_ticks(t_cez);
if (cpu_is_omap34xx()) {
t.wr_data_mux_bus = t.we_on;
t.wr_access = t.we_on + gpmc_round_ns_to_ticks(t_ds);
}
}
/* Configure GPMC for synchronous read */
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1,
GPMC_CONFIG1_WRAPBURST_SUPP |
GPMC_CONFIG1_READMULTIPLE_SUPP |
(sync_read ? GPMC_CONFIG1_READTYPE_SYNC : 0) |
(sync_write ? GPMC_CONFIG1_WRITEMULTIPLE_SUPP : 0) |
(sync_write ? GPMC_CONFIG1_WRITETYPE_SYNC : 0) |
GPMC_CONFIG1_CLKACTIVATIONTIME(fclk_offset) |
GPMC_CONFIG1_PAGE_LEN(2) |
(cpu_is_omap34xx() ? 0 :
(GPMC_CONFIG1_WAIT_READ_MON |
GPMC_CONFIG1_WAIT_PIN_SEL(0))) |
GPMC_CONFIG1_DEVICESIZE_16 |
GPMC_CONFIG1_DEVICETYPE_NOR |
GPMC_CONFIG1_MUXADDDATA);
err = gpmc_cs_set_timings(cs, &t);
if (err)
return err;
set_onenand_cfg(onenand_base, latency, sync_read, sync_write, hf, vhf);
*freq_ptr = freq;
return 0;
}
static int gpmc_onenand_setup(void __iomem *onenand_base, int *freq_ptr)
{
struct device *dev = &gpmc_onenand_device.dev;
/* Set sync timings in GPMC */
if (omap2_onenand_set_sync_mode(gpmc_onenand_data, onenand_base,
freq_ptr) < 0) {
dev_err(dev, "Unable to set synchronous mode\n");
return -EINVAL;
}
return 0;
}
void __init gpmc_onenand_init(struct omap_onenand_platform_data *_onenand_data)
{
gpmc_onenand_data = _onenand_data;
gpmc_onenand_data->onenand_setup = gpmc_onenand_setup;
gpmc_onenand_device.dev.platform_data = gpmc_onenand_data;
if (cpu_is_omap24xx() &&
(gpmc_onenand_data->flags & ONENAND_SYNC_READWRITE)) {
printk(KERN_ERR "Onenand using only SYNC_READ on 24xx\n");
gpmc_onenand_data->flags &= ~ONENAND_SYNC_READWRITE;
gpmc_onenand_data->flags |= ONENAND_SYNC_READ;
}
if (platform_device_register(&gpmc_onenand_device) < 0) {
printk(KERN_ERR "Unable to register OneNAND device\n");
return;
}
}