blob: f1d0881687233eaae024f0bb9617b0a30a1f12b2 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2007 - 2018 Intel Corporation. */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
#include <linux/slab.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <linux/net_tstamp.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if.h>
#include <linux/if_vlan.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
#include <linux/if_ether.h>
#include <linux/prefetch.h>
#include <linux/bpf.h>
#include <linux/bpf_trace.h>
#include <linux/pm_runtime.h>
#include <linux/etherdevice.h>
#include <linux/lockdep.h>
#ifdef CONFIG_IGB_DCA
#include <linux/dca.h>
#endif
#include <linux/i2c.h>
#include "igb.h"
enum queue_mode {
QUEUE_MODE_STRICT_PRIORITY,
QUEUE_MODE_STREAM_RESERVATION,
};
enum tx_queue_prio {
TX_QUEUE_PRIO_HIGH,
TX_QUEUE_PRIO_LOW,
};
char igb_driver_name[] = "igb";
static const char igb_driver_string[] =
"Intel(R) Gigabit Ethernet Network Driver";
static const char igb_copyright[] =
"Copyright (c) 2007-2014 Intel Corporation.";
static const struct e1000_info *igb_info_tbl[] = {
[board_82575] = &e1000_82575_info,
};
static const struct pci_device_id igb_pci_tbl[] = {
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
/* required last entry */
{0, }
};
MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
static void igb_setup_mrqc(struct igb_adapter *);
static void igb_init_queue_configuration(struct igb_adapter *adapter);
static int igb_sw_init(struct igb_adapter *);
int igb_open(struct net_device *);
int igb_close(struct net_device *);
static void igb_configure(struct igb_adapter *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
static void igb_set_rx_mode(struct net_device *);
static void igb_update_phy_info(struct timer_list *);
static void igb_watchdog(struct timer_list *);
static void igb_watchdog_task(struct work_struct *);
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
static void igb_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *stats);
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
static void igb_set_uta(struct igb_adapter *adapter, bool set);
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
static irqreturn_t igb_msix_ring(int irq, void *);
#ifdef CONFIG_IGB_DCA
static void igb_update_dca(struct igb_q_vector *);
static void igb_setup_dca(struct igb_adapter *);
#endif /* CONFIG_IGB_DCA */
static int igb_poll(struct napi_struct *, int);
static bool igb_clean_tx_irq(struct igb_q_vector *, int);
static int igb_clean_rx_irq(struct igb_q_vector *, int);
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
static void igb_reset_task(struct work_struct *);
static void igb_vlan_mode(struct net_device *netdev,
netdev_features_t features);
static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
static void igb_restore_vlan(struct igb_adapter *);
static void igb_rar_set_index(struct igb_adapter *, u32);
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
static void igb_flush_mac_table(struct igb_adapter *);
static int igb_available_rars(struct igb_adapter *, u8);
static void igb_set_default_mac_filter(struct igb_adapter *);
static int igb_uc_sync(struct net_device *, const unsigned char *);
static int igb_uc_unsync(struct net_device *, const unsigned char *);
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
int vf, u16 vlan, u8 qos, __be16 vlan_proto);
static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
bool setting);
static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
bool setting);
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
struct ifla_vf_info *ivi);
static void igb_check_vf_rate_limit(struct igb_adapter *);
static void igb_nfc_filter_exit(struct igb_adapter *adapter);
static void igb_nfc_filter_restore(struct igb_adapter *adapter);
#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf);
static int igb_disable_sriov(struct pci_dev *dev, bool reinit);
#endif
#ifdef CONFIG_IGB_DCA
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
.notifier_call = igb_notify_dca,
.next = NULL,
.priority = 0
};
#endif
#ifdef CONFIG_PCI_IOV
static unsigned int max_vfs;
module_param(max_vfs, uint, 0444);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
#endif /* CONFIG_PCI_IOV */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);
static const struct pci_error_handlers igb_err_handler = {
.error_detected = igb_io_error_detected,
.slot_reset = igb_io_slot_reset,
.resume = igb_io_resume,
};
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL v2");
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
struct igb_reg_info {
u32 ofs;
char *name;
};
static const struct igb_reg_info igb_reg_info_tbl[] = {
/* General Registers */
{E1000_CTRL, "CTRL"},
{E1000_STATUS, "STATUS"},
{E1000_CTRL_EXT, "CTRL_EXT"},
/* Interrupt Registers */
{E1000_ICR, "ICR"},
/* RX Registers */
{E1000_RCTL, "RCTL"},
{E1000_RDLEN(0), "RDLEN"},
{E1000_RDH(0), "RDH"},
{E1000_RDT(0), "RDT"},
{E1000_RXDCTL(0), "RXDCTL"},
{E1000_RDBAL(0), "RDBAL"},
{E1000_RDBAH(0), "RDBAH"},
/* TX Registers */
{E1000_TCTL, "TCTL"},
{E1000_TDBAL(0), "TDBAL"},
{E1000_TDBAH(0), "TDBAH"},
{E1000_TDLEN(0), "TDLEN"},
{E1000_TDH(0), "TDH"},
{E1000_TDT(0), "TDT"},
{E1000_TXDCTL(0), "TXDCTL"},
{E1000_TDFH, "TDFH"},
{E1000_TDFT, "TDFT"},
{E1000_TDFHS, "TDFHS"},
{E1000_TDFPC, "TDFPC"},
/* List Terminator */
{}
};
/* igb_regdump - register printout routine */
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
int n = 0;
char rname[16];
u32 regs[8];
switch (reginfo->ofs) {
case E1000_RDLEN(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_RDLEN(n));
break;
case E1000_RDH(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_RDH(n));
break;
case E1000_RDT(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_RDT(n));
break;
case E1000_RXDCTL(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_RXDCTL(n));
break;
case E1000_RDBAL(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_RDBAL(n));
break;
case E1000_RDBAH(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_RDBAH(n));
break;
case E1000_TDBAL(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_TDBAL(n));
break;
case E1000_TDBAH(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_TDBAH(n));
break;
case E1000_TDLEN(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_TDLEN(n));
break;
case E1000_TDH(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_TDH(n));
break;
case E1000_TDT(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_TDT(n));
break;
case E1000_TXDCTL(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_TXDCTL(n));
break;
default:
pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
return;
}
snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
regs[2], regs[3]);
}
/* igb_dump - Print registers, Tx-rings and Rx-rings */
static void igb_dump(struct igb_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
struct igb_reg_info *reginfo;
struct igb_ring *tx_ring;
union e1000_adv_tx_desc *tx_desc;
struct my_u0 { __le64 a; __le64 b; } *u0;
struct igb_ring *rx_ring;
union e1000_adv_rx_desc *rx_desc;
u32 staterr;
u16 i, n;
if (!netif_msg_hw(adapter))
return;
/* Print netdevice Info */
if (netdev) {
dev_info(&adapter->pdev->dev, "Net device Info\n");
pr_info("Device Name state trans_start\n");
pr_info("%-15s %016lX %016lX\n", netdev->name,
netdev->state, dev_trans_start(netdev));
}
/* Print Registers */
dev_info(&adapter->pdev->dev, "Register Dump\n");
pr_info(" Register Name Value\n");
for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
reginfo->name; reginfo++) {
igb_regdump(hw, reginfo);
}
/* Print TX Ring Summary */
if (!netdev || !netif_running(netdev))
goto exit;
dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
for (n = 0; n < adapter->num_tx_queues; n++) {
struct igb_tx_buffer *buffer_info;
tx_ring = adapter->tx_ring[n];
buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
n, tx_ring->next_to_use, tx_ring->next_to_clean,
(u64)dma_unmap_addr(buffer_info, dma),
dma_unmap_len(buffer_info, len),
buffer_info->next_to_watch,
(u64)buffer_info->time_stamp);
}
/* Print TX Rings */
if (!netif_msg_tx_done(adapter))
goto rx_ring_summary;
dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
/* Transmit Descriptor Formats
*
* Advanced Transmit Descriptor
* +--------------------------------------------------------------+
* 0 | Buffer Address [63:0] |
* +--------------------------------------------------------------+
* 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
* +--------------------------------------------------------------+
* 63 46 45 40 39 38 36 35 32 31 24 15 0
*/
for (n = 0; n < adapter->num_tx_queues; n++) {
tx_ring = adapter->tx_ring[n];
pr_info("------------------------------------\n");
pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
pr_info("------------------------------------\n");
pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
const char *next_desc;
struct igb_tx_buffer *buffer_info;
tx_desc = IGB_TX_DESC(tx_ring, i);
buffer_info = &tx_ring->tx_buffer_info[i];
u0 = (struct my_u0 *)tx_desc;
if (i == tx_ring->next_to_use &&
i == tx_ring->next_to_clean)
next_desc = " NTC/U";
else if (i == tx_ring->next_to_use)
next_desc = " NTU";
else if (i == tx_ring->next_to_clean)
next_desc = " NTC";
else
next_desc = "";
pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
i, le64_to_cpu(u0->a),
le64_to_cpu(u0->b),
(u64)dma_unmap_addr(buffer_info, dma),
dma_unmap_len(buffer_info, len),
buffer_info->next_to_watch,
(u64)buffer_info->time_stamp,
buffer_info->skb, next_desc);
if (netif_msg_pktdata(adapter) && buffer_info->skb)
print_hex_dump(KERN_INFO, "",
DUMP_PREFIX_ADDRESS,
16, 1, buffer_info->skb->data,
dma_unmap_len(buffer_info, len),
true);
}
}
/* Print RX Rings Summary */
rx_ring_summary:
dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
pr_info("Queue [NTU] [NTC]\n");
for (n = 0; n < adapter->num_rx_queues; n++) {
rx_ring = adapter->rx_ring[n];
pr_info(" %5d %5X %5X\n",
n, rx_ring->next_to_use, rx_ring->next_to_clean);
}
/* Print RX Rings */
if (!netif_msg_rx_status(adapter))
goto exit;
dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
/* Advanced Receive Descriptor (Read) Format
* 63 1 0
* +-----------------------------------------------------+
* 0 | Packet Buffer Address [63:1] |A0/NSE|
* +----------------------------------------------+------+
* 8 | Header Buffer Address [63:1] | DD |
* +-----------------------------------------------------+
*
*
* Advanced Receive Descriptor (Write-Back) Format
*
* 63 48 47 32 31 30 21 20 17 16 4 3 0
* +------------------------------------------------------+
* 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
* | Checksum Ident | | | | Type | Type |
* +------------------------------------------------------+
* 8 | VLAN Tag | Length | Extended Error | Extended Status |
* +------------------------------------------------------+
* 63 48 47 32 31 20 19 0
*/
for (n = 0; n < adapter->num_rx_queues; n++) {
rx_ring = adapter->rx_ring[n];
pr_info("------------------------------------\n");
pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
pr_info("------------------------------------\n");
pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
for (i = 0; i < rx_ring->count; i++) {
const char *next_desc;
struct igb_rx_buffer *buffer_info;
buffer_info = &rx_ring->rx_buffer_info[i];
rx_desc = IGB_RX_DESC(rx_ring, i);
u0 = (struct my_u0 *)rx_desc;
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
if (i == rx_ring->next_to_use)
next_desc = " NTU";
else if (i == rx_ring->next_to_clean)
next_desc = " NTC";
else
next_desc = "";
if (staterr & E1000_RXD_STAT_DD) {
/* Descriptor Done */
pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
"RWB", i,
le64_to_cpu(u0->a),
le64_to_cpu(u0->b),
next_desc);
} else {
pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
"R ", i,
le64_to_cpu(u0->a),
le64_to_cpu(u0->b),
(u64)buffer_info->dma,
next_desc);
if (netif_msg_pktdata(adapter) &&
buffer_info->dma && buffer_info->page) {
print_hex_dump(KERN_INFO, "",
DUMP_PREFIX_ADDRESS,
16, 1,
page_address(buffer_info->page) +
buffer_info->page_offset,
igb_rx_bufsz(rx_ring), true);
}
}
}
}
exit:
return;
}
/**
* igb_get_i2c_data - Reads the I2C SDA data bit
* @data: opaque pointer to adapter struct
*
* Returns the I2C data bit value
**/
static int igb_get_i2c_data(void *data)
{
struct igb_adapter *adapter = (struct igb_adapter *)data;
struct e1000_hw *hw = &adapter->hw;
s32 i2cctl = rd32(E1000_I2CPARAMS);
return !!(i2cctl & E1000_I2C_DATA_IN);
}
/**
* igb_set_i2c_data - Sets the I2C data bit
* @data: pointer to hardware structure
* @state: I2C data value (0 or 1) to set
*
* Sets the I2C data bit
**/
static void igb_set_i2c_data(void *data, int state)
{
struct igb_adapter *adapter = (struct igb_adapter *)data;
struct e1000_hw *hw = &adapter->hw;
s32 i2cctl = rd32(E1000_I2CPARAMS);
if (state) {
i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
} else {
i2cctl &= ~E1000_I2C_DATA_OE_N;
i2cctl &= ~E1000_I2C_DATA_OUT;
}
wr32(E1000_I2CPARAMS, i2cctl);
wrfl();
}
/**
* igb_set_i2c_clk - Sets the I2C SCL clock
* @data: pointer to hardware structure
* @state: state to set clock
*
* Sets the I2C clock line to state
**/
static void igb_set_i2c_clk(void *data, int state)
{
struct igb_adapter *adapter = (struct igb_adapter *)data;
struct e1000_hw *hw = &adapter->hw;
s32 i2cctl = rd32(E1000_I2CPARAMS);
if (state) {
i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
} else {
i2cctl &= ~E1000_I2C_CLK_OUT;
i2cctl &= ~E1000_I2C_CLK_OE_N;
}
wr32(E1000_I2CPARAMS, i2cctl);
wrfl();
}
/**
* igb_get_i2c_clk - Gets the I2C SCL clock state
* @data: pointer to hardware structure
*
* Gets the I2C clock state
**/
static int igb_get_i2c_clk(void *data)
{
struct igb_adapter *adapter = (struct igb_adapter *)data;
struct e1000_hw *hw = &adapter->hw;
s32 i2cctl = rd32(E1000_I2CPARAMS);
return !!(i2cctl & E1000_I2C_CLK_IN);
}
static const struct i2c_algo_bit_data igb_i2c_algo = {
.setsda = igb_set_i2c_data,
.setscl = igb_set_i2c_clk,
.getsda = igb_get_i2c_data,
.getscl = igb_get_i2c_clk,
.udelay = 5,
.timeout = 20,
};
/**
* igb_get_hw_dev - return device
* @hw: pointer to hardware structure
*
* used by hardware layer to print debugging information
**/
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
{
struct igb_adapter *adapter = hw->back;
return adapter->netdev;
}
static struct pci_driver igb_driver;
/**
* igb_init_module - Driver Registration Routine
*
* igb_init_module is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
**/
static int __init igb_init_module(void)
{
int ret;
pr_info("%s\n", igb_driver_string);
pr_info("%s\n", igb_copyright);
#ifdef CONFIG_IGB_DCA
dca_register_notify(&dca_notifier);
#endif
ret = pci_register_driver(&igb_driver);
return ret;
}
module_init(igb_init_module);
/**
* igb_exit_module - Driver Exit Cleanup Routine
*
* igb_exit_module is called just before the driver is removed
* from memory.
**/
static void __exit igb_exit_module(void)
{
#ifdef CONFIG_IGB_DCA
dca_unregister_notify(&dca_notifier);
#endif
pci_unregister_driver(&igb_driver);
}
module_exit(igb_exit_module);
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
* igb_cache_ring_register - Descriptor ring to register mapping
* @adapter: board private structure to initialize
*
* Once we know the feature-set enabled for the device, we'll cache
* the register offset the descriptor ring is assigned to.
**/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
int i = 0, j = 0;
u32 rbase_offset = adapter->vfs_allocated_count;
switch (adapter->hw.mac.type) {
case e1000_82576:
/* The queues are allocated for virtualization such that VF 0
* is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
* In order to avoid collision we start at the first free queue
* and continue consuming queues in the same sequence
*/
if (adapter->vfs_allocated_count) {
for (; i < adapter->rss_queues; i++)
adapter->rx_ring[i]->reg_idx = rbase_offset +
Q_IDX_82576(i);
}
fallthrough;
case e1000_82575:
case e1000_82580:
case e1000_i350:
case e1000_i354:
case e1000_i210:
case e1000_i211:
default:
for (; i < adapter->num_rx_queues; i++)
adapter->rx_ring[i]->reg_idx = rbase_offset + i;
for (; j < adapter->num_tx_queues; j++)
adapter->tx_ring[j]->reg_idx = rbase_offset + j;
break;
}
}
u32 igb_rd32(struct e1000_hw *hw, u32 reg)
{
struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
u32 value = 0;
if (E1000_REMOVED(hw_addr))
return ~value;
value = readl(&hw_addr[reg]);
/* reads should not return all F's */
if (!(~value) && (!reg || !(~readl(hw_addr)))) {
struct net_device *netdev = igb->netdev;
hw->hw_addr = NULL;
netdev_err(netdev, "PCIe link lost\n");
WARN(pci_device_is_present(igb->pdev),
"igb: Failed to read reg 0x%x!\n", reg);
}
return value;
}
/**
* igb_write_ivar - configure ivar for given MSI-X vector
* @hw: pointer to the HW structure
* @msix_vector: vector number we are allocating to a given ring
* @index: row index of IVAR register to write within IVAR table
* @offset: column offset of in IVAR, should be multiple of 8
*
* This function is intended to handle the writing of the IVAR register
* for adapters 82576 and newer. The IVAR table consists of 2 columns,
* each containing an cause allocation for an Rx and Tx ring, and a
* variable number of rows depending on the number of queues supported.
**/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
int index, int offset)
{
u32 ivar = array_rd32(E1000_IVAR0, index);
/* clear any bits that are currently set */
ivar &= ~((u32)0xFF << offset);
/* write vector and valid bit */
ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
array_wr32(E1000_IVAR0, index, ivar);
}
#define IGB_N0_QUEUE -1
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
{
struct igb_adapter *adapter = q_vector->adapter;
struct e1000_hw *hw = &adapter->hw;
int rx_queue = IGB_N0_QUEUE;
int tx_queue = IGB_N0_QUEUE;
u32 msixbm = 0;
if (q_vector->rx.ring)
rx_queue = q_vector->rx.ring->reg_idx;
if (q_vector->tx.ring)
tx_queue = q_vector->tx.ring->reg_idx;
switch (hw->mac.type) {
case e1000_82575:
/* The 82575 assigns vectors using a bitmask, which matches the
* bitmask for the EICR/EIMS/EIMC registers. To assign one
* or more queues to a vector, we write the appropriate bits
* into the MSIXBM register for that vector.
*/
if (rx_queue > IGB_N0_QUEUE)
msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
if (tx_queue > IGB_N0_QUEUE)
msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
msixbm |= E1000_EIMS_OTHER;
array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
q_vector->eims_value = msixbm;
break;
case e1000_82576:
/* 82576 uses a table that essentially consists of 2 columns
* with 8 rows. The ordering is column-major so we use the
* lower 3 bits as the row index, and the 4th bit as the
* column offset.
*/
if (rx_queue > IGB_N0_QUEUE)
igb_write_ivar(hw, msix_vector,
rx_queue & 0x7,
(rx_queue & 0x8) << 1);
if (tx_queue > IGB_N0_QUEUE)
igb_write_ivar(hw, msix_vector,
tx_queue & 0x7,
((tx_queue & 0x8) << 1) + 8);
q_vector->eims_value = BIT(msix_vector);
break;
case e1000_82580:
case e1000_i350:
case e1000_i354:
case e1000_i210:
case e1000_i211:
/* On 82580 and newer adapters the scheme is similar to 82576
* however instead of ordering column-major we have things
* ordered row-major. So we traverse the table by using
* bit 0 as the column offset, and the remaining bits as the
* row index.
*/
if (rx_queue > IGB_N0_QUEUE)
igb_write_ivar(hw, msix_vector,
rx_queue >> 1,
(rx_queue & 0x1) << 4);
if (tx_queue > IGB_N0_QUEUE)
igb_write_ivar(hw, msix_vector,
tx_queue >> 1,
((tx_queue & 0x1) << 4) + 8);
q_vector->eims_value = BIT(msix_vector);
break;
default:
BUG();
break;
}
/* add q_vector eims value to global eims_enable_mask */
adapter->eims_enable_mask |= q_vector->eims_value;
/* configure q_vector to set itr on first interrupt */
q_vector->set_itr = 1;
}
/**
* igb_configure_msix - Configure MSI-X hardware
* @adapter: board private structure to initialize
*
* igb_configure_msix sets up the hardware to properly
* generate MSI-X interrupts.
**/
static void igb_configure_msix(struct igb_adapter *adapter)
{
u32 tmp;
int i, vector = 0;
struct e1000_hw *hw = &adapter->hw;
adapter->eims_enable_mask = 0;
/* set vector for other causes, i.e. link changes */
switch (hw->mac.type) {
case e1000_82575:
tmp = rd32(E1000_CTRL_EXT);
/* enable MSI-X PBA support*/
tmp |= E1000_CTRL_EXT_PBA_CLR;
/* Auto-Mask interrupts upon ICR read. */
tmp |= E1000_CTRL_EXT_EIAME;
tmp |= E1000_CTRL_EXT_IRCA;
wr32(E1000_CTRL_EXT, tmp);
/* enable msix_other interrupt */
array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
adapter->eims_other = E1000_EIMS_OTHER;
break;
case e1000_82576:
case e1000_82580:
case e1000_i350:
case e1000_i354:
case e1000_i210:
case e1000_i211:
/* Turn on MSI-X capability first, or our settings
* won't stick. And it will take days to debug.
*/
wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
E1000_GPIE_PBA | E1000_GPIE_EIAME |
E1000_GPIE_NSICR);
/* enable msix_other interrupt */
adapter->eims_other = BIT(vector);
tmp = (vector++ | E1000_IVAR_VALID) << 8;
wr32(E1000_IVAR_MISC, tmp);
break;
default:
/* do nothing, since nothing else supports MSI-X */
break;
} /* switch (hw->mac.type) */
adapter->eims_enable_mask |= adapter->eims_other;
for (i = 0; i < adapter->num_q_vectors; i++)
igb_assign_vector(adapter->q_vector[i], vector++);
wrfl();
}
/**
* igb_request_msix - Initialize MSI-X interrupts
* @adapter: board private structure to initialize
*
* igb_request_msix allocates MSI-X vectors and requests interrupts from the
* kernel.
**/
static int igb_request_msix(struct igb_adapter *adapter)
{
unsigned int num_q_vectors = adapter->num_q_vectors;
struct net_device *netdev = adapter->netdev;
int i, err = 0, vector = 0, free_vector = 0;
err = request_irq(adapter->msix_entries[vector].vector,
igb_msix_other, 0, netdev->name, adapter);
if (err)
goto err_out;
if (num_q_vectors > MAX_Q_VECTORS) {
num_q_vectors = MAX_Q_VECTORS;
dev_warn(&adapter->pdev->dev,
"The number of queue vectors (%d) is higher than max allowed (%d)\n",
adapter->num_q_vectors, MAX_Q_VECTORS);
}
for (i = 0; i < num_q_vectors; i++) {
struct igb_q_vector *q_vector = adapter->q_vector[i];
vector++;
q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
if (q_vector->rx.ring && q_vector->tx.ring)
sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
q_vector->rx.ring->queue_index);
else if (q_vector->tx.ring)
sprintf(q_vector->name, "%s-tx-%u", netdev->name,
q_vector->tx.ring->queue_index);
else if (q_vector->rx.ring)
sprintf(q_vector->name, "%s-rx-%u", netdev->name,
q_vector->rx.ring->queue_index);
else
sprintf(q_vector->name, "%s-unused", netdev->name);
err = request_irq(adapter->msix_entries[vector].vector,
igb_msix_ring, 0, q_vector->name,
q_vector);
if (err)
goto err_free;
}
igb_configure_msix(adapter);
return 0;
err_free:
/* free already assigned IRQs */
free_irq(adapter->msix_entries[free_vector++].vector, adapter);
vector--;
for (i = 0; i < vector; i++) {
free_irq(adapter->msix_entries[free_vector++].vector,
adapter->q_vector[i]);
}
err_out:
return err;
}
/**
* igb_free_q_vector - Free memory allocated for specific interrupt vector
* @adapter: board private structure to initialize
* @v_idx: Index of vector to be freed
*
* This function frees the memory allocated to the q_vector.
**/
static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
{
struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
adapter->q_vector[v_idx] = NULL;
/* igb_get_stats64() might access the rings on this vector,
* we must wait a grace period before freeing it.
*/
if (q_vector)
kfree_rcu(q_vector, rcu);
}
/**
* igb_reset_q_vector - Reset config for interrupt vector
* @adapter: board private structure to initialize
* @v_idx: Index of vector to be reset
*
* If NAPI is enabled it will delete any references to the
* NAPI struct. This is preparation for igb_free_q_vector.
**/
static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
{
struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
/* Coming from igb_set_interrupt_capability, the vectors are not yet
* allocated. So, q_vector is NULL so we should stop here.
*/
if (!q_vector)
return;
if (q_vector->tx.ring)
adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
if (q_vector->rx.ring)
adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
netif_napi_del(&q_vector->napi);
}
static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
int v_idx = adapter->num_q_vectors;
if (adapter->flags & IGB_FLAG_HAS_MSIX)
pci_disable_msix(adapter->pdev);
else if (adapter->flags & IGB_FLAG_HAS_MSI)
pci_disable_msi(adapter->pdev);
while (v_idx--)
igb_reset_q_vector(adapter, v_idx);
}
/**
* igb_free_q_vectors - Free memory allocated for interrupt vectors
* @adapter: board private structure to initialize
*
* This function frees the memory allocated to the q_vectors. In addition if
* NAPI is enabled it will delete any references to the NAPI struct prior
* to freeing the q_vector.
**/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
int v_idx = adapter->num_q_vectors;
adapter->num_tx_queues = 0;
adapter->num_rx_queues = 0;
adapter->num_q_vectors = 0;
while (v_idx--) {
igb_reset_q_vector(adapter, v_idx);
igb_free_q_vector(adapter, v_idx);
}
}
/**
* igb_clear_interrupt_scheme - reset the device to a state of no interrupts
* @adapter: board private structure to initialize
*
* This function resets the device so that it has 0 Rx queues, Tx queues, and
* MSI-X interrupts allocated.
*/
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
igb_free_q_vectors(adapter);
igb_reset_interrupt_capability(adapter);
}
/**
* igb_set_interrupt_capability - set MSI or MSI-X if supported
* @adapter: board private structure to initialize
* @msix: boolean value of MSIX capability
*
* Attempt to configure interrupts using the best available
* capabilities of the hardware and kernel.
**/
static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
{
int err;
int numvecs, i;
if (!msix)
goto msi_only;
adapter->flags |= IGB_FLAG_HAS_MSIX;
/* Number of supported queues. */
adapter->num_rx_queues = adapter->rss_queues;
if (adapter->vfs_allocated_count)
adapter->num_tx_queues = 1;
else
adapter->num_tx_queues = adapter->rss_queues;
/* start with one vector for every Rx queue */
numvecs = adapter->num_rx_queues;
/* if Tx handler is separate add 1 for every Tx queue */
if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
numvecs += adapter->num_tx_queues;
/* store the number of vectors reserved for queues */
adapter->num_q_vectors = numvecs;
/* add 1 vector for link status interrupts */
numvecs++;
for (i = 0; i < numvecs; i++)
adapter->msix_entries[i].entry = i;
err = pci_enable_msix_range(adapter->pdev,
adapter->msix_entries,
numvecs,
numvecs);
if (err > 0)
return;
igb_reset_interrupt_capability(adapter);
/* If we can't do MSI-X, try MSI */
msi_only:
adapter->flags &= ~IGB_FLAG_HAS_MSIX;
#ifdef CONFIG_PCI_IOV
/* disable SR-IOV for non MSI-X configurations */
if (adapter->vf_data) {
struct e1000_hw *hw = &adapter->hw;
/* disable iov and allow time for transactions to clear */
pci_disable_sriov(adapter->pdev);
msleep(500);
kfree(adapter->vf_mac_list);
adapter->vf_mac_list = NULL;
kfree(adapter->vf_data);
adapter->vf_data = NULL;
wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
wrfl();
msleep(100);
dev_info(&adapter->pdev->dev, "IOV Disabled\n");
}
#endif
adapter->vfs_allocated_count = 0;
adapter->rss_queues = 1;
adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
adapter->num_rx_queues = 1;
adapter->num_tx_queues = 1;
adapter->num_q_vectors = 1;
if (!pci_enable_msi(adapter->pdev))
adapter->flags |= IGB_FLAG_HAS_MSI;
}
static void igb_add_ring(struct igb_ring *ring,
struct igb_ring_container *head)
{
head->ring = ring;
head->count++;
}
/**
* igb_alloc_q_vector - Allocate memory for a single interrupt vector
* @adapter: board private structure to initialize
* @v_count: q_vectors allocated on adapter, used for ring interleaving
* @v_idx: index of vector in adapter struct
* @txr_count: total number of Tx rings to allocate
* @txr_idx: index of first Tx ring to allocate
* @rxr_count: total number of Rx rings to allocate
* @rxr_idx: index of first Rx ring to allocate
*
* We allocate one q_vector. If allocation fails we return -ENOMEM.
**/
static int igb_alloc_q_vector(struct igb_adapter *adapter,
int v_count, int v_idx,
int txr_count, int txr_idx,
int rxr_count, int rxr_idx)
{
struct igb_q_vector *q_vector;
struct igb_ring *ring;
int ring_count;
size_t size;
/* igb only supports 1 Tx and/or 1 Rx queue per vector */
if (txr_count > 1 || rxr_count > 1)
return -ENOMEM;
ring_count = txr_count + rxr_count;
size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
/* allocate q_vector and rings */
q_vector = adapter->q_vector[v_idx];
if (!q_vector) {
q_vector = kzalloc(size, GFP_KERNEL);
} else if (size > ksize(q_vector)) {
struct igb_q_vector *new_q_vector;
new_q_vector = kzalloc(size, GFP_KERNEL);
if (new_q_vector)
kfree_rcu(q_vector, rcu);
q_vector = new_q_vector;
} else {
memset(q_vector, 0, size);
}
if (!q_vector)
return -ENOMEM;
/* initialize NAPI */
netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll);
/* tie q_vector and adapter together */
adapter->q_vector[v_idx] = q_vector;
q_vector->adapter = adapter;
/* initialize work limits */
q_vector->tx.work_limit = adapter->tx_work_limit;
/* initialize ITR configuration */
q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
q_vector->itr_val = IGB_START_ITR;
/* initialize pointer to rings */
ring = q_vector->ring;
/* intialize ITR */
if (rxr_count) {
/* rx or rx/tx vector */
if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
q_vector->itr_val = adapter->rx_itr_setting;
} else {
/* tx only vector */
if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
q_vector->itr_val = adapter->tx_itr_setting;
}
if (txr_count) {
/* assign generic ring traits */
ring->dev = &adapter->pdev->dev;
ring->netdev = adapter->netdev;
/* configure backlink on ring */
ring->q_vector = q_vector;
/* update q_vector Tx values */
igb_add_ring(ring, &q_vector->tx);
/* For 82575, context index must be unique per ring. */
if (adapter->hw.mac.type == e1000_82575)
set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
/* apply Tx specific ring traits */
ring->count = adapter->tx_ring_count;
ring->queue_index = txr_idx;
ring->cbs_enable = false;
ring->idleslope = 0;
ring->sendslope = 0;
ring->hicredit = 0;
ring->locredit = 0;
u64_stats_init(&ring->tx_syncp);
u64_stats_init(&ring->tx_syncp2);
/* assign ring to adapter */
adapter->tx_ring[txr_idx] = ring;
/* push pointer to next ring */
ring++;
}
if (rxr_count) {
/* assign generic ring traits */
ring->dev = &adapter->pdev->dev;
ring->netdev = adapter->netdev;
/* configure backlink on ring */
ring->q_vector = q_vector;
/* update q_vector Rx values */
igb_add_ring(ring, &q_vector->rx);
/* set flag indicating ring supports SCTP checksum offload */
if (adapter->hw.mac.type >= e1000_82576)
set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
/* On i350, i354, i210, and i211, loopback VLAN packets
* have the tag byte-swapped.
*/
if (adapter->hw.mac.type >= e1000_i350)
set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
/* apply Rx specific ring traits */
ring->count = adapter->rx_ring_count;
ring->queue_index = rxr_idx;
u64_stats_init(&ring->rx_syncp);
/* assign ring to adapter */
adapter->rx_ring[rxr_idx] = ring;
}
return 0;
}
/**
* igb_alloc_q_vectors - Allocate memory for interrupt vectors
* @adapter: board private structure to initialize
*
* We allocate one q_vector per queue interrupt. If allocation fails we
* return -ENOMEM.
**/
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
{
int q_vectors = adapter->num_q_vectors;
int rxr_remaining = adapter->num_rx_queues;
int txr_remaining = adapter->num_tx_queues;
int rxr_idx = 0, txr_idx = 0, v_idx = 0;
int err;
if (q_vectors >= (rxr_remaining + txr_remaining)) {
for (; rxr_remaining; v_idx++) {
err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
0, 0, 1, rxr_idx);
if (err)
goto err_out;
/* update counts and index */
rxr_remaining--;
rxr_idx++;
}
}
for (; v_idx < q_vectors; v_idx++) {
int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
tqpv, txr_idx, rqpv, rxr_idx);
if (err)
goto err_out;
/* update counts and index */
rxr_remaining -= rqpv;
txr_remaining -= tqpv;
rxr_idx++;
txr_idx++;
}
return 0;
err_out:
adapter->num_tx_queues = 0;
adapter->num_rx_queues = 0;
adapter->num_q_vectors = 0;
while (v_idx--)
igb_free_q_vector(adapter, v_idx);
return -ENOMEM;
}
/**
* igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
* @adapter: board private structure to initialize
* @msix: boolean value of MSIX capability
*
* This function initializes the interrupts and allocates all of the queues.
**/
static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
{
struct pci_dev *pdev = adapter->pdev;
int err;
igb_set_interrupt_capability(adapter, msix);
err = igb_alloc_q_vectors(adapter);
if (err) {
dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
goto err_alloc_q_vectors;
}
igb_cache_ring_register(adapter);
return 0;
err_alloc_q_vectors:
igb_reset_interrupt_capability(adapter);
return err;
}
/**
* igb_request_irq - initialize interrupts
* @adapter: board private structure to initialize
*
* Attempts to configure interrupts using the best available
* capabilities of the hardware and kernel.
**/
static int igb_request_irq(struct igb_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
int err = 0;
if (adapter->flags & IGB_FLAG_HAS_MSIX) {
err = igb_request_msix(adapter);
if (!err)
goto request_done;
/* fall back to MSI */
igb_free_all_tx_resources(adapter);
igb_free_all_rx_resources(adapter);
igb_clear_interrupt_scheme(adapter);
err = igb_init_interrupt_scheme(adapter, false);
if (err)
goto request_done;
igb_setup_all_tx_resources(adapter);
igb_setup_all_rx_resources(adapter);
igb_configure(adapter);
}
igb_assign_vector(adapter->q_vector[0], 0);
if (adapter->flags & IGB_FLAG_HAS_MSI) {
err = request_irq(pdev->irq, igb_intr_msi, 0,
netdev->name, adapter);
if (!err)
goto request_done;
/* fall back to legacy interrupts */
igb_reset_interrupt_capability(adapter);
adapter->flags &= ~IGB_FLAG_HAS_MSI;
}
err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
netdev->name, adapter);
if (err)
dev_err(&pdev->dev, "Error %d getting interrupt\n",
err);
request_done:
return err;
}
static void igb_free_irq(struct igb_adapter *adapter)
{
if (adapter->flags & IGB_FLAG_HAS_MSIX) {
int vector = 0, i;
free_irq(adapter->msix_entries[vector++].vector, adapter);
for (i = 0; i < adapter->num_q_vectors; i++)
free_irq(adapter->msix_entries[vector++].vector,
adapter->q_vector[i]);
} else {
free_irq(adapter->pdev->irq, adapter);
}
}
/**
* igb_irq_disable - Mask off interrupt generation on the NIC
* @adapter: board private structure
**/
static void igb_irq_disable(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
/* we need to be careful when disabling interrupts. The VFs are also
* mapped into these registers and so clearing the bits can cause
* issues on the VF drivers so we only need to clear what we set
*/
if (adapter->flags & IGB_FLAG_HAS_MSIX) {
u32 regval = rd32(E1000_EIAM);
wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
wr32(E1000_EIMC, adapter->eims_enable_mask);
regval = rd32(E1000_EIAC);
wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
}
wr32(E1000_IAM, 0);
wr32(E1000_IMC, ~0);
wrfl();
if (adapter->flags & IGB_FLAG_HAS_MSIX) {
int i;
for (i = 0; i < adapter->num_q_vectors; i++)
synchronize_irq(adapter->msix_entries[i].vector);
} else {
synchronize_irq(adapter->pdev->irq);
}
}
/**
* igb_irq_enable - Enable default interrupt generation settings
* @adapter: board private structure
**/
static void igb_irq_enable(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
if (adapter->flags & IGB_FLAG_HAS_MSIX) {
u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
u32 regval = rd32(E1000_EIAC);
wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
regval = rd32(E1000_EIAM);
wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
wr32(E1000_EIMS, adapter->eims_enable_mask);
if (adapter->vfs_allocated_count) {
wr32(E1000_MBVFIMR, 0xFF);
ims |= E1000_IMS_VMMB;
}
wr32(E1000_IMS, ims);
} else {
wr32(E1000_IMS, IMS_ENABLE_MASK |
E1000_IMS_DRSTA);
wr32(E1000_IAM, IMS_ENABLE_MASK |
E1000_IMS_DRSTA);
}
}
static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u16 pf_id = adapter->vfs_allocated_count;
u16 vid = adapter->hw.mng_cookie.vlan_id;
u16 old_vid = adapter->mng_vlan_id;
if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
/* add VID to filter table */
igb_vfta_set(hw, vid, pf_id, true, true);
adapter->mng_vlan_id = vid;
} else {
adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
}
if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
(vid != old_vid) &&
!test_bit(old_vid, adapter->active_vlans)) {
/* remove VID from filter table */
igb_vfta_set(hw, vid, pf_id, false, true);
}
}
/**
* igb_release_hw_control - release control of the h/w to f/w
* @adapter: address of board private structure
*
* igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that the
* driver is no longer loaded.
**/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_ext;
/* Let firmware take over control of h/w */
ctrl_ext = rd32(E1000_CTRL_EXT);
wr32(E1000_CTRL_EXT,
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}
/**
* igb_get_hw_control - get control of the h/w from f/w
* @adapter: address of board private structure
*
* igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that
* the driver is loaded.
**/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_ext;
/* Let firmware know the driver has taken over */
ctrl_ext = rd32(E1000_CTRL_EXT);
wr32(E1000_CTRL_EXT,
ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}
static void enable_fqtss(struct igb_adapter *adapter, bool enable)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
WARN_ON(hw->mac.type != e1000_i210);
if (enable)
adapter->flags |= IGB_FLAG_FQTSS;
else
adapter->flags &= ~IGB_FLAG_FQTSS;
if (netif_running(netdev))
schedule_work(&adapter->reset_task);
}
static bool is_fqtss_enabled(struct igb_adapter *adapter)
{
return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
}
static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
enum tx_queue_prio prio)
{
u32 val;
WARN_ON(hw->mac.type != e1000_i210);
WARN_ON(queue < 0 || queue > 4);
val = rd32(E1000_I210_TXDCTL(queue));
if (prio == TX_QUEUE_PRIO_HIGH)
val |= E1000_TXDCTL_PRIORITY;
else
val &= ~E1000_TXDCTL_PRIORITY;
wr32(E1000_I210_TXDCTL(queue), val);
}
static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
{
u32 val;
WARN_ON(hw->mac.type != e1000_i210);
WARN_ON(queue < 0 || queue > 1);
val = rd32(E1000_I210_TQAVCC(queue));
if (mode == QUEUE_MODE_STREAM_RESERVATION)
val |= E1000_TQAVCC_QUEUEMODE;
else
val &= ~E1000_TQAVCC_QUEUEMODE;
wr32(E1000_I210_TQAVCC(queue), val);
}
static bool is_any_cbs_enabled(struct igb_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++) {
if (adapter->tx_ring[i]->cbs_enable)
return true;
}
return false;
}
static bool is_any_txtime_enabled(struct igb_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++) {
if (adapter->tx_ring[i]->launchtime_enable)
return true;
}
return false;
}
/**
* igb_config_tx_modes - Configure "Qav Tx mode" features on igb
* @adapter: pointer to adapter struct
* @queue: queue number
*
* Configure CBS and Launchtime for a given hardware queue.
* Parameters are retrieved from the correct Tx ring, so
* igb_save_cbs_params() and igb_save_txtime_params() should be used
* for setting those correctly prior to this function being called.
**/
static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
struct igb_ring *ring;
u32 tqavcc, tqavctrl;
u16 value;
WARN_ON(hw->mac.type != e1000_i210);
WARN_ON(queue < 0 || queue > 1);
ring = adapter->tx_ring[queue];
/* If any of the Qav features is enabled, configure queues as SR and
* with HIGH PRIO. If none is, then configure them with LOW PRIO and
* as SP.
*/
if (ring->cbs_enable || ring->launchtime_enable) {
set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
} else {
set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
}
/* If CBS is enabled, set DataTranARB and config its parameters. */
if (ring->cbs_enable || queue == 0) {
/* i210 does not allow the queue 0 to be in the Strict
* Priority mode while the Qav mode is enabled, so,
* instead of disabling strict priority mode, we give
* queue 0 the maximum of credits possible.
*
* See section 8.12.19 of the i210 datasheet, "Note:
* Queue0 QueueMode must be set to 1b when
* TransmitMode is set to Qav."
*/
if (queue == 0 && !ring->cbs_enable) {
/* max "linkspeed" idleslope in kbps */
ring->idleslope = 1000000;
ring->hicredit = ETH_FRAME_LEN;
}
/* Always set data transfer arbitration to credit-based
* shaper algorithm on TQAVCTRL if CBS is enabled for any of
* the queues.
*/
tqavctrl = rd32(E1000_I210_TQAVCTRL);
tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
wr32(E1000_I210_TQAVCTRL, tqavctrl);
/* According to i210 datasheet section 7.2.7.7, we should set
* the 'idleSlope' field from TQAVCC register following the
* equation:
*
* For 100 Mbps link speed:
*
* value = BW * 0x7735 * 0.2 (E1)
*
* For 1000Mbps link speed:
*
* value = BW * 0x7735 * 2 (E2)
*
* E1 and E2 can be merged into one equation as shown below.
* Note that 'link-speed' is in Mbps.
*
* value = BW * 0x7735 * 2 * link-speed
* -------------- (E3)
* 1000
*
* 'BW' is the percentage bandwidth out of full link speed
* which can be found with the following equation. Note that
* idleSlope here is the parameter from this function which
* is in kbps.
*
* BW = idleSlope
* ----------------- (E4)
* link-speed * 1000
*
* That said, we can come up with a generic equation to
* calculate the value we should set it TQAVCC register by
* replacing 'BW' in E3 by E4. The resulting equation is:
*
* value = idleSlope * 0x7735 * 2 * link-speed
* ----------------- -------------- (E5)
* link-speed * 1000 1000
*
* 'link-speed' is present in both sides of the fraction so
* it is canceled out. The final equation is the following:
*
* value = idleSlope * 61034
* ----------------- (E6)
* 1000000
*
* NOTE: For i210, given the above, we can see that idleslope
* is represented in 16.38431 kbps units by the value at
* the TQAVCC register (1Gbps / 61034), which reduces
* the granularity for idleslope increments.
* For instance, if you want to configure a 2576kbps
* idleslope, the value to be written on the register
* would have to be 157.23. If rounded down, you end
* up with less bandwidth available than originally
* required (~2572 kbps). If rounded up, you end up
* with a higher bandwidth (~2589 kbps). Below the
* approach we take is to always round up the
* calculated value, so the resulting bandwidth might
* be slightly higher for some configurations.
*/
value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
tqavcc = rd32(E1000_I210_TQAVCC(queue));
tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
tqavcc |= value;
wr32(E1000_I210_TQAVCC(queue), tqavcc);
wr32(E1000_I210_TQAVHC(queue),
0x80000000 + ring->hicredit * 0x7735);
} else {
/* Set idleSlope to zero. */
tqavcc = rd32(E1000_I210_TQAVCC(queue));
tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
wr32(E1000_I210_TQAVCC(queue), tqavcc);
/* Set hiCredit to zero. */
wr32(E1000_I210_TQAVHC(queue), 0);
/* If CBS is not enabled for any queues anymore, then return to
* the default state of Data Transmission Arbitration on
* TQAVCTRL.
*/
if (!is_any_cbs_enabled(adapter)) {
tqavctrl = rd32(E1000_I210_TQAVCTRL);
tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
wr32(E1000_I210_TQAVCTRL, tqavctrl);
}
}
/* If LaunchTime is enabled, set DataTranTIM. */
if (ring->launchtime_enable) {
/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
* for any of the SR queues, and configure fetchtime delta.
* XXX NOTE:
* - LaunchTime will be enabled for all SR queues.
* - A fixed offset can be added relative to the launch
* time of all packets if configured at reg LAUNCH_OS0.
* We are keeping it as 0 for now (default value).
*/
tqavctrl = rd32(E1000_I210_TQAVCTRL);
tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
E1000_TQAVCTRL_FETCHTIME_DELTA;
wr32(E1000_I210_TQAVCTRL, tqavctrl);
} else {
/* If Launchtime is not enabled for any SR queues anymore,
* then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
* effectively disabling Launchtime.
*/
if (!is_any_txtime_enabled(adapter)) {
tqavctrl = rd32(E1000_I210_TQAVCTRL);
tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
wr32(E1000_I210_TQAVCTRL, tqavctrl);
}
}
/* XXX: In i210 controller the sendSlope and loCredit parameters from
* CBS are not configurable by software so we don't do any 'controller
* configuration' in respect to these parameters.
*/
netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
ring->cbs_enable ? "enabled" : "disabled",
ring->launchtime_enable ? "enabled" : "disabled",
queue,
ring->idleslope, ring->sendslope,
ring->hicredit, ring->locredit);
}
static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
bool enable)
{
struct igb_ring *ring;
if (queue < 0 || queue > adapter->num_tx_queues)
return -EINVAL;
ring = adapter->tx_ring[queue];
ring->launchtime_enable = enable;
return 0;
}
static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
bool enable, int idleslope, int sendslope,
int hicredit, int locredit)
{
struct igb_ring *ring;
if (queue < 0 || queue > adapter->num_tx_queues)
return -EINVAL;
ring = adapter->tx_ring[queue];
ring->cbs_enable = enable;
ring->idleslope = idleslope;
ring->sendslope = sendslope;
ring->hicredit = hicredit;
ring->locredit = locredit;
return 0;
}
/**
* igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
* @adapter: pointer to adapter struct
*
* Configure TQAVCTRL register switching the controller's Tx mode
* if FQTSS mode is enabled or disabled. Additionally, will issue
* a call to igb_config_tx_modes() per queue so any previously saved
* Tx parameters are applied.
**/
static void igb_setup_tx_mode(struct igb_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
u32 val;
/* Only i210 controller supports changing the transmission mode. */
if (hw->mac.type != e1000_i210)
return;
if (is_fqtss_enabled(adapter)) {
int i, max_queue;
/* Configure TQAVCTRL register: set transmit mode to 'Qav',
* set data fetch arbitration to 'round robin', set SP_WAIT_SR
* so SP queues wait for SR ones.
*/
val = rd32(E1000_I210_TQAVCTRL);
val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
val &= ~E1000_TQAVCTRL_DATAFETCHARB;
wr32(E1000_I210_TQAVCTRL, val);
/* Configure Tx and Rx packet buffers sizes as described in
* i210 datasheet section 7.2.7.7.
*/
val = rd32(E1000_TXPBS);
val &= ~I210_TXPBSIZE_MASK;
val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
wr32(E1000_TXPBS, val);
val = rd32(E1000_RXPBS);
val &= ~I210_RXPBSIZE_MASK;
val |= I210_RXPBSIZE_PB_30KB;
wr32(E1000_RXPBS, val);
/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
* register should not exceed the buffer size programmed in
* TXPBS. The smallest buffer size programmed in TXPBS is 4kB
* so according to the datasheet we should set MAX_TPKT_SIZE to
* 4kB / 64.
*
* However, when we do so, no frame from queue 2 and 3 are
* transmitted. It seems the MAX_TPKT_SIZE should not be great
* or _equal_ to the buffer size programmed in TXPBS. For this
* reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
*/
val = (4096 - 1) / 64;
wr32(E1000_I210_DTXMXPKTSZ, val);
/* Since FQTSS mode is enabled, apply any CBS configuration
* previously set. If no previous CBS configuration has been
* done, then the initial configuration is applied, which means
* CBS is disabled.
*/
max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
adapter->num_tx_queues : I210_SR_QUEUES_NUM;
for (i = 0; i < max_queue; i++) {
igb_config_tx_modes(adapter, i);
}
} else {
wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
val = rd32(E1000_I210_TQAVCTRL);
/* According to Section 8.12.21, the other flags we've set when
* enabling FQTSS are not relevant when disabling FQTSS so we
* don't set they here.
*/
val &= ~E1000_TQAVCTRL_XMIT_MODE;
wr32(E1000_I210_TQAVCTRL, val);
}
netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
"enabled" : "disabled");
}
/**
* igb_configure - configure the hardware for RX and TX
* @adapter: private board structure
**/
static void igb_configure(struct igb_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int i;
igb_get_hw_control(adapter);
igb_set_rx_mode(netdev);
igb_setup_tx_mode(adapter);
igb_restore_vlan(adapter);
igb_setup_tctl(adapter);
igb_setup_mrqc(adapter);
igb_setup_rctl(adapter);
igb_nfc_filter_restore(adapter);
igb_configure_tx(adapter);
igb_configure_rx(adapter);
igb_rx_fifo_flush_82575(&adapter->hw);
/* call igb_desc_unused which always leaves
* at least 1 descriptor unused to make sure
* next_to_use != next_to_clean
*/
for (i = 0; i < adapter->num_rx_queues; i++) {
struct igb_ring *ring = adapter->rx_ring[i];
igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
}
}
/**
* igb_power_up_link - Power up the phy/serdes link
* @adapter: address of board private structure
**/
void igb_power_up_link(struct igb_adapter *adapter)
{
igb_reset_phy(&adapter->hw);
if (adapter->hw.phy.media_type == e1000_media_type_copper)
igb_power_up_phy_copper(&adapter->hw);
else
igb_power_up_serdes_link_82575(&adapter->hw);
igb_setup_link(&adapter->hw);
}
/**
* igb_power_down_link - Power down the phy/serdes link
* @adapter: address of board private structure
*/
static void igb_power_down_link(struct igb_adapter *adapter)
{
if (adapter->hw.phy.media_type == e1000_media_type_copper)
igb_power_down_phy_copper_82575(&adapter->hw);
else
igb_shutdown_serdes_link_82575(&adapter->hw);
}
/**
* igb_check_swap_media - Detect and switch function for Media Auto Sense
* @adapter: address of the board private structure
**/
static void igb_check_swap_media(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_ext, connsw;
bool swap_now = false;
ctrl_ext = rd32(E1000_CTRL_EXT);
connsw = rd32(E1000_CONNSW);
/* need to live swap if current media is copper and we have fiber/serdes
* to go to.
*/
if ((hw->phy.media_type == e1000_media_type_copper) &&
(!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
swap_now = true;
} else if ((hw->phy.media_type != e1000_media_type_copper) &&
!(connsw & E1000_CONNSW_SERDESD)) {
/* copper signal takes time to appear */
if (adapter->copper_tries < 4) {
adapter->copper_tries++;
connsw |= E1000_CONNSW_AUTOSENSE_CONF;
wr32(E1000_CONNSW, connsw);
return;
} else {
adapter->copper_tries = 0;
if ((connsw & E1000_CONNSW_PHYSD) &&
(!(connsw & E1000_CONNSW_PHY_PDN))) {
swap_now = true;
connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
wr32(E1000_CONNSW, connsw);
}
}
}
if (!swap_now)
return;
switch (hw->phy.media_type) {
case e1000_media_type_copper:
netdev_info(adapter->netdev,
"MAS: changing media to fiber/serdes\n");
ctrl_ext |=
E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
adapter->flags |= IGB_FLAG_MEDIA_RESET;
adapter->copper_tries = 0;
break;
case e1000_media_type_internal_serdes:
case e1000_media_type_fiber:
netdev_info(adapter->netdev,
"MAS: changing media to copper\n");
ctrl_ext &=
~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
adapter->flags |= IGB_FLAG_MEDIA_RESET;
break;
default:
/* shouldn't get here during regular operation */
netdev_err(adapter->netdev,
"AMS: Invalid media type found, returning\n");
break;
}
wr32(E1000_CTRL_EXT, ctrl_ext);
}
/**
* igb_up - Open the interface and prepare it to handle traffic
* @adapter: board private structure
**/
int igb_up(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
int i;
/* hardware has been reset, we need to reload some things */
igb_configure(adapter);
clear_bit(__IGB_DOWN, &adapter->state);
for (i = 0; i < adapter->num_q_vectors; i++)
napi_enable(&(adapter->q_vector[i]->napi));
if (adapter->flags & IGB_FLAG_HAS_MSIX)
igb_configure_msix(adapter);
else
igb_assign_vector(adapter->q_vector[0], 0);
/* Clear any pending interrupts. */
rd32(E1000_TSICR);
rd32(E1000_ICR);
igb_irq_enable(adapter);
/* notify VFs that reset has been completed */
if (adapter->vfs_allocated_count) {
u32 reg_data = rd32(E1000_CTRL_EXT);
reg_data |= E1000_CTRL_EXT_PFRSTD;
wr32(E1000_CTRL_EXT, reg_data);
}
netif_tx_start_all_queues(adapter->netdev);
/* start the watchdog. */
hw->mac.get_link_status = 1;
schedule_work(&adapter->watchdog_task);
if ((adapter->flags & IGB_FLAG_EEE) &&
(!hw->dev_spec._82575.eee_disable))
adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
return 0;
}
void igb_down(struct igb_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
u32 tctl, rctl;
int i;
/* signal that we're down so the interrupt handler does not
* reschedule our watchdog timer
*/
set_bit(__IGB_DOWN, &adapter->state);
/* disable receives in the hardware */
rctl = rd32(E1000_RCTL);
wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
/* flush and sleep below */
igb_nfc_filter_exit(adapter);
netif_carrier_off(netdev);
netif_tx_stop_all_queues(netdev);
/* disable transmits in the hardware */
tctl = rd32(E1000_TCTL);
tctl &= ~E1000_TCTL_EN;
wr32(E1000_TCTL, tctl);
/* flush both disables and wait for them to finish */
wrfl();
usleep_range(10000, 11000);
igb_irq_disable(adapter);
adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
for (i = 0; i < adapter->num_q_vectors; i++) {
if (adapter->q_vector[i]) {
napi_synchronize(&adapter->q_vector[i]->napi);
napi_disable(&adapter->q_vector[i]->napi);
}
}
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_info_timer);
/* record the stats before reset*/
spin_lock(&adapter->stats64_lock);
igb_update_stats(adapter);
spin_unlock(&adapter->stats64_lock);
adapter->link_speed = 0;
adapter->link_duplex = 0;
if (!pci_channel_offline(adapter->pdev))
igb_reset(adapter);
/* clear VLAN promisc flag so VFTA will be updated if necessary */
adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
igb_clean_all_tx_rings(adapter);
igb_clean_all_rx_rings(adapter);
#ifdef CONFIG_IGB_DCA
/* since we reset the hardware DCA settings were cleared */
igb_setup_dca(adapter);
#endif
}
void igb_reinit_locked(struct igb_adapter *adapter)
{
while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
usleep_range(1000, 2000);
igb_down(adapter);
igb_up(adapter);
clear_bit(__IGB_RESETTING, &adapter->state);
}
/** igb_enable_mas - Media Autosense re-enable after swap
*
* @adapter: adapter struct
**/
static void igb_enable_mas(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 connsw = rd32(E1000_CONNSW);
/* configure for SerDes media detect */
if ((hw->phy.media_type == e1000_media_type_copper) &&
(!(connsw & E1000_CONNSW_SERDESD))) {
connsw |= E1000_CONNSW_ENRGSRC;
connsw |= E1000_CONNSW_AUTOSENSE_EN;
wr32(E1000_CONNSW, connsw);
wrfl();
}
}
#ifdef CONFIG_IGB_HWMON
/**
* igb_set_i2c_bb - Init I2C interface
* @hw: pointer to hardware structure
**/
static void igb_set_i2c_bb(struct e1000_hw *hw)
{
u32 ctrl_ext;
s32 i2cctl;
ctrl_ext = rd32(E1000_CTRL_EXT);
ctrl_ext |= E1000_CTRL_I2C_ENA;
wr32(E1000_CTRL_EXT, ctrl_ext);
wrfl();
i2cctl = rd32(E1000_I2CPARAMS);
i2cctl |= E1000_I2CBB_EN
| E1000_I2C_CLK_OE_N
| E1000_I2C_DATA_OE_N;
wr32(E1000_I2CPARAMS, i2cctl);
wrfl();
}
#endif
void igb_reset(struct igb_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
struct e1000_hw *hw = &adapter->hw;
struct e1000_mac_info *mac = &hw->mac;
struct e1000_fc_info *fc = &hw->fc;
u32 pba, hwm;
/* Repartition Pba for greater than 9k mtu
* To take effect CTRL.RST is required.
*/
switch (mac->type) {
case e1000_i350:
case e1000_i354:
case e1000_82580:
pba = rd32(E1000_RXPBS);
pba = igb_rxpbs_adjust_82580(pba);
break;
case e1000_82576:
pba = rd32(E1000_RXPBS);
pba &= E1000_RXPBS_SIZE_MASK_82576;
break;
case e1000_82575:
case e1000_i210:
case e1000_i211:
default:
pba = E1000_PBA_34K;
break;
}
if (mac->type == e1000_82575) {
u32 min_rx_space, min_tx_space, needed_tx_space;
/* write Rx PBA so that hardware can report correct Tx PBA */
wr32(E1000_PBA, pba);
/* To maintain wire speed transmits, the Tx FIFO should be
* large enough to accommodate two full transmit packets,
* rounded up to the next 1KB and expressed in KB. Likewise,
* the Rx FIFO should be large enough to accommodate at least
* one full receive packet and is similarly rounded up and
* expressed in KB.
*/
min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
/* The Tx FIFO also stores 16 bytes of information about the Tx
* but don't include Ethernet FCS because hardware appends it.
* We only need to round down to the nearest 512 byte block
* count since the value we care about is 2 frames, not 1.
*/
min_tx_space = adapter->max_frame_size;
min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
/* upper 16 bits has Tx packet buffer allocation size in KB */
needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
/* If current Tx allocation is less than the min Tx FIFO size,
* and the min Tx FIFO size is less than the current Rx FIFO
* allocation, take space away from current Rx allocation.
*/
if (needed_tx_space < pba) {
pba -= needed_tx_space;
/* if short on Rx space, Rx wins and must trump Tx
* adjustment
*/
if (pba < min_rx_space)
pba = min_rx_space;
}
/* adjust PBA for jumbo frames */
wr32(E1000_PBA, pba);
}
/* flow control settings
* The high water mark must be low enough to fit one full frame
* after transmitting the pause frame. As such we must have enough
* space to allow for us to complete our current transmit and then
* receive the frame that is in progress from the link partner.
* Set it to:
* - the full Rx FIFO size minus one full Tx plus one full Rx frame
*/
hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
fc->low_water = fc->high_water - 16;
fc->pause_time = 0xFFFF;
fc->send_xon = 1;
fc->current_mode = fc->requested_mode;
/* disable receive for all VFs and wait one second */
if (adapter->vfs_allocated_count) {
int i;
for (i = 0 ; i < adapter->vfs_allocated_count; i++)
adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
/* ping all the active vfs to let them know we are going down */
igb_ping_all_vfs(adapter);
/* disable transmits and receives */
wr32(E1000_VFRE, 0);
wr32(E1000_VFTE, 0);
}
/* Allow time for pending master requests to run */
hw->mac.ops.reset_hw(hw);
wr32(E1000_WUC, 0);
if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
/* need to resetup here after media swap */
adapter->ei.get_invariants(hw);
adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
}
if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
(adapter->flags & IGB_FLAG_MAS_ENABLE)) {
igb_enable_mas(adapter);
}
if (hw->mac.ops.init_hw(hw))
dev_err(&pdev->dev, "Hardware Error\n");
/* RAR registers were cleared during init_hw, clear mac table */
igb_flush_mac_table(adapter);
__dev_uc_unsync(adapter->netdev, NULL);
/* Recover default RAR entry */
igb_set_default_mac_filter(adapter);
/* Flow control settings reset on hardware reset, so guarantee flow
* control is off when forcing speed.
*/
if (!hw->mac.autoneg)
igb_force_mac_fc(hw);
igb_init_dmac(adapter, pba);
#ifdef CONFIG_IGB_HWMON
/* Re-initialize the thermal sensor on i350 devices. */
if (!test_bit(__IGB_DOWN, &adapter->state)) {
if (mac->type == e1000_i350 && hw->bus.func == 0) {
/* If present, re-initialize the external thermal sensor
* interface.
*/
if (adapter->ets)
igb_set_i2c_bb(hw);
mac->ops.init_thermal_sensor_thresh(hw);
}
}
#endif
/* Re-establish EEE setting */
if (hw->phy.media_type == e1000_media_type_copper) {
switch (mac->type) {
case e1000_i350:
case e1000_i210:
case e1000_i211:
igb_set_eee_i350(hw, true, true);
break;
case e1000_i354:
igb_set_eee_i354(hw, true, true);
break;
default:
break;
}
}
if (!netif_running(adapter->netdev))
igb_power_down_link(adapter);
igb_update_mng_vlan(adapter);
/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
/* Re-enable PTP, where applicable. */
if (adapter->ptp_flags & IGB_PTP_ENABLED)
igb_ptp_reset(adapter);
igb_get_phy_info(hw);
}
static netdev_features_t igb_fix_features(struct net_device *netdev,
netdev_features_t features)
{
/* Since there is no support for separate Rx/Tx vlan accel
* enable/disable make sure Tx flag is always in same state as Rx.
*/
if (features & NETIF_F_HW_VLAN_CTAG_RX)
features |= NETIF_F_HW_VLAN_CTAG_TX;
else
features &= ~NETIF_F_HW_VLAN_CTAG_TX;
return features;
}
static int igb_set_features(struct net_device *netdev,
netdev_features_t features)
{
netdev_features_t changed = netdev->features ^ features;
struct igb_adapter *adapter = netdev_priv(netdev);
if (changed & NETIF_F_HW_VLAN_CTAG_RX)
igb_vlan_mode(netdev, features);
if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
return 0;
if (!(features & NETIF_F_NTUPLE)) {
struct hlist_node *node2;
struct igb_nfc_filter *rule;
spin_lock(&adapter->nfc_lock);
hlist_for_each_entry_safe(rule, node2,
&adapter->nfc_filter_list, nfc_node) {
igb_erase_filter(adapter, rule);
hlist_del(&rule->nfc_node);
kfree(rule);
}
spin_unlock(&adapter->nfc_lock);
adapter->nfc_filter_count = 0;
}
netdev->features = features;
if (netif_running(netdev))
igb_reinit_locked(adapter);
else
igb_reset(adapter);
return 1;
}
static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
struct net_device *dev,
const unsigned char *addr, u16 vid,
u16 flags,
struct netlink_ext_ack *extack)
{
/* guarantee we can provide a unique filter for the unicast address */
if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
struct igb_adapter *adapter = netdev_priv(dev);
int vfn = adapter->vfs_allocated_count;
if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
return -ENOMEM;
}
return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
}
#define IGB_MAX_MAC_HDR_LEN 127
#define IGB_MAX_NETWORK_HDR_LEN 511
static netdev_features_t
igb_features_check(struct sk_buff *skb, struct net_device *dev,
netdev_features_t features)
{
unsigned int network_hdr_len, mac_hdr_len;
/* Make certain the headers can be described by a context descriptor */
mac_hdr_len = skb_network_offset(skb);
if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
return features & ~(NETIF_F_HW_CSUM |
NETIF_F_SCTP_CRC |
NETIF_F_GSO_UDP_L4 |
NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_TSO |
NETIF_F_TSO6);
network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
return features & ~(NETIF_F_HW_CSUM |
NETIF_F_SCTP_CRC |
NETIF_F_GSO_UDP_L4 |
NETIF_F_TSO |
NETIF_F_TSO6);
/* We can only support IPV4 TSO in tunnels if we can mangle the
* inner IP ID field, so strip TSO if MANGLEID is not supported.
*/
if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
features &= ~NETIF_F_TSO;
return features;
}
static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
{
if (!is_fqtss_enabled(adapter)) {
enable_fqtss(adapter, true);
return;
}
igb_config_tx_modes(adapter, queue);
if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
enable_fqtss(adapter, false);
}
static int igb_offload_cbs(struct igb_adapter *adapter,
struct tc_cbs_qopt_offload *qopt)
{
struct e1000_hw *hw = &adapter->hw;
int err;
/* CBS offloading is only supported by i210 controller. */
if (hw->mac.type != e1000_i210)
return -EOPNOTSUPP;
/* CBS offloading is only supported by queue 0 and queue 1. */
if (qopt->queue < 0 || qopt->queue > 1)
return -EINVAL;
err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
qopt->idleslope, qopt->sendslope,
qopt->hicredit, qopt->locredit);
if (err)
return err;
igb_offload_apply(adapter, qopt->queue);
return 0;
}
#define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
#define VLAN_PRIO_FULL_MASK (0x07)
static int igb_parse_cls_flower(struct igb_adapter *adapter,
struct flow_cls_offload *f,
int traffic_class,
struct igb_nfc_filter *input)
{
struct flow_rule *rule = flow_cls_offload_flow_rule(f);
struct flow_dissector *dissector = rule->match.dissector;
struct netlink_ext_ack *extack = f->common.extack;
if (dissector->used_keys &
~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
BIT_ULL(FLOW_DISSECTOR_KEY_VLAN))) {
NL_SET_ERR_MSG_MOD(extack,
"Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
return -EOPNOTSUPP;
}
if (flow_rule_match_has_control_flags(rule, extack))
return -EOPNOTSUPP;
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
struct flow_match_eth_addrs match;
flow_rule_match_eth_addrs(rule, &match);
if (!is_zero_ether_addr(match.mask->dst)) {
if (!is_broadcast_ether_addr(match.mask->dst)) {
NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
return -EINVAL;
}
input->filter.match_flags |=
IGB_FILTER_FLAG_DST_MAC_ADDR;
ether_addr_copy(input->filter.dst_addr, match.key->dst);
}
if (!is_zero_ether_addr(match.mask->src)) {
if (!is_broadcast_ether_addr(match.mask->src)) {
NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
return -EINVAL;
}
input->filter.match_flags |=
IGB_FILTER_FLAG_SRC_MAC_ADDR;
ether_addr_copy(input->filter.src_addr, match.key->src);
}
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
struct flow_match_basic match;
flow_rule_match_basic(rule, &match);
if (match.mask->n_proto) {
if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
return -EINVAL;
}
input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
input->filter.etype = match.key->n_proto;
}
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
struct flow_match_vlan match;
flow_rule_match_vlan(rule, &match);
if (match.mask->vlan_priority) {
if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
return -EINVAL;
}
input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
input->filter.vlan_tci =
(__force __be16)match.key->vlan_priority;
}
}
input->action = traffic_class;
input->cookie = f->cookie;
return 0;
}
static int igb_configure_clsflower(struct igb_adapter *adapter,
struct flow_cls_offload *cls_flower)
{
struct netlink_ext_ack *extack = cls_flower->common.extack;
struct igb_nfc_filter *filter, *f;
int err, tc;
tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
if (tc < 0) {
NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
return -EINVAL;
}
filter = kzalloc(sizeof(*filter), GFP_KERNEL);
if (!filter)
return -ENOMEM;
err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
if (err < 0)
goto err_parse;
spin_lock(&adapter->nfc_lock);
hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
err = -EEXIST;
NL_SET_ERR_MSG_MOD(extack,
"This filter is already set in ethtool");
goto err_locked;
}
}
hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
err = -EEXIST;
NL_SET_ERR_MSG_MOD(extack,
"This filter is already set in cls_flower");
goto err_locked;
}
}
err = igb_add_filter(adapter, filter);
if (err < 0) {
NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
goto err_locked;
}
hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
spin_unlock(&adapter->nfc_lock);
return 0;
err_locked:
spin_unlock(&adapter->nfc_lock);
err_parse:
kfree(filter);
return err;
}
static int igb_delete_clsflower(struct igb_adapter *adapter,
struct flow_cls_offload *cls_flower)
{
struct igb_nfc_filter *filter;
int err;
spin_lock(&adapter->nfc_lock);
hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
if (filter->cookie == cls_flower->cookie)
break;
if (!filter) {
err = -ENOENT;
goto out;
}
err = igb_erase_filter(adapter, filter);
if (err < 0)
goto out;
hlist_del(&filter->nfc_node);
kfree(filter);
out:
spin_unlock(&adapter->nfc_lock);
return err;
}
static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
struct flow_cls_offload *cls_flower)
{
switch (cls_flower->command) {
case FLOW_CLS_REPLACE:
return igb_configure_clsflower(adapter, cls_flower);
case FLOW_CLS_DESTROY:
return igb_delete_clsflower(adapter, cls_flower);
case FLOW_CLS_STATS:
return -EOPNOTSUPP;
default:
return -EOPNOTSUPP;
}
}
static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
void *cb_priv)
{
struct igb_adapter *adapter = cb_priv;
if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
return -EOPNOTSUPP;
switch (type) {
case TC_SETUP_CLSFLOWER:
return igb_setup_tc_cls_flower(adapter, type_data);
default:
return -EOPNOTSUPP;
}
}
static int igb_offload_txtime(struct igb_adapter *adapter,
struct tc_etf_qopt_offload *qopt)
{
struct e1000_hw *hw = &adapter->hw;
int err;
/* Launchtime offloading is only supported by i210 controller. */
if (hw->mac.type != e1000_i210)
return -EOPNOTSUPP;
/* Launchtime offloading is only supported by queues 0 and 1. */
if (qopt->queue < 0 || qopt->queue > 1)
return -EINVAL;
err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
if (err)
return err;
igb_offload_apply(adapter, qopt->queue);
return 0;
}
static int igb_tc_query_caps(struct igb_adapter *adapter,
struct tc_query_caps_base *base)
{
switch (base->type) {
case TC_SETUP_QDISC_TAPRIO: {
struct tc_taprio_caps *caps = base->caps;
caps->broken_mqprio = true;
return 0;
}
default:
return -EOPNOTSUPP;
}
}
static LIST_HEAD(igb_block_cb_list);
static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
void *type_data)
{
struct igb_adapter *adapter = netdev_priv(dev);
switch (type) {
case TC_QUERY_CAPS:
return igb_tc_query_caps(adapter, type_data);
case TC_SETUP_QDISC_CBS:
return igb_offload_cbs(adapter, type_data);
case TC_SETUP_BLOCK:
return flow_block_cb_setup_simple(type_data,
&igb_block_cb_list,
igb_setup_tc_block_cb,
adapter, adapter, true);
case TC_SETUP_QDISC_ETF:
return igb_offload_txtime(adapter, type_data);
default:
return -EOPNOTSUPP;
}
}
static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
{
int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
struct igb_adapter *adapter = netdev_priv(dev);
struct bpf_prog *prog = bpf->prog, *old_prog;
bool running = netif_running(dev);
bool need_reset;
/* verify igb ring attributes are sufficient for XDP */
for (i = 0; i < adapter->num_rx_queues; i++) {
struct igb_ring *ring = adapter->rx_ring[i];
if (frame_size > igb_rx_bufsz(ring)) {
NL_SET_ERR_MSG_MOD(bpf->extack,
"The RX buffer size is too small for the frame size");
netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
igb_rx_bufsz(ring), frame_size);
return -EINVAL;
}
}
old_prog = xchg(&adapter->xdp_prog, prog);
need_reset = (!!prog != !!old_prog);
/* device is up and bpf is added/removed, must setup the RX queues */
if (need_reset && running) {
igb_close(dev);
} else {
for (i = 0; i < adapter->num_rx_queues; i++)
(void)xchg(&adapter->rx_ring[i]->xdp_prog,
adapter->xdp_prog);
}
if (old_prog)
bpf_prog_put(old_prog);
/* bpf is just replaced, RXQ and MTU are already setup */
if (!need_reset) {
return 0;
} else {
if (prog)
xdp_features_set_redirect_target(dev, true);
else
xdp_features_clear_redirect_target(dev);
}
if (running)
igb_open(dev);
return 0;
}
static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
{
switch (xdp->command) {
case XDP_SETUP_PROG:
return igb_xdp_setup(dev, xdp);
default:
return -EINVAL;
}
}
/* This function assumes __netif_tx_lock is held by the caller. */
static void igb_xdp_ring_update_tail(struct igb_ring *ring)
{
lockdep_assert_held(&txring_txq(ring)->_xmit_lock);
/* Force memory writes to complete before letting h/w know there
* are new descriptors to fetch.
*/
wmb();
writel(ring->next_to_use, ring->tail);
}
static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
{
unsigned int r_idx = smp_processor_id();
if (r_idx >= adapter->num_tx_queues)
r_idx = r_idx % adapter->num_tx_queues;
return adapter->tx_ring[r_idx];
}
static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
{
struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
int cpu = smp_processor_id();
struct igb_ring *tx_ring;
struct netdev_queue *nq;
u32 ret;
if (unlikely(!xdpf))
return IGB_XDP_CONSUMED;
/* During program transitions its possible adapter->xdp_prog is assigned
* but ring has not been configured yet. In this case simply abort xmit.
*/
tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
if (unlikely(!tx_ring))
return IGB_XDP_CONSUMED;
nq = txring_txq(tx_ring);
__netif_tx_lock(nq, cpu);
/* Avoid transmit queue timeout since we share it with the slow path */
txq_trans_cond_update(nq);
ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
__netif_tx_unlock(nq);
return ret;
}
static int igb_xdp_xmit(struct net_device *dev, int n,
struct xdp_frame **frames, u32 flags)
{
struct igb_adapter *adapter = netdev_priv(dev);
int cpu = smp_processor_id();
struct igb_ring *tx_ring;
struct netdev_queue *nq;
int nxmit = 0;
int i;
if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
return -ENETDOWN;
if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
return -EINVAL;
/* During program transitions its possible adapter->xdp_prog is assigned
* but ring has not been configured yet. In this case simply abort xmit.
*/
tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
if (unlikely(!tx_ring))
return -ENXIO;
nq = txring_txq(tx_ring);
__netif_tx_lock(nq, cpu);
/* Avoid transmit queue timeout since we share it with the slow path */
txq_trans_cond_update(nq);
for (i = 0; i < n; i++) {
struct xdp_frame *xdpf = frames[i];
int err;
err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
if (err != IGB_XDP_TX)
break;
nxmit++;
}
if (unlikely(flags & XDP_XMIT_FLUSH))
igb_xdp_ring_update_tail(tx_ring);
__netif_tx_unlock(nq);
return nxmit;
}
static const struct net_device_ops igb_netdev_ops = {
.ndo_open = igb_open,
.ndo_stop = igb_close,
.ndo_start_xmit = igb_xmit_frame,
.ndo_get_stats64 = igb_get_stats64,
.ndo_set_rx_mode = igb_set_rx_mode,
.ndo_set_mac_address = igb_set_mac,
.ndo_change_mtu = igb_change_mtu,
.ndo_eth_ioctl = igb_ioctl,
.ndo_tx_timeout = igb_tx_timeout,
.ndo_validate_addr = eth_validate_addr,
.ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
.ndo_set_vf_mac = igb_ndo_set_vf_mac,
.ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
.ndo_set_vf_rate = igb_ndo_set_vf_bw,
.ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
.ndo_set_vf_trust = igb_ndo_set_vf_trust,
.ndo_get_vf_config = igb_ndo_get_vf_config,
.ndo_fix_features = igb_fix_features,
.ndo_set_features = igb_set_features,
.ndo_fdb_add = igb_ndo_fdb_add,
.ndo_features_check = igb_features_check,
.ndo_setup_tc = igb_setup_tc,
.ndo_bpf = igb_xdp,
.ndo_xdp_xmit = igb_xdp_xmit,
};
/**
* igb_set_fw_version - Configure version string for ethtool
* @adapter: adapter struct
**/
void igb_set_fw_version(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_fw_version fw;
igb_get_fw_version(hw, &fw);
switch (hw->mac.type) {
case e1000_i210:
case e1000_i211:
if (!(igb_get_flash_presence_i210(hw))) {
snprintf(adapter->fw_version,
sizeof(adapter->fw_version),
"%2d.%2d-%d",
fw.invm_major, fw.invm_minor,
fw.invm_img_type);
break;
}
fallthrough;
default:
/* if option rom is valid, display its version too */
if (fw.or_valid) {
snprintf(adapter->fw_version,
sizeof(adapter->fw_version),
"%d.%d, 0x%08x, %d.%d.%d",
fw.eep_major, fw.eep_minor, fw.etrack_id,
fw.or_major, fw.or_build, fw.or_patch);
/* no option rom */
} else if (fw.etrack_id != 0X0000) {
snprintf(adapter->fw_version,
sizeof(adapter->fw_version),
"%d.%d, 0x%08x",
fw.eep_major, fw.eep_minor, fw.etrack_id);
} else {
snprintf(adapter->fw_version,
sizeof(adapter->fw_version),
"%d.%d.%d",
fw.eep_major, fw.eep_minor, fw.eep_build);
}
break;
}
}
/**
* igb_init_mas - init Media Autosense feature if enabled in the NVM
*
* @adapter: adapter struct
**/
static void igb_init_mas(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u16 eeprom_data;
hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
switch (hw->bus.func) {
case E1000_FUNC_0:
if (eeprom_data & IGB_MAS_ENABLE_0) {
adapter->flags |= IGB_FLAG_MAS_ENABLE;
netdev_info(adapter->netdev,
"MAS: Enabling Media Autosense for port %d\n",
hw->bus.func);
}
break;
case E1000_FUNC_1:
if (eeprom_data & IGB_MAS_ENABLE_1) {
adapter->flags |= IGB_FLAG_MAS_ENABLE;
netdev_info(adapter->netdev,
"MAS: Enabling Media Autosense for port %d\n",
hw->bus.func);
}
break;
case E1000_FUNC_2:
if (eeprom_data & IGB_MAS_ENABLE_2) {
adapter->flags |= IGB_FLAG_MAS_ENABLE;
netdev_info(adapter->netdev,
"MAS: Enabling Media Autosense for port %d\n",
hw->bus.func);
}
break;
case E1000_FUNC_3:
if (eeprom_data & IGB_MAS_ENABLE_3) {
adapter->