blob: f5dad3f607d9a10dd760ce22455005774ce926fb [file] [log] [blame]
/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* The IP fragmentation functionality.
*
* Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
* Alan Cox <alan@lxorguk.ukuu.org.uk>
*
* Fixes:
* Alan Cox : Split from ip.c , see ip_input.c for history.
* David S. Miller : Begin massive cleanup...
* Andi Kleen : Add sysctls.
* xxxx : Overlapfrag bug.
* Ultima : ip_expire() kernel panic.
* Bill Hawes : Frag accounting and evictor fixes.
* John McDonald : 0 length frag bug.
* Alexey Kuznetsov: SMP races, threading, cleanup.
* Patrick McHardy : LRU queue of frag heads for evictor.
*/
#define pr_fmt(fmt) "IPv4: " fmt
#include <linux/compiler.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/jiffies.h>
#include <linux/skbuff.h>
#include <linux/list.h>
#include <linux/ip.h>
#include <linux/icmp.h>
#include <linux/netdevice.h>
#include <linux/jhash.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <net/route.h>
#include <net/dst.h>
#include <net/sock.h>
#include <net/ip.h>
#include <net/icmp.h>
#include <net/checksum.h>
#include <net/inetpeer.h>
#include <net/inet_frag.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/inet.h>
#include <linux/netfilter_ipv4.h>
#include <net/inet_ecn.h>
/* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
* code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
* as well. Or notify me, at least. --ANK
*/
static int sysctl_ipfrag_max_dist __read_mostly = 64;
struct ipfrag_skb_cb
{
struct inet_skb_parm h;
int offset;
};
#define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
/* Describe an entry in the "incomplete datagrams" queue. */
struct ipq {
struct inet_frag_queue q;
u32 user;
__be32 saddr;
__be32 daddr;
__be16 id;
u8 protocol;
u8 ecn; /* RFC3168 support */
int iif;
unsigned int rid;
struct inet_peer *peer;
};
static inline u8 ip4_frag_ecn(u8 tos)
{
return 1 << (tos & INET_ECN_MASK);
}
static struct inet_frags ip4_frags;
int ip_frag_nqueues(struct net *net)
{
return net->ipv4.frags.nqueues;
}
int ip_frag_mem(struct net *net)
{
return sum_frag_mem_limit(&net->ipv4.frags);
}
static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
struct net_device *dev);
struct ip4_create_arg {
struct iphdr *iph;
u32 user;
};
static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
{
net_get_random_once(&ip4_frags.rnd, sizeof(ip4_frags.rnd));
return jhash_3words((__force u32)id << 16 | prot,
(__force u32)saddr, (__force u32)daddr,
ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
}
static unsigned int ip4_hashfn(struct inet_frag_queue *q)
{
struct ipq *ipq;
ipq = container_of(q, struct ipq, q);
return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
}
static bool ip4_frag_match(struct inet_frag_queue *q, void *a)
{
struct ipq *qp;
struct ip4_create_arg *arg = a;
qp = container_of(q, struct ipq, q);
return qp->id == arg->iph->id &&
qp->saddr == arg->iph->saddr &&
qp->daddr == arg->iph->daddr &&
qp->protocol == arg->iph->protocol &&
qp->user == arg->user;
}
static void ip4_frag_init(struct inet_frag_queue *q, void *a)
{
struct ipq *qp = container_of(q, struct ipq, q);
struct netns_ipv4 *ipv4 = container_of(q->net, struct netns_ipv4,
frags);
struct net *net = container_of(ipv4, struct net, ipv4);
struct ip4_create_arg *arg = a;
qp->protocol = arg->iph->protocol;
qp->id = arg->iph->id;
qp->ecn = ip4_frag_ecn(arg->iph->tos);
qp->saddr = arg->iph->saddr;
qp->daddr = arg->iph->daddr;
qp->user = arg->user;
qp->peer = sysctl_ipfrag_max_dist ?
inet_getpeer_v4(net->ipv4.peers, arg->iph->saddr, 1) : NULL;
}
static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
{
struct ipq *qp;
qp = container_of(q, struct ipq, q);
if (qp->peer)
inet_putpeer(qp->peer);
}
/* Destruction primitives. */
static __inline__ void ipq_put(struct ipq *ipq)
{
inet_frag_put(&ipq->q, &ip4_frags);
}
/* Kill ipq entry. It is not destroyed immediately,
* because caller (and someone more) holds reference count.
*/
static void ipq_kill(struct ipq *ipq)
{
inet_frag_kill(&ipq->q, &ip4_frags);
}
/* Memory limiting on fragments. Evictor trashes the oldest
* fragment queue until we are back under the threshold.
*/
static void ip_evictor(struct net *net)
{
int evicted;
evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags, false);
if (evicted)
IP_ADD_STATS_BH(net, IPSTATS_MIB_REASMFAILS, evicted);
}
/*
* Oops, a fragment queue timed out. Kill it and send an ICMP reply.
*/
static void ip_expire(unsigned long arg)
{
struct ipq *qp;
struct net *net;
qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
net = container_of(qp->q.net, struct net, ipv4.frags);
spin_lock(&qp->q.lock);
if (qp->q.last_in & INET_FRAG_COMPLETE)
goto out;
ipq_kill(qp);
IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT);
IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
if ((qp->q.last_in & INET_FRAG_FIRST_IN) && qp->q.fragments != NULL) {
struct sk_buff *head = qp->q.fragments;
const struct iphdr *iph;
int err;
rcu_read_lock();
head->dev = dev_get_by_index_rcu(net, qp->iif);
if (!head->dev)
goto out_rcu_unlock;
/* skb has no dst, perform route lookup again */
iph = ip_hdr(head);
err = ip_route_input_noref(head, iph->daddr, iph->saddr,
iph->tos, head->dev);
if (err)
goto out_rcu_unlock;
/*
* Only an end host needs to send an ICMP
* "Fragment Reassembly Timeout" message, per RFC792.
*/
if (qp->user == IP_DEFRAG_AF_PACKET ||
((qp->user >= IP_DEFRAG_CONNTRACK_IN) &&
(qp->user <= __IP_DEFRAG_CONNTRACK_IN_END) &&
(skb_rtable(head)->rt_type != RTN_LOCAL)))
goto out_rcu_unlock;
/* Send an ICMP "Fragment Reassembly Timeout" message. */
icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
out_rcu_unlock:
rcu_read_unlock();
}
out:
spin_unlock(&qp->q.lock);
ipq_put(qp);
}
/* Find the correct entry in the "incomplete datagrams" queue for
* this IP datagram, and create new one, if nothing is found.
*/
static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user)
{
struct inet_frag_queue *q;
struct ip4_create_arg arg;
unsigned int hash;
arg.iph = iph;
arg.user = user;
read_lock(&ip4_frags.lock);
hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash);
if (IS_ERR_OR_NULL(q)) {
inet_frag_maybe_warn_overflow(q, pr_fmt());
return NULL;
}
return container_of(q, struct ipq, q);
}
/* Is the fragment too far ahead to be part of ipq? */
static inline int ip_frag_too_far(struct ipq *qp)
{
struct inet_peer *peer = qp->peer;
unsigned int max = sysctl_ipfrag_max_dist;
unsigned int start, end;
int rc;
if (!peer || !max)
return 0;
start = qp->rid;
end = atomic_inc_return(&peer->rid);
qp->rid = end;
rc = qp->q.fragments && (end - start) > max;
if (rc) {
struct net *net;
net = container_of(qp->q.net, struct net, ipv4.frags);
IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
}
return rc;
}
static int ip_frag_reinit(struct ipq *qp)
{
struct sk_buff *fp;
unsigned int sum_truesize = 0;
if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
atomic_inc(&qp->q.refcnt);
return -ETIMEDOUT;
}
fp = qp->q.fragments;
do {
struct sk_buff *xp = fp->next;
sum_truesize += fp->truesize;
kfree_skb(fp);
fp = xp;
} while (fp);
sub_frag_mem_limit(&qp->q, sum_truesize);
qp->q.last_in = 0;
qp->q.len = 0;
qp->q.meat = 0;
qp->q.fragments = NULL;
qp->q.fragments_tail = NULL;
qp->iif = 0;
qp->ecn = 0;
return 0;
}
/* Add new segment to existing queue. */
static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
{
struct sk_buff *prev, *next;
struct net_device *dev;
int flags, offset;
int ihl, end;
int err = -ENOENT;
u8 ecn;
if (qp->q.last_in & INET_FRAG_COMPLETE)
goto err;
if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
unlikely(ip_frag_too_far(qp)) &&
unlikely(err = ip_frag_reinit(qp))) {
ipq_kill(qp);
goto err;
}
ecn = ip4_frag_ecn(ip_hdr(skb)->tos);
offset = ntohs(ip_hdr(skb)->frag_off);
flags = offset & ~IP_OFFSET;
offset &= IP_OFFSET;
offset <<= 3; /* offset is in 8-byte chunks */
ihl = ip_hdrlen(skb);
/* Determine the position of this fragment. */
end = offset + skb->len - skb_network_offset(skb) - ihl;
err = -EINVAL;
/* Is this the final fragment? */
if ((flags & IP_MF) == 0) {
/* If we already have some bits beyond end
* or have different end, the segment is corrupted.
*/
if (end < qp->q.len ||
((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len))
goto err;
qp->q.last_in |= INET_FRAG_LAST_IN;
qp->q.len = end;
} else {
if (end&7) {
end &= ~7;
if (skb->ip_summed != CHECKSUM_UNNECESSARY)
skb->ip_summed = CHECKSUM_NONE;
}
if (end > qp->q.len) {
/* Some bits beyond end -> corruption. */
if (qp->q.last_in & INET_FRAG_LAST_IN)
goto err;
qp->q.len = end;
}
}
if (end == offset)
goto err;
err = -ENOMEM;
if (!pskb_pull(skb, skb_network_offset(skb) + ihl))
goto err;
err = pskb_trim_rcsum(skb, end - offset);
if (err)
goto err;
/* Find out which fragments are in front and at the back of us
* in the chain of fragments so far. We must know where to put
* this fragment, right?
*/
prev = qp->q.fragments_tail;
if (!prev || FRAG_CB(prev)->offset < offset) {
next = NULL;
goto found;
}
prev = NULL;
for (next = qp->q.fragments; next != NULL; next = next->next) {
if (FRAG_CB(next)->offset >= offset)
break; /* bingo! */
prev = next;
}
found:
/* We found where to put this one. Check for overlap with
* preceding fragment, and, if needed, align things so that
* any overlaps are eliminated.
*/
if (prev) {
int i = (FRAG_CB(prev)->offset + prev->len) - offset;
if (i > 0) {
offset += i;
err = -EINVAL;
if (end <= offset)
goto err;
err = -ENOMEM;
if (!pskb_pull(skb, i))
goto err;
if (skb->ip_summed != CHECKSUM_UNNECESSARY)
skb->ip_summed = CHECKSUM_NONE;
}
}
err = -ENOMEM;
while (next && FRAG_CB(next)->offset < end) {
int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
if (i < next->len) {
/* Eat head of the next overlapped fragment
* and leave the loop. The next ones cannot overlap.
*/
if (!pskb_pull(next, i))
goto err;
FRAG_CB(next)->offset += i;
qp->q.meat -= i;
if (next->ip_summed != CHECKSUM_UNNECESSARY)
next->ip_summed = CHECKSUM_NONE;
break;
} else {
struct sk_buff *free_it = next;
/* Old fragment is completely overridden with
* new one drop it.
*/
next = next->next;
if (prev)
prev->next = next;
else
qp->q.fragments = next;
qp->q.meat -= free_it->len;
sub_frag_mem_limit(&qp->q, free_it->truesize);
kfree_skb(free_it);
}
}
FRAG_CB(skb)->offset = offset;
/* Insert this fragment in the chain of fragments. */
skb->next = next;
if (!next)
qp->q.fragments_tail = skb;
if (prev)
prev->next = skb;
else
qp->q.fragments = skb;
dev = skb->dev;
if (dev) {
qp->iif = dev->ifindex;
skb->dev = NULL;
}
qp->q.stamp = skb->tstamp;
qp->q.meat += skb->len;
qp->ecn |= ecn;
add_frag_mem_limit(&qp->q, skb->truesize);
if (offset == 0)
qp->q.last_in |= INET_FRAG_FIRST_IN;
if (ip_hdr(skb)->frag_off & htons(IP_DF) &&
skb->len + ihl > qp->q.max_size)
qp->q.max_size = skb->len + ihl;
if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
qp->q.meat == qp->q.len) {
unsigned long orefdst = skb->_skb_refdst;
skb->_skb_refdst = 0UL;
err = ip_frag_reasm(qp, prev, dev);
skb->_skb_refdst = orefdst;
return err;
}
skb_dst_drop(skb);
inet_frag_lru_move(&qp->q);
return -EINPROGRESS;
err:
kfree_skb(skb);
return err;
}
/* Build a new IP datagram from all its fragments. */
static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
struct net_device *dev)
{
struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
struct iphdr *iph;
struct sk_buff *fp, *head = qp->q.fragments;
int len;
int ihlen;
int err;
int sum_truesize;
u8 ecn;
ipq_kill(qp);
ecn = ip_frag_ecn_table[qp->ecn];
if (unlikely(ecn == 0xff)) {
err = -EINVAL;
goto out_fail;
}
/* Make the one we just received the head. */
if (prev) {
head = prev->next;
fp = skb_clone(head, GFP_ATOMIC);
if (!fp)
goto out_nomem;
fp->next = head->next;
if (!fp->next)
qp->q.fragments_tail = fp;
prev->next = fp;
skb_morph(head, qp->q.fragments);
head->next = qp->q.fragments->next;
consume_skb(qp->q.fragments);
qp->q.fragments = head;
}
WARN_ON(head == NULL);
WARN_ON(FRAG_CB(head)->offset != 0);
/* Allocate a new buffer for the datagram. */
ihlen = ip_hdrlen(head);
len = ihlen + qp->q.len;
err = -E2BIG;
if (len > 65535)
goto out_oversize;
/* Head of list must not be cloned. */
if (skb_unclone(head, GFP_ATOMIC))
goto out_nomem;
/* If the first fragment is fragmented itself, we split
* it to two chunks: the first with data and paged part
* and the second, holding only fragments. */
if (skb_has_frag_list(head)) {
struct sk_buff *clone;
int i, plen = 0;
if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
goto out_nomem;
clone->next = head->next;
head->next = clone;
skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
skb_frag_list_init(head);
for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
clone->len = clone->data_len = head->data_len - plen;
head->data_len -= clone->len;
head->len -= clone->len;
clone->csum = 0;
clone->ip_summed = head->ip_summed;
add_frag_mem_limit(&qp->q, clone->truesize);
}
skb_push(head, head->data - skb_network_header(head));
sum_truesize = head->truesize;
for (fp = head->next; fp;) {
bool headstolen;
int delta;
struct sk_buff *next = fp->next;
sum_truesize += fp->truesize;
if (head->ip_summed != fp->ip_summed)
head->ip_summed = CHECKSUM_NONE;
else if (head->ip_summed == CHECKSUM_COMPLETE)
head->csum = csum_add(head->csum, fp->csum);
if (skb_try_coalesce(head, fp, &headstolen, &delta)) {
kfree_skb_partial(fp, headstolen);
} else {
if (!skb_shinfo(head)->frag_list)
skb_shinfo(head)->frag_list = fp;
head->data_len += fp->len;
head->len += fp->len;
head->truesize += fp->truesize;
}
fp = next;
}
sub_frag_mem_limit(&qp->q, sum_truesize);
head->next = NULL;
head->dev = dev;
head->tstamp = qp->q.stamp;
IPCB(head)->frag_max_size = qp->q.max_size;
iph = ip_hdr(head);
/* max_size != 0 implies at least one fragment had IP_DF set */
iph->frag_off = qp->q.max_size ? htons(IP_DF) : 0;
iph->tot_len = htons(len);
iph->tos |= ecn;
ip_send_check(iph);
IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS);
qp->q.fragments = NULL;
qp->q.fragments_tail = NULL;
return 0;
out_nomem:
LIMIT_NETDEBUG(KERN_ERR pr_fmt("queue_glue: no memory for gluing queue %p\n"),
qp);
err = -ENOMEM;
goto out_fail;
out_oversize:
net_info_ratelimited("Oversized IP packet from %pI4\n", &qp->saddr);
out_fail:
IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
return err;
}
/* Process an incoming IP datagram fragment. */
int ip_defrag(struct sk_buff *skb, u32 user)
{
struct ipq *qp;
struct net *net;
net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev);
IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS);
/* Start by cleaning up the memory. */
ip_evictor(net);
/* Lookup (or create) queue header */
if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) {
int ret;
spin_lock(&qp->q.lock);
ret = ip_frag_queue(qp, skb);
spin_unlock(&qp->q.lock);
ipq_put(qp);
return ret;
}
IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
kfree_skb(skb);
return -ENOMEM;
}
EXPORT_SYMBOL(ip_defrag);
struct sk_buff *ip_check_defrag(struct sk_buff *skb, u32 user)
{
struct iphdr iph;
int netoff;
u32 len;
if (skb->protocol != htons(ETH_P_IP))
return skb;
netoff = skb_network_offset(skb);
if (skb_copy_bits(skb, netoff, &iph, sizeof(iph)) < 0)
return skb;
if (iph.ihl < 5 || iph.version != 4)
return skb;
len = ntohs(iph.tot_len);
if (skb->len < netoff + len || len < (iph.ihl * 4))
return skb;
if (ip_is_fragment(&iph)) {
skb = skb_share_check(skb, GFP_ATOMIC);
if (skb) {
if (!pskb_may_pull(skb, netoff + iph.ihl * 4))
return skb;
if (pskb_trim_rcsum(skb, netoff + len))
return skb;
memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
if (ip_defrag(skb, user))
return NULL;
skb_clear_hash(skb);
}
}
return skb;
}
EXPORT_SYMBOL(ip_check_defrag);
#ifdef CONFIG_SYSCTL
static int zero;
static struct ctl_table ip4_frags_ns_ctl_table[] = {
{
.procname = "ipfrag_high_thresh",
.data = &init_net.ipv4.frags.high_thresh,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec
},
{
.procname = "ipfrag_low_thresh",
.data = &init_net.ipv4.frags.low_thresh,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec
},
{
.procname = "ipfrag_time",
.data = &init_net.ipv4.frags.timeout,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_jiffies,
},
{ }
};
static struct ctl_table ip4_frags_ctl_table[] = {
{
.procname = "ipfrag_secret_interval",
.data = &ip4_frags.secret_interval,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_jiffies,
},
{
.procname = "ipfrag_max_dist",
.data = &sysctl_ipfrag_max_dist,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &zero
},
{ }
};
static int __net_init ip4_frags_ns_ctl_register(struct net *net)
{
struct ctl_table *table;
struct ctl_table_header *hdr;
table = ip4_frags_ns_ctl_table;
if (!net_eq(net, &init_net)) {
table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
if (table == NULL)
goto err_alloc;
table[0].data = &net->ipv4.frags.high_thresh;
table[1].data = &net->ipv4.frags.low_thresh;
table[2].data = &net->ipv4.frags.timeout;
/* Don't export sysctls to unprivileged users */
if (net->user_ns != &init_user_ns)
table[0].procname = NULL;
}
hdr = register_net_sysctl(net, "net/ipv4", table);
if (hdr == NULL)
goto err_reg;
net->ipv4.frags_hdr = hdr;
return 0;
err_reg:
if (!net_eq(net, &init_net))
kfree(table);
err_alloc:
return -ENOMEM;
}
static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net)
{
struct ctl_table *table;
table = net->ipv4.frags_hdr->ctl_table_arg;
unregister_net_sysctl_table(net->ipv4.frags_hdr);
kfree(table);
}
static void ip4_frags_ctl_register(void)
{
register_net_sysctl(&init_net, "net/ipv4", ip4_frags_ctl_table);
}
#else
static inline int ip4_frags_ns_ctl_register(struct net *net)
{
return 0;
}
static inline void ip4_frags_ns_ctl_unregister(struct net *net)
{
}
static inline void ip4_frags_ctl_register(void)
{
}
#endif
static int __net_init ipv4_frags_init_net(struct net *net)
{
/* Fragment cache limits.
*
* The fragment memory accounting code, (tries to) account for
* the real memory usage, by measuring both the size of frag
* queue struct (inet_frag_queue (ipv4:ipq/ipv6:frag_queue))
* and the SKB's truesize.
*
* A 64K fragment consumes 129736 bytes (44*2944)+200
* (1500 truesize == 2944, sizeof(struct ipq) == 200)
*
* We will commit 4MB at one time. Should we cross that limit
* we will prune down to 3MB, making room for approx 8 big 64K
* fragments 8x128k.
*/
net->ipv4.frags.high_thresh = 4 * 1024 * 1024;
net->ipv4.frags.low_thresh = 3 * 1024 * 1024;
/*
* Important NOTE! Fragment queue must be destroyed before MSL expires.
* RFC791 is wrong proposing to prolongate timer each fragment arrival
* by TTL.
*/
net->ipv4.frags.timeout = IP_FRAG_TIME;
inet_frags_init_net(&net->ipv4.frags);
return ip4_frags_ns_ctl_register(net);
}
static void __net_exit ipv4_frags_exit_net(struct net *net)
{
ip4_frags_ns_ctl_unregister(net);
inet_frags_exit_net(&net->ipv4.frags, &ip4_frags);
}
static struct pernet_operations ip4_frags_ops = {
.init = ipv4_frags_init_net,
.exit = ipv4_frags_exit_net,
};
void __init ipfrag_init(void)
{
ip4_frags_ctl_register();
register_pernet_subsys(&ip4_frags_ops);
ip4_frags.hashfn = ip4_hashfn;
ip4_frags.constructor = ip4_frag_init;
ip4_frags.destructor = ip4_frag_free;
ip4_frags.skb_free = NULL;
ip4_frags.qsize = sizeof(struct ipq);
ip4_frags.match = ip4_frag_match;
ip4_frags.frag_expire = ip_expire;
ip4_frags.secret_interval = 10 * 60 * HZ;
inet_frags_init(&ip4_frags);
}