blob: f432aa022ace0685e70329cb7d8cca947f666b5a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* drivers/soc/tegra/pmc.c
*
* Copyright (c) 2010 Google, Inc
* Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved.
*
* Author:
* Colin Cross <ccross@google.com>
*/
#define pr_fmt(fmt) "tegra-pmc: " fmt
#include <linux/arm-smccc.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/clkdev.h>
#include <linux/clk/clk-conf.h>
#include <linux/clk/tegra.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/irqdomain.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/of_address.h>
#include <linux/of_clk.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/pinctrl/pinconf-generic.h>
#include <linux/pinctrl/pinconf.h>
#include <linux/pinctrl/pinctrl.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h>
#include <linux/pm_opp.h>
#include <linux/power_supply.h>
#include <linux/reboot.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/syscore_ops.h>
#include <soc/tegra/common.h>
#include <soc/tegra/fuse.h>
#include <soc/tegra/pmc.h>
#include <dt-bindings/interrupt-controller/arm-gic.h>
#include <dt-bindings/pinctrl/pinctrl-tegra-io-pad.h>
#include <dt-bindings/gpio/tegra186-gpio.h>
#include <dt-bindings/gpio/tegra194-gpio.h>
#include <dt-bindings/gpio/tegra234-gpio.h>
#include <dt-bindings/soc/tegra-pmc.h>
#define PMC_CNTRL 0x0
#define PMC_CNTRL_INTR_POLARITY BIT(17) /* inverts INTR polarity */
#define PMC_CNTRL_CPU_PWRREQ_OE BIT(16) /* CPU pwr req enable */
#define PMC_CNTRL_CPU_PWRREQ_POLARITY BIT(15) /* CPU pwr req polarity */
#define PMC_CNTRL_SIDE_EFFECT_LP0 BIT(14) /* LP0 when CPU pwr gated */
#define PMC_CNTRL_SYSCLK_OE BIT(11) /* system clock enable */
#define PMC_CNTRL_SYSCLK_POLARITY BIT(10) /* sys clk polarity */
#define PMC_CNTRL_PWRREQ_POLARITY BIT(8)
#define PMC_CNTRL_BLINK_EN 7
#define PMC_CNTRL_MAIN_RST BIT(4)
#define PMC_WAKE_MASK 0x0c
#define PMC_WAKE_LEVEL 0x10
#define PMC_WAKE_STATUS 0x14
#define PMC_SW_WAKE_STATUS 0x18
#define PMC_DPD_PADS_ORIDE 0x1c
#define PMC_DPD_PADS_ORIDE_BLINK 20
#define DPD_SAMPLE 0x020
#define DPD_SAMPLE_ENABLE BIT(0)
#define DPD_SAMPLE_DISABLE (0 << 0)
#define PWRGATE_TOGGLE 0x30
#define PWRGATE_TOGGLE_START BIT(8)
#define REMOVE_CLAMPING 0x34
#define PWRGATE_STATUS 0x38
#define PMC_BLINK_TIMER 0x40
#define PMC_IMPL_E_33V_PWR 0x40
#define PMC_PWR_DET 0x48
#define PMC_SCRATCH0_MODE_RECOVERY BIT(31)
#define PMC_SCRATCH0_MODE_BOOTLOADER BIT(30)
#define PMC_SCRATCH0_MODE_RCM BIT(1)
#define PMC_SCRATCH0_MODE_MASK (PMC_SCRATCH0_MODE_RECOVERY | \
PMC_SCRATCH0_MODE_BOOTLOADER | \
PMC_SCRATCH0_MODE_RCM)
#define PMC_CPUPWRGOOD_TIMER 0xc8
#define PMC_CPUPWROFF_TIMER 0xcc
#define PMC_COREPWRGOOD_TIMER 0x3c
#define PMC_COREPWROFF_TIMER 0xe0
#define PMC_PWR_DET_VALUE 0xe4
#define PMC_USB_DEBOUNCE_DEL 0xec
#define PMC_USB_AO 0xf0
#define PMC_SCRATCH37 0x130
#define PMC_SCRATCH41 0x140
#define PMC_WAKE2_MASK 0x160
#define PMC_WAKE2_LEVEL 0x164
#define PMC_WAKE2_STATUS 0x168
#define PMC_SW_WAKE2_STATUS 0x16c
#define PMC_CLK_OUT_CNTRL 0x1a8
#define PMC_CLK_OUT_MUX_MASK GENMASK(1, 0)
#define PMC_SENSOR_CTRL 0x1b0
#define PMC_SENSOR_CTRL_SCRATCH_WRITE BIT(2)
#define PMC_SENSOR_CTRL_ENABLE_RST BIT(1)
#define PMC_RST_STATUS_POR 0
#define PMC_RST_STATUS_WATCHDOG 1
#define PMC_RST_STATUS_SENSOR 2
#define PMC_RST_STATUS_SW_MAIN 3
#define PMC_RST_STATUS_LP0 4
#define PMC_RST_STATUS_AOTAG 5
#define IO_DPD_REQ 0x1b8
#define IO_DPD_REQ_CODE_IDLE (0U << 30)
#define IO_DPD_REQ_CODE_OFF (1U << 30)
#define IO_DPD_REQ_CODE_ON (2U << 30)
#define IO_DPD_REQ_CODE_MASK (3U << 30)
#define IO_DPD_STATUS 0x1bc
#define IO_DPD2_REQ 0x1c0
#define IO_DPD2_STATUS 0x1c4
#define SEL_DPD_TIM 0x1c8
#define PMC_UTMIP_UHSIC_TRIGGERS 0x1ec
#define PMC_UTMIP_UHSIC_SAVED_STATE 0x1f0
#define PMC_UTMIP_TERM_PAD_CFG 0x1f8
#define PMC_UTMIP_UHSIC_SLEEP_CFG 0x1fc
#define PMC_UTMIP_UHSIC_FAKE 0x218
#define PMC_SCRATCH54 0x258
#define PMC_SCRATCH54_DATA_SHIFT 8
#define PMC_SCRATCH54_ADDR_SHIFT 0
#define PMC_SCRATCH55 0x25c
#define PMC_SCRATCH55_RESET_TEGRA BIT(31)
#define PMC_SCRATCH55_CNTRL_ID_SHIFT 27
#define PMC_SCRATCH55_PINMUX_SHIFT 24
#define PMC_SCRATCH55_16BITOP BIT(15)
#define PMC_SCRATCH55_CHECKSUM_SHIFT 16
#define PMC_SCRATCH55_I2CSLV1_SHIFT 0
#define PMC_UTMIP_UHSIC_LINE_WAKEUP 0x26c
#define PMC_UTMIP_BIAS_MASTER_CNTRL 0x270
#define PMC_UTMIP_MASTER_CONFIG 0x274
#define PMC_UTMIP_UHSIC2_TRIGGERS 0x27c
#define PMC_UTMIP_MASTER2_CONFIG 0x29c
#define GPU_RG_CNTRL 0x2d4
#define PMC_UTMIP_PAD_CFG0 0x4c0
#define PMC_UTMIP_UHSIC_SLEEP_CFG1 0x4d0
#define PMC_UTMIP_SLEEPWALK_P3 0x4e0
/* Tegra186 and later */
#define WAKE_AOWAKE_CNTRL(x) (0x000 + ((x) << 2))
#define WAKE_AOWAKE_CNTRL_LEVEL (1 << 3)
#define WAKE_AOWAKE_CNTRL_SR_CAPTURE_EN (1 << 1)
#define WAKE_AOWAKE_MASK_W(x) (0x180 + ((x) << 2))
#define WAKE_AOWAKE_MASK_R(x) (0x300 + ((x) << 2))
#define WAKE_AOWAKE_STATUS_W(x) (0x30c + ((x) << 2))
#define WAKE_AOWAKE_STATUS_R(x) (0x48c + ((x) << 2))
#define WAKE_AOWAKE_TIER0_ROUTING(x) (0x4b4 + ((x) << 2))
#define WAKE_AOWAKE_TIER1_ROUTING(x) (0x4c0 + ((x) << 2))
#define WAKE_AOWAKE_TIER2_ROUTING(x) (0x4cc + ((x) << 2))
#define WAKE_AOWAKE_SW_STATUS_W_0 0x49c
#define WAKE_AOWAKE_SW_STATUS(x) (0x4a0 + ((x) << 2))
#define WAKE_LATCH_SW 0x498
#define WAKE_AOWAKE_CTRL 0x4f4
#define WAKE_AOWAKE_CTRL_INTR_POLARITY BIT(0)
#define SW_WAKE_ID 83 /* wake83 */
/* for secure PMC */
#define TEGRA_SMC_PMC 0xc2fffe00
#define TEGRA_SMC_PMC_READ 0xaa
#define TEGRA_SMC_PMC_WRITE 0xbb
struct pmc_clk {
struct clk_hw hw;
unsigned long offs;
u32 mux_shift;
u32 force_en_shift;
};
#define to_pmc_clk(_hw) container_of(_hw, struct pmc_clk, hw)
struct pmc_clk_gate {
struct clk_hw hw;
unsigned long offs;
u32 shift;
};
#define to_pmc_clk_gate(_hw) container_of(_hw, struct pmc_clk_gate, hw)
struct pmc_clk_init_data {
char *name;
const char *const *parents;
int num_parents;
int clk_id;
u8 mux_shift;
u8 force_en_shift;
};
static const char * const clk_out1_parents[] = { "osc", "osc_div2",
"osc_div4", "extern1",
};
static const char * const clk_out2_parents[] = { "osc", "osc_div2",
"osc_div4", "extern2",
};
static const char * const clk_out3_parents[] = { "osc", "osc_div2",
"osc_div4", "extern3",
};
static const struct pmc_clk_init_data tegra_pmc_clks_data[] = {
{
.name = "pmc_clk_out_1",
.parents = clk_out1_parents,
.num_parents = ARRAY_SIZE(clk_out1_parents),
.clk_id = TEGRA_PMC_CLK_OUT_1,
.mux_shift = 6,
.force_en_shift = 2,
},
{
.name = "pmc_clk_out_2",
.parents = clk_out2_parents,
.num_parents = ARRAY_SIZE(clk_out2_parents),
.clk_id = TEGRA_PMC_CLK_OUT_2,
.mux_shift = 14,
.force_en_shift = 10,
},
{
.name = "pmc_clk_out_3",
.parents = clk_out3_parents,
.num_parents = ARRAY_SIZE(clk_out3_parents),
.clk_id = TEGRA_PMC_CLK_OUT_3,
.mux_shift = 22,
.force_en_shift = 18,
},
};
struct tegra_powergate {
struct generic_pm_domain genpd;
struct tegra_pmc *pmc;
unsigned int id;
struct clk **clks;
unsigned int num_clks;
unsigned long *clk_rates;
struct reset_control *reset;
};
struct tegra_io_pad_soc {
enum tegra_io_pad id;
unsigned int dpd;
unsigned int request;
unsigned int status;
unsigned int voltage;
const char *name;
};
struct tegra_pmc_regs {
unsigned int scratch0;
unsigned int rst_status;
unsigned int rst_source_shift;
unsigned int rst_source_mask;
unsigned int rst_level_shift;
unsigned int rst_level_mask;
};
struct tegra_wake_event {
const char *name;
unsigned int id;
unsigned int irq;
struct {
unsigned int instance;
unsigned int pin;
} gpio;
};
#define TEGRA_WAKE_SIMPLE(_name, _id) \
{ \
.name = _name, \
.id = _id, \
.irq = 0, \
.gpio = { \
.instance = UINT_MAX, \
.pin = UINT_MAX, \
}, \
}
#define TEGRA_WAKE_IRQ(_name, _id, _irq) \
{ \
.name = _name, \
.id = _id, \
.irq = _irq, \
.gpio = { \
.instance = UINT_MAX, \
.pin = UINT_MAX, \
}, \
}
#define TEGRA_WAKE_GPIO(_name, _id, _instance, _pin) \
{ \
.name = _name, \
.id = _id, \
.irq = 0, \
.gpio = { \
.instance = _instance, \
.pin = _pin, \
}, \
}
struct tegra_pmc_soc {
unsigned int num_powergates;
const char *const *powergates;
unsigned int num_cpu_powergates;
const u8 *cpu_powergates;
bool has_tsense_reset;
bool has_gpu_clamps;
bool needs_mbist_war;
bool has_impl_33v_pwr;
bool maybe_tz_only;
const struct tegra_io_pad_soc *io_pads;
unsigned int num_io_pads;
const struct pinctrl_pin_desc *pin_descs;
unsigned int num_pin_descs;
const struct tegra_pmc_regs *regs;
void (*init)(struct tegra_pmc *pmc);
void (*setup_irq_polarity)(struct tegra_pmc *pmc,
struct device_node *np,
bool invert);
void (*set_wake_filters)(struct tegra_pmc *pmc);
int (*irq_set_wake)(struct irq_data *data, unsigned int on);
int (*irq_set_type)(struct irq_data *data, unsigned int type);
int (*powergate_set)(struct tegra_pmc *pmc, unsigned int id,
bool new_state);
const char * const *reset_sources;
unsigned int num_reset_sources;
const char * const *reset_levels;
unsigned int num_reset_levels;
/*
* These describe events that can wake the system from sleep (i.e.
* LP0 or SC7). Wakeup from other sleep states (such as LP1 or LP2)
* are dealt with in the LIC.
*/
const struct tegra_wake_event *wake_events;
unsigned int num_wake_events;
unsigned int max_wake_events;
unsigned int max_wake_vectors;
const struct pmc_clk_init_data *pmc_clks_data;
unsigned int num_pmc_clks;
bool has_blink_output;
bool has_usb_sleepwalk;
bool supports_core_domain;
};
/**
* struct tegra_pmc - NVIDIA Tegra PMC
* @dev: pointer to PMC device structure
* @base: pointer to I/O remapped register region
* @wake: pointer to I/O remapped region for WAKE registers
* @aotag: pointer to I/O remapped region for AOTAG registers
* @scratch: pointer to I/O remapped region for scratch registers
* @clk: pointer to pclk clock
* @soc: pointer to SoC data structure
* @tz_only: flag specifying if the PMC can only be accessed via TrustZone
* @rate: currently configured rate of pclk
* @suspend_mode: lowest suspend mode available
* @cpu_good_time: CPU power good time (in microseconds)
* @cpu_off_time: CPU power off time (in microsecends)
* @core_osc_time: core power good OSC time (in microseconds)
* @core_pmu_time: core power good PMU time (in microseconds)
* @core_off_time: core power off time (in microseconds)
* @corereq_high: core power request is active-high
* @sysclkreq_high: system clock request is active-high
* @combined_req: combined power request for CPU & core
* @cpu_pwr_good_en: CPU power good signal is enabled
* @lp0_vec_phys: physical base address of the LP0 warm boot code
* @lp0_vec_size: size of the LP0 warm boot code
* @powergates_available: Bitmap of available power gates
* @powergates_lock: mutex for power gate register access
* @pctl_dev: pin controller exposed by the PMC
* @domain: IRQ domain provided by the PMC
* @irq: chip implementation for the IRQ domain
* @clk_nb: pclk clock changes handler
* @core_domain_state_synced: flag marking the core domain's state as synced
* @core_domain_registered: flag marking the core domain as registered
* @wake_type_level_map: Bitmap indicating level type for non-dual edge wakes
* @wake_type_dual_edge_map: Bitmap indicating if a wake is dual-edge or not
* @wake_sw_status_map: Bitmap to hold raw status of wakes without mask
* @wake_cntrl_level_map: Bitmap to hold wake levels to be programmed in
* cntrl register associated with each wake during system suspend.
*/
struct tegra_pmc {
struct device *dev;
void __iomem *base;
void __iomem *wake;
void __iomem *aotag;
void __iomem *scratch;
struct clk *clk;
const struct tegra_pmc_soc *soc;
bool tz_only;
unsigned long rate;
enum tegra_suspend_mode suspend_mode;
u32 cpu_good_time;
u32 cpu_off_time;
u32 core_osc_time;
u32 core_pmu_time;
u32 core_off_time;
bool corereq_high;
bool sysclkreq_high;
bool combined_req;
bool cpu_pwr_good_en;
u32 lp0_vec_phys;
u32 lp0_vec_size;
DECLARE_BITMAP(powergates_available, TEGRA_POWERGATE_MAX);
struct mutex powergates_lock;
struct pinctrl_dev *pctl_dev;
struct irq_domain *domain;
struct irq_chip irq;
struct notifier_block clk_nb;
bool core_domain_state_synced;
bool core_domain_registered;
unsigned long *wake_type_level_map;
unsigned long *wake_type_dual_edge_map;
unsigned long *wake_sw_status_map;
unsigned long *wake_cntrl_level_map;
struct syscore_ops syscore;
};
static struct tegra_pmc *pmc = &(struct tegra_pmc) {
.base = NULL,
.suspend_mode = TEGRA_SUSPEND_NOT_READY,
};
static inline struct tegra_powergate *
to_powergate(struct generic_pm_domain *domain)
{
return container_of(domain, struct tegra_powergate, genpd);
}
static u32 tegra_pmc_readl(struct tegra_pmc *pmc, unsigned long offset)
{
struct arm_smccc_res res;
if (pmc->tz_only) {
arm_smccc_smc(TEGRA_SMC_PMC, TEGRA_SMC_PMC_READ, offset, 0, 0,
0, 0, 0, &res);
if (res.a0) {
if (pmc->dev)
dev_warn(pmc->dev, "%s(): SMC failed: %lu\n",
__func__, res.a0);
else
pr_warn("%s(): SMC failed: %lu\n", __func__,
res.a0);
}
return res.a1;
}
return readl(pmc->base + offset);
}
static void tegra_pmc_writel(struct tegra_pmc *pmc, u32 value,
unsigned long offset)
{
struct arm_smccc_res res;
if (pmc->tz_only) {
arm_smccc_smc(TEGRA_SMC_PMC, TEGRA_SMC_PMC_WRITE, offset,
value, 0, 0, 0, 0, &res);
if (res.a0) {
if (pmc->dev)
dev_warn(pmc->dev, "%s(): SMC failed: %lu\n",
__func__, res.a0);
else
pr_warn("%s(): SMC failed: %lu\n", __func__,
res.a0);
}
} else {
writel(value, pmc->base + offset);
}
}
static u32 tegra_pmc_scratch_readl(struct tegra_pmc *pmc, unsigned long offset)
{
if (pmc->tz_only)
return tegra_pmc_readl(pmc, offset);
return readl(pmc->scratch + offset);
}
static void tegra_pmc_scratch_writel(struct tegra_pmc *pmc, u32 value,
unsigned long offset)
{
if (pmc->tz_only)
tegra_pmc_writel(pmc, value, offset);
else
writel(value, pmc->scratch + offset);
}
/*
* TODO Figure out a way to call this with the struct tegra_pmc * passed in.
* This currently doesn't work because readx_poll_timeout() can only operate
* on functions that take a single argument.
*/
static inline bool tegra_powergate_state(int id)
{
if (id == TEGRA_POWERGATE_3D && pmc->soc->has_gpu_clamps)
return (tegra_pmc_readl(pmc, GPU_RG_CNTRL) & 0x1) == 0;
else
return (tegra_pmc_readl(pmc, PWRGATE_STATUS) & BIT(id)) != 0;
}
static inline bool tegra_powergate_is_valid(struct tegra_pmc *pmc, int id)
{
return (pmc->soc && pmc->soc->powergates[id]);
}
static inline bool tegra_powergate_is_available(struct tegra_pmc *pmc, int id)
{
return test_bit(id, pmc->powergates_available);
}
static int tegra_powergate_lookup(struct tegra_pmc *pmc, const char *name)
{
unsigned int i;
if (!pmc || !pmc->soc || !name)
return -EINVAL;
for (i = 0; i < pmc->soc->num_powergates; i++) {
if (!tegra_powergate_is_valid(pmc, i))
continue;
if (!strcmp(name, pmc->soc->powergates[i]))
return i;
}
return -ENODEV;
}
static int tegra20_powergate_set(struct tegra_pmc *pmc, unsigned int id,
bool new_state)
{
unsigned int retries = 100;
bool status;
int ret;
/*
* As per TRM documentation, the toggle command will be dropped by PMC
* if there is contention with a HW-initiated toggling (i.e. CPU core
* power-gated), the command should be retried in that case.
*/
do {
tegra_pmc_writel(pmc, PWRGATE_TOGGLE_START | id, PWRGATE_TOGGLE);
/* wait for PMC to execute the command */
ret = readx_poll_timeout(tegra_powergate_state, id, status,
status == new_state, 1, 10);
} while (ret == -ETIMEDOUT && retries--);
return ret;
}
static inline bool tegra_powergate_toggle_ready(struct tegra_pmc *pmc)
{
return !(tegra_pmc_readl(pmc, PWRGATE_TOGGLE) & PWRGATE_TOGGLE_START);
}
static int tegra114_powergate_set(struct tegra_pmc *pmc, unsigned int id,
bool new_state)
{
bool status;
int err;
/* wait while PMC power gating is contended */
err = readx_poll_timeout(tegra_powergate_toggle_ready, pmc, status,
status == true, 1, 100);
if (err)
return err;
tegra_pmc_writel(pmc, PWRGATE_TOGGLE_START | id, PWRGATE_TOGGLE);
/* wait for PMC to accept the command */
err = readx_poll_timeout(tegra_powergate_toggle_ready, pmc, status,
status == true, 1, 100);
if (err)
return err;
/* wait for PMC to execute the command */
err = readx_poll_timeout(tegra_powergate_state, id, status,
status == new_state, 10, 100000);
if (err)
return err;
return 0;
}
/**
* tegra_powergate_set() - set the state of a partition
* @pmc: power management controller
* @id: partition ID
* @new_state: new state of the partition
*/
static int tegra_powergate_set(struct tegra_pmc *pmc, unsigned int id,
bool new_state)
{
int err;
if (id == TEGRA_POWERGATE_3D && pmc->soc->has_gpu_clamps)
return -EINVAL;
mutex_lock(&pmc->powergates_lock);
if (tegra_powergate_state(id) == new_state) {
mutex_unlock(&pmc->powergates_lock);
return 0;
}
err = pmc->soc->powergate_set(pmc, id, new_state);
mutex_unlock(&pmc->powergates_lock);
return err;
}
static int __tegra_powergate_remove_clamping(struct tegra_pmc *pmc,
unsigned int id)
{
u32 mask;
mutex_lock(&pmc->powergates_lock);
/*
* On Tegra124 and later, the clamps for the GPU are controlled by a
* separate register (with different semantics).
*/
if (id == TEGRA_POWERGATE_3D) {
if (pmc->soc->has_gpu_clamps) {
tegra_pmc_writel(pmc, 0, GPU_RG_CNTRL);
goto out;
}
}
/*
* Tegra 2 has a bug where PCIE and VDE clamping masks are
* swapped relatively to the partition ids
*/
if (id == TEGRA_POWERGATE_VDEC)
mask = (1 << TEGRA_POWERGATE_PCIE);
else if (id == TEGRA_POWERGATE_PCIE)
mask = (1 << TEGRA_POWERGATE_VDEC);
else
mask = (1 << id);
tegra_pmc_writel(pmc, mask, REMOVE_CLAMPING);
out:
mutex_unlock(&pmc->powergates_lock);
return 0;
}
static int tegra_powergate_prepare_clocks(struct tegra_powergate *pg)
{
unsigned long safe_rate = 100 * 1000 * 1000;
unsigned int i;
int err;
for (i = 0; i < pg->num_clks; i++) {
pg->clk_rates[i] = clk_get_rate(pg->clks[i]);
if (!pg->clk_rates[i]) {
err = -EINVAL;
goto out;
}
if (pg->clk_rates[i] <= safe_rate)
continue;
/*
* We don't know whether voltage state is okay for the
* current clock rate, hence it's better to temporally
* switch clock to a safe rate which is suitable for
* all voltages, before enabling the clock.
*/
err = clk_set_rate(pg->clks[i], safe_rate);
if (err)
goto out;
}
return 0;
out:
while (i--)
clk_set_rate(pg->clks[i], pg->clk_rates[i]);
return err;
}
static int tegra_powergate_unprepare_clocks(struct tegra_powergate *pg)
{
unsigned int i;
int err;
for (i = 0; i < pg->num_clks; i++) {
err = clk_set_rate(pg->clks[i], pg->clk_rates[i]);
if (err)
return err;
}
return 0;
}
static void tegra_powergate_disable_clocks(struct tegra_powergate *pg)
{
unsigned int i;
for (i = 0; i < pg->num_clks; i++)
clk_disable_unprepare(pg->clks[i]);
}
static int tegra_powergate_enable_clocks(struct tegra_powergate *pg)
{
unsigned int i;
int err;
for (i = 0; i < pg->num_clks; i++) {
err = clk_prepare_enable(pg->clks[i]);
if (err)
goto out;
}
return 0;
out:
while (i--)
clk_disable_unprepare(pg->clks[i]);
return err;
}
static int tegra_powergate_power_up(struct tegra_powergate *pg,
bool disable_clocks)
{
int err;
err = reset_control_assert(pg->reset);
if (err)
return err;
usleep_range(10, 20);
err = tegra_powergate_set(pg->pmc, pg->id, true);
if (err < 0)
return err;
usleep_range(10, 20);
err = tegra_powergate_prepare_clocks(pg);
if (err)
goto powergate_off;
err = tegra_powergate_enable_clocks(pg);
if (err)
goto unprepare_clks;
usleep_range(10, 20);
err = __tegra_powergate_remove_clamping(pg->pmc, pg->id);
if (err)
goto disable_clks;
usleep_range(10, 20);
err = reset_control_deassert(pg->reset);
if (err)
goto disable_clks;
usleep_range(10, 20);
if (pg->pmc->soc->needs_mbist_war)
err = tegra210_clk_handle_mbist_war(pg->id);
if (err)
goto disable_clks;
if (disable_clocks)
tegra_powergate_disable_clocks(pg);
err = tegra_powergate_unprepare_clocks(pg);
if (err)
return err;
return 0;
disable_clks:
tegra_powergate_disable_clocks(pg);
usleep_range(10, 20);
unprepare_clks:
tegra_powergate_unprepare_clocks(pg);
powergate_off:
tegra_powergate_set(pg->pmc, pg->id, false);
return err;
}
static int tegra_powergate_power_down(struct tegra_powergate *pg)
{
int err;
err = tegra_powergate_prepare_clocks(pg);
if (err)
return err;
err = tegra_powergate_enable_clocks(pg);
if (err)
goto unprepare_clks;
usleep_range(10, 20);
err = reset_control_assert(pg->reset);
if (err)
goto disable_clks;
usleep_range(10, 20);
tegra_powergate_disable_clocks(pg);
usleep_range(10, 20);
err = tegra_powergate_set(pg->pmc, pg->id, false);
if (err)
goto assert_resets;
err = tegra_powergate_unprepare_clocks(pg);
if (err)
return err;
return 0;
assert_resets:
tegra_powergate_enable_clocks(pg);
usleep_range(10, 20);
reset_control_deassert(pg->reset);
usleep_range(10, 20);
disable_clks:
tegra_powergate_disable_clocks(pg);
unprepare_clks:
tegra_powergate_unprepare_clocks(pg);
return err;
}
static int tegra_genpd_power_on(struct generic_pm_domain *domain)
{
struct tegra_powergate *pg = to_powergate(domain);
struct device *dev = pg->pmc->dev;
int err;
err = tegra_powergate_power_up(pg, true);
if (err) {
dev_err(dev, "failed to turn on PM domain %s: %d\n",
pg->genpd.name, err);
goto out;
}
reset_control_release(pg->reset);
out:
return err;
}
static int tegra_genpd_power_off(struct generic_pm_domain *domain)
{
struct tegra_powergate *pg = to_powergate(domain);
struct device *dev = pg->pmc->dev;
int err;
err = reset_control_acquire(pg->reset);
if (err < 0) {
dev_err(dev, "failed to acquire resets for PM domain %s: %d\n",
pg->genpd.name, err);
return err;
}
err = tegra_powergate_power_down(pg);
if (err) {
dev_err(dev, "failed to turn off PM domain %s: %d\n",
pg->genpd.name, err);
reset_control_release(pg->reset);
}
return err;
}
/**
* tegra_powergate_power_on() - power on partition
* @id: partition ID
*/
int tegra_powergate_power_on(unsigned int id)
{
if (!tegra_powergate_is_available(pmc, id))
return -EINVAL;
return tegra_powergate_set(pmc, id, true);
}
EXPORT_SYMBOL(tegra_powergate_power_on);
/**
* tegra_powergate_power_off() - power off partition
* @id: partition ID
*/
int tegra_powergate_power_off(unsigned int id)
{
if (!tegra_powergate_is_available(pmc, id))
return -EINVAL;
return tegra_powergate_set(pmc, id, false);
}
EXPORT_SYMBOL(tegra_powergate_power_off);
/**
* tegra_powergate_is_powered() - check if partition is powered
* @pmc: power management controller
* @id: partition ID
*/
static int tegra_powergate_is_powered(struct tegra_pmc *pmc, unsigned int id)
{
if (!tegra_powergate_is_valid(pmc, id))
return -EINVAL;
return tegra_powergate_state(id);
}
/**
* tegra_powergate_remove_clamping() - remove power clamps for partition
* @id: partition ID
*/
int tegra_powergate_remove_clamping(unsigned int id)
{
if (!tegra_powergate_is_available(pmc, id))
return -EINVAL;
return __tegra_powergate_remove_clamping(pmc, id);
}
EXPORT_SYMBOL(tegra_powergate_remove_clamping);
/**
* tegra_powergate_sequence_power_up() - power up partition
* @id: partition ID
* @clk: clock for partition
* @rst: reset for partition
*
* Must be called with clk disabled, and returns with clk enabled.
*/
int tegra_powergate_sequence_power_up(unsigned int id, struct clk *clk,
struct reset_control *rst)
{
struct tegra_powergate *pg;
int err;
if (!tegra_powergate_is_available(pmc, id))
return -EINVAL;
pg = kzalloc(sizeof(*pg), GFP_KERNEL);
if (!pg)
return -ENOMEM;
pg->clk_rates = kzalloc(sizeof(*pg->clk_rates), GFP_KERNEL);
if (!pg->clk_rates) {
kfree(pg->clks);
return -ENOMEM;
}
pg->id = id;
pg->clks = &clk;
pg->num_clks = 1;
pg->reset = rst;
pg->pmc = pmc;
err = tegra_powergate_power_up(pg, false);
if (err)
dev_err(pmc->dev, "failed to turn on partition %d: %d\n", id,
err);
kfree(pg->clk_rates);
kfree(pg);
return err;
}
EXPORT_SYMBOL(tegra_powergate_sequence_power_up);
/**
* tegra_get_cpu_powergate_id() - convert from CPU ID to partition ID
* @pmc: power management controller
* @cpuid: CPU partition ID
*
* Returns the partition ID corresponding to the CPU partition ID or a
* negative error code on failure.
*/
static int tegra_get_cpu_powergate_id(struct tegra_pmc *pmc,
unsigned int cpuid)
{
if (pmc->soc && cpuid < pmc->soc->num_cpu_powergates)
return pmc->soc->cpu_powergates[cpuid];
return -EINVAL;
}
/**
* tegra_pmc_cpu_is_powered() - check if CPU partition is powered
* @cpuid: CPU partition ID
*/
bool tegra_pmc_cpu_is_powered(unsigned int cpuid)
{
int id;
id = tegra_get_cpu_powergate_id(pmc, cpuid);
if (id < 0)
return false;
return tegra_powergate_is_powered(pmc, id);
}
/**
* tegra_pmc_cpu_power_on() - power on CPU partition
* @cpuid: CPU partition ID
*/
int tegra_pmc_cpu_power_on(unsigned int cpuid)
{
int id;
id = tegra_get_cpu_powergate_id(pmc, cpuid);
if (id < 0)
return id;
return tegra_powergate_set(pmc, id, true);
}
/**
* tegra_pmc_cpu_remove_clamping() - remove power clamps for CPU partition
* @cpuid: CPU partition ID
*/
int tegra_pmc_cpu_remove_clamping(unsigned int cpuid)
{
int id;
id = tegra_get_cpu_powergate_id(pmc, cpuid);
if (id < 0)
return id;
return tegra_powergate_remove_clamping(id);
}
static void tegra_pmc_program_reboot_reason(const char *cmd)
{
u32 value;
value = tegra_pmc_scratch_readl(pmc, pmc->soc->regs->scratch0);
value &= ~PMC_SCRATCH0_MODE_MASK;
if (cmd) {
if (strcmp(cmd, "recovery") == 0)
value |= PMC_SCRATCH0_MODE_RECOVERY;
if (strcmp(cmd, "bootloader") == 0)
value |= PMC_SCRATCH0_MODE_BOOTLOADER;
if (strcmp(cmd, "forced-recovery") == 0)
value |= PMC_SCRATCH0_MODE_RCM;
}
tegra_pmc_scratch_writel(pmc, value, pmc->soc->regs->scratch0);
}
static int tegra_pmc_reboot_notify(struct notifier_block *this,
unsigned long action, void *data)
{
if (action == SYS_RESTART)
tegra_pmc_program_reboot_reason(data);
return NOTIFY_DONE;
}
static struct notifier_block tegra_pmc_reboot_notifier = {
.notifier_call = tegra_pmc_reboot_notify,
};
static void tegra_pmc_restart(void)
{
u32 value;
/* reset everything but PMC_SCRATCH0 and PMC_RST_STATUS */
value = tegra_pmc_readl(pmc, PMC_CNTRL);
value |= PMC_CNTRL_MAIN_RST;
tegra_pmc_writel(pmc, value, PMC_CNTRL);
}
static int tegra_pmc_restart_handler(struct sys_off_data *data)
{
tegra_pmc_restart();
return NOTIFY_DONE;
}
static int tegra_pmc_power_off_handler(struct sys_off_data *data)
{
/*
* Reboot Nexus 7 into special bootloader mode if USB cable is
* connected in order to display battery status and power off.
*/
if (of_machine_is_compatible("asus,grouper") &&
power_supply_is_system_supplied()) {
const u32 go_to_charger_mode = 0xa5a55a5a;
tegra_pmc_writel(pmc, go_to_charger_mode, PMC_SCRATCH37);
tegra_pmc_restart();
}
return NOTIFY_DONE;
}
static int powergate_show(struct seq_file *s, void *data)
{
unsigned int i;
int status;
seq_printf(s, " powergate powered\n");
seq_printf(s, "------------------\n");
for (i = 0; i < pmc->soc->num_powergates; i++) {
status = tegra_powergate_is_powered(pmc, i);
if (status < 0)
continue;
seq_printf(s, " %9s %7s\n", pmc->soc->powergates[i],
status ? "yes" : "no");
}
return 0;
}
DEFINE_SHOW_ATTRIBUTE(powergate);
static int tegra_powergate_of_get_clks(struct tegra_powergate *pg,
struct device_node *np)
{
struct clk *clk;
unsigned int i, count;
int err;
count = of_clk_get_parent_count(np);
if (count == 0)
return -ENODEV;
pg->clks = kcalloc(count, sizeof(clk), GFP_KERNEL);
if (!pg->clks)
return -ENOMEM;
pg->clk_rates = kcalloc(count, sizeof(*pg->clk_rates), GFP_KERNEL);
if (!pg->clk_rates) {
kfree(pg->clks);
return -ENOMEM;
}
for (i = 0; i < count; i++) {
pg->clks[i] = of_clk_get(np, i);
if (IS_ERR(pg->clks[i])) {
err = PTR_ERR(pg->clks[i]);
goto err;
}
}
pg->num_clks = count;
return 0;
err:
while (i--)
clk_put(pg->clks[i]);
kfree(pg->clk_rates);
kfree(pg->clks);
return err;
}
static int tegra_powergate_of_get_resets(struct tegra_powergate *pg,
struct device_node *np, bool off)
{
struct device *dev = pg->pmc->dev;
int err;
pg->reset = of_reset_control_array_get_exclusive_released(np);
if (IS_ERR(pg->reset)) {
err = PTR_ERR(pg->reset);
dev_err(dev, "failed to get device resets: %d\n", err);
return err;
}
err = reset_control_acquire(pg->reset);
if (err < 0) {
pr_err("failed to acquire resets: %d\n", err);
goto out;
}
if (off) {
err = reset_control_assert(pg->reset);
} else {
err = reset_control_deassert(pg->reset);
if (err < 0)
goto out;
reset_control_release(pg->reset);
}
out:
if (err) {
reset_control_release(pg->reset);
reset_control_put(pg->reset);
}
return err;
}
static int tegra_powergate_add(struct tegra_pmc *pmc, struct device_node *np)
{
struct device *dev = pmc->dev;
struct tegra_powergate *pg;
int id, err = 0;
bool off;
pg = kzalloc(sizeof(*pg), GFP_KERNEL);
if (!pg)
return -ENOMEM;
id = tegra_powergate_lookup(pmc, np->name);
if (id < 0) {
dev_err(dev, "powergate lookup failed for %pOFn: %d\n", np, id);
err = -ENODEV;
goto free_mem;
}
/*
* Clear the bit for this powergate so it cannot be managed
* directly via the legacy APIs for controlling powergates.
*/
clear_bit(id, pmc->powergates_available);
pg->id = id;
pg->genpd.name = np->name;
pg->genpd.power_off = tegra_genpd_power_off;
pg->genpd.power_on = tegra_genpd_power_on;
pg->pmc = pmc;
off = !tegra_powergate_is_powered(pmc, pg->id);
err = tegra_powergate_of_get_clks(pg, np);
if (err < 0) {
dev_err(dev, "failed to get clocks for %pOFn: %d\n", np, err);
goto set_available;
}
err = tegra_powergate_of_get_resets(pg, np, off);
if (err < 0) {
dev_err(dev, "failed to get resets for %pOFn: %d\n", np, err);
goto remove_clks;
}
if (!IS_ENABLED(CONFIG_PM_GENERIC_DOMAINS)) {
if (off)
WARN_ON(tegra_powergate_power_up(pg, true));
goto remove_resets;
}
err = pm_genpd_init(&pg->genpd, NULL, off);
if (err < 0) {
dev_err(dev, "failed to initialise PM domain %pOFn: %d\n", np,
err);
goto remove_resets;
}
err = of_genpd_add_provider_simple(np, &pg->genpd);
if (err < 0) {
dev_err(dev, "failed to add PM domain provider for %pOFn: %d\n",
np, err);
goto remove_genpd;
}
dev_dbg(dev, "added PM domain %s\n", pg->genpd.name);
return 0;
remove_genpd:
pm_genpd_remove(&pg->genpd);
remove_resets:
reset_control_put(pg->reset);
remove_clks:
while (pg->num_clks--)
clk_put(pg->clks[pg->num_clks]);
kfree(pg->clks);
set_available:
set_bit(id, pmc->powergates_available);
free_mem:
kfree(pg);
return err;
}
bool tegra_pmc_core_domain_state_synced(void)
{
return pmc->core_domain_state_synced;
}
static int
tegra_pmc_core_pd_set_performance_state(struct generic_pm_domain *genpd,
unsigned int level)
{
struct dev_pm_opp *opp;
int err;
opp = dev_pm_opp_find_level_ceil(&genpd->dev, &level);
if (IS_ERR(opp)) {
dev_err(&genpd->dev, "failed to find OPP for level %u: %pe\n",
level, opp);
return PTR_ERR(opp);
}
mutex_lock(&pmc->powergates_lock);
err = dev_pm_opp_set_opp(pmc->dev, opp);
mutex_unlock(&pmc->powergates_lock);
dev_pm_opp_put(opp);
if (err) {
dev_err(&genpd->dev, "failed to set voltage to %duV: %d\n",
level, err);
return err;
}
return 0;
}
static int tegra_pmc_core_pd_add(struct tegra_pmc *pmc, struct device_node *np)
{
struct generic_pm_domain *genpd;
const char *rname[] = { "core", NULL};
int err;
genpd = devm_kzalloc(pmc->dev, sizeof(*genpd), GFP_KERNEL);
if (!genpd)
return -ENOMEM;
genpd->name = "core";
genpd->set_performance_state = tegra_pmc_core_pd_set_performance_state;
err = devm_pm_opp_set_regulators(pmc->dev, rname);
if (err)
return dev_err_probe(pmc->dev, err,
"failed to set core OPP regulator\n");
err = pm_genpd_init(genpd, NULL, false);
if (err) {
dev_err(pmc->dev, "failed to init core genpd: %d\n", err);
return err;
}
err = of_genpd_add_provider_simple(np, genpd);
if (err) {
dev_err(pmc->dev, "failed to add core genpd: %d\n", err);
goto remove_genpd;
}
pmc->core_domain_registered = true;
return 0;
remove_genpd:
pm_genpd_remove(genpd);
return err;
}
static int tegra_powergate_init(struct tegra_pmc *pmc,
struct device_node *parent)
{
struct of_phandle_args child_args, parent_args;
struct device_node *np, *child;
int err = 0;
/*
* Core power domain is the parent of powergate domains, hence it
* should be registered first.
*/
np = of_get_child_by_name(parent, "core-domain");
if (np) {
err = tegra_pmc_core_pd_add(pmc, np);
of_node_put(np);
if (err)
return err;
}
np = of_get_child_by_name(parent, "powergates");
if (!np)
return 0;
for_each_child_of_node(np, child) {
err = tegra_powergate_add(pmc, child);
if (err < 0) {
of_node_put(child);
break;
}
if (of_parse_phandle_with_args(child, "power-domains",
"#power-domain-cells",
0, &parent_args))
continue;
child_args.np = child;
child_args.args_count = 0;
err = of_genpd_add_subdomain(&parent_args, &child_args);
of_node_put(parent_args.np);
if (err) {
of_node_put(child);
break;
}
}
of_node_put(np);
return err;
}
static void tegra_powergate_remove(struct generic_pm_domain *genpd)
{
struct tegra_powergate *pg = to_powergate(genpd);
reset_control_put(pg->reset);
while (pg->num_clks--)
clk_put(pg->clks[pg->num_clks]);
kfree(pg->clks);
set_bit(pg->id, pmc->powergates_available);
kfree(pg);
}
static void tegra_powergate_remove_all(struct device_node *parent)
{
struct generic_pm_domain *genpd;
struct device_node *np, *child;
np = of_get_child_by_name(parent, "powergates");
if (!np)
return;
for_each_child_of_node(np, child) {
of_genpd_del_provider(child);
genpd = of_genpd_remove_last(child);
if (IS_ERR(genpd))
continue;
tegra_powergate_remove(genpd);
}
of_node_put(np);
np = of_get_child_by_name(parent, "core-domain");
if (np) {
of_genpd_del_provider(np);
of_genpd_remove_last(np);
}
}
static const struct tegra_io_pad_soc *
tegra_io_pad_find(struct tegra_pmc *pmc, enum tegra_io_pad id)
{
unsigned int i;
for (i = 0; i < pmc->soc->num_io_pads; i++)
if (pmc->soc->io_pads[i].id == id)
return &pmc->soc->io_pads[i];
return NULL;
}
static int tegra_io_pad_prepare(struct tegra_pmc *pmc,
const struct tegra_io_pad_soc *pad,
unsigned long *request,
unsigned long *status,
u32 *mask)
{
unsigned long rate, value;
if (pad->dpd == UINT_MAX)
return -EINVAL;
*request = pad->request;
*status = pad->status;
*mask = BIT(pad->dpd);
if (pmc->clk) {
rate = pmc->rate;
if (!rate) {
dev_err(pmc->dev, "failed to get clock rate\n");
return -ENODEV;
}
tegra_pmc_writel(pmc, DPD_SAMPLE_ENABLE, DPD_SAMPLE);
/* must be at least 200 ns, in APB (PCLK) clock cycles */
value = DIV_ROUND_UP(1000000000, rate);
value = DIV_ROUND_UP(200, value);
tegra_pmc_writel(pmc, value, SEL_DPD_TIM);
}
return 0;
}
static int tegra_io_pad_poll(struct tegra_pmc *pmc, unsigned long offset,
u32 mask, u32 val, unsigned long timeout)
{
u32 value;
timeout = jiffies + msecs_to_jiffies(timeout);
while (time_after(timeout, jiffies)) {
value = tegra_pmc_readl(pmc, offset);
if ((value & mask) == val)
return 0;
usleep_range(250, 1000);
}
return -ETIMEDOUT;
}
static void tegra_io_pad_unprepare(struct tegra_pmc *pmc)
{
if (pmc->clk)
tegra_pmc_writel(pmc, DPD_SAMPLE_DISABLE, DPD_SAMPLE);
}
/**
* tegra_io_pad_power_enable() - enable power to I/O pad
* @id: Tegra I/O pad ID for which to enable power
*
* Returns: 0 on success or a negative error code on failure.
*/
int tegra_io_pad_power_enable(enum tegra_io_pad id)
{
const struct tegra_io_pad_soc *pad;
unsigned long request, status;
u32 mask;
int err;
pad = tegra_io_pad_find(pmc, id);
if (!pad) {
dev_err(pmc->dev, "invalid I/O pad ID %u\n", id);
return -ENOENT;
}
mutex_lock(&pmc->powergates_lock);
err = tegra_io_pad_prepare(pmc, pad, &request, &status, &mask);
if (err < 0) {
dev_err(pmc->dev, "failed to prepare I/O pad: %d\n", err);
goto unlock;
}
tegra_pmc_writel(pmc, IO_DPD_REQ_CODE_OFF | mask, request);
err = tegra_io_pad_poll(pmc, status, mask, 0, 250);
if (err < 0) {
dev_err(pmc->dev, "failed to enable I/O pad: %d\n", err);
goto unlock;
}
tegra_io_pad_unprepare(pmc);
unlock:
mutex_unlock(&pmc->powergates_lock);
return err;
}
EXPORT_SYMBOL(tegra_io_pad_power_enable);
/**
* tegra_io_pad_power_disable() - disable power to I/O pad
* @id: Tegra I/O pad ID for which to disable power
*
* Returns: 0 on success or a negative error code on failure.
*/
int tegra_io_pad_power_disable(enum tegra_io_pad id)
{
const struct tegra_io_pad_soc *pad;
unsigned long request, status;
u32 mask;
int err;
pad = tegra_io_pad_find(pmc, id);
if (!pad) {
dev_err(pmc->dev, "invalid I/O pad ID %u\n", id);
return -ENOENT;
}
mutex_lock(&pmc->powergates_lock);
err = tegra_io_pad_prepare(pmc, pad, &request, &status, &mask);
if (err < 0) {
dev_err(pmc->dev, "failed to prepare I/O pad: %d\n", err);
goto unlock;
}
tegra_pmc_writel(pmc, IO_DPD_REQ_CODE_ON | mask, request);
err = tegra_io_pad_poll(pmc, status, mask, mask, 250);
if (err < 0) {
dev_err(pmc->dev, "failed to disable I/O pad: %d\n", err);
goto unlock;
}
tegra_io_pad_unprepare(pmc);
unlock:
mutex_unlock(&pmc->powergates_lock);
return err;
}
EXPORT_SYMBOL(tegra_io_pad_power_disable);
static int tegra_io_pad_is_powered(struct tegra_pmc *pmc, enum tegra_io_pad id)
{
const struct tegra_io_pad_soc *pad;
unsigned long status;
u32 mask, value;
pad = tegra_io_pad_find(pmc, id);
if (!pad) {
dev_err(pmc->dev, "invalid I/O pad ID %u\n", id);
return -ENOENT;
}
if (pad->dpd == UINT_MAX)
return -EINVAL;
status = pad->status;
mask = BIT(pad->dpd);
value = tegra_pmc_readl(pmc, status);
return !(value & mask);
}
static int tegra_io_pad_set_voltage(struct tegra_pmc *pmc, enum tegra_io_pad id,
int voltage)
{
const struct tegra_io_pad_soc *pad;
u32 value;
pad = tegra_io_pad_find(pmc, id);
if (!pad)
return -ENOENT;
if (pad->voltage == UINT_MAX)
return -ENOTSUPP;
mutex_lock(&pmc->powergates_lock);
if (pmc->soc->has_impl_33v_pwr) {
value = tegra_pmc_readl(pmc, PMC_IMPL_E_33V_PWR);
if (voltage == TEGRA_IO_PAD_VOLTAGE_1V8)
value &= ~BIT(pad->voltage);
else
value |= BIT(pad->voltage);
tegra_pmc_writel(pmc, value, PMC_IMPL_E_33V_PWR);
} else {
/* write-enable PMC_PWR_DET_VALUE[pad->voltage] */
value = tegra_pmc_readl(pmc, PMC_PWR_DET);
value |= BIT(pad->voltage);
tegra_pmc_writel(pmc, value, PMC_PWR_DET);
/* update I/O voltage */
value = tegra_pmc_readl(pmc, PMC_PWR_DET_VALUE);
if (voltage == TEGRA_IO_PAD_VOLTAGE_1V8)
value &= ~BIT(pad->voltage);
else
value |= BIT(pad->voltage);
tegra_pmc_writel(pmc, value, PMC_PWR_DET_VALUE);
}
mutex_unlock(&pmc->powergates_lock);
usleep_range(100, 250);
return 0;
}
static int tegra_io_pad_get_voltage(struct tegra_pmc *pmc, enum tegra_io_pad id)
{
const struct tegra_io_pad_soc *pad;
u32 value;
pad = tegra_io_pad_find(pmc, id);
if (!pad)
return -ENOENT;
if (pad->voltage == UINT_MAX)
return -ENOTSUPP;
if (pmc->soc->has_impl_33v_pwr)
value = tegra_pmc_readl(pmc, PMC_IMPL_E_33V_PWR);
else
value = tegra_pmc_readl(pmc, PMC_PWR_DET_VALUE);
if ((value & BIT(pad->voltage)) == 0)
return TEGRA_IO_PAD_VOLTAGE_1V8;
return TEGRA_IO_PAD_VOLTAGE_3V3;
}
/**
* tegra_io_rail_power_on() - enable power to I/O rail
* @id: Tegra I/O pad ID for which to enable power
*
* See also: tegra_io_pad_power_enable()
*/
int tegra_io_rail_power_on(unsigned int id)
{
return tegra_io_pad_power_enable(id);
}
EXPORT_SYMBOL(tegra_io_rail_power_on);
/**
* tegra_io_rail_power_off() - disable power to I/O rail
* @id: Tegra I/O pad ID for which to disable power
*
* See also: tegra_io_pad_power_disable()
*/
int tegra_io_rail_power_off(unsigned int id)
{
return tegra_io_pad_power_disable(id);
}
EXPORT_SYMBOL(tegra_io_rail_power_off);
#ifdef CONFIG_PM_SLEEP
enum tegra_suspend_mode tegra_pmc_get_suspend_mode(void)
{
return pmc->suspend_mode;
}
void tegra_pmc_set_suspend_mode(enum tegra_suspend_mode mode)
{
if (mode < TEGRA_SUSPEND_NONE || mode >= TEGRA_MAX_SUSPEND_MODE)
return;
pmc->suspend_mode = mode;
}
void tegra_pmc_enter_suspend_mode(enum tegra_suspend_mode mode)
{
unsigned long long rate = 0;
u64 ticks;
u32 value;
switch (mode) {
case TEGRA_SUSPEND_LP1:
rate = 32768;
break;
case TEGRA_SUSPEND_LP2:
rate = pmc->rate;
break;
default:
break;
}
if (WARN_ON_ONCE(rate == 0))
rate = 100000000;
ticks = pmc->cpu_good_time * rate + USEC_PER_SEC - 1;
do_div(ticks, USEC_PER_SEC);
tegra_pmc_writel(pmc, ticks, PMC_CPUPWRGOOD_TIMER);
ticks = pmc->cpu_off_time * rate + USEC_PER_SEC - 1;
do_div(ticks, USEC_PER_SEC);
tegra_pmc_writel(pmc, ticks, PMC_CPUPWROFF_TIMER);
value = tegra_pmc_readl(pmc, PMC_CNTRL);
value &= ~PMC_CNTRL_SIDE_EFFECT_LP0;
value |= PMC_CNTRL_CPU_PWRREQ_OE;
tegra_pmc_writel(pmc, value, PMC_CNTRL);
}
#endif
static int tegra_pmc_parse_dt(struct tegra_pmc *pmc, struct device_node *np)
{
u32 value, values[2];
if (of_property_read_u32(np, "nvidia,suspend-mode", &value)) {
pmc->suspend_mode = TEGRA_SUSPEND_NONE;
} else {
switch (value) {
case 0:
pmc->suspend_mode = TEGRA_SUSPEND_LP0;
break;
case 1:
pmc->suspend_mode = TEGRA_SUSPEND_LP1;
break;
case 2:
pmc->suspend_mode = TEGRA_SUSPEND_LP2;
break;
default:
pmc->suspend_mode = TEGRA_SUSPEND_NONE;
break;
}
}
pmc->suspend_mode = tegra_pm_validate_suspend_mode(pmc->suspend_mode);
if (of_property_read_u32(np, "nvidia,cpu-pwr-good-time", &value))
pmc->suspend_mode = TEGRA_SUSPEND_NONE;
pmc->cpu_good_time = value;
if (of_property_read_u32(np, "nvidia,cpu-pwr-off-time", &value))
pmc->suspend_mode = TEGRA_SUSPEND_NONE;
pmc->cpu_off_time = value;
if (of_property_read_u32_array(np, "nvidia,core-pwr-good-time",
values, ARRAY_SIZE(values)))
pmc->suspend_mode = TEGRA_SUSPEND_NONE;
pmc->core_osc_time = values[0];
pmc->core_pmu_time = values[1];
if (of_property_read_u32(np, "nvidia,core-pwr-off-time", &value))
pmc->suspend_mode = TEGRA_SUSPEND_NONE;
pmc->core_off_time = value;
pmc->corereq_high = of_property_read_bool(np,
"nvidia,core-power-req-active-high");
pmc->sysclkreq_high = of_property_read_bool(np,
"nvidia,sys-clock-req-active-high");
pmc->combined_req = of_property_read_bool(np,
"nvidia,combined-power-req");
pmc->cpu_pwr_good_en = of_property_read_bool(np,
"nvidia,cpu-pwr-good-en");
if (of_property_read_u32_array(np, "nvidia,lp0-vec", values,
ARRAY_SIZE(values)))
if (pmc->suspend_mode == TEGRA_SUSPEND_LP0)
pmc->suspend_mode = TEGRA_SUSPEND_LP1;
pmc->lp0_vec_phys = values[0];
pmc->lp0_vec_size = values[1];
return 0;
}
static int tegra_pmc_init(struct tegra_pmc *pmc)
{
if (pmc->soc->max_wake_events > 0) {
pmc->wake_type_level_map = bitmap_zalloc(pmc->soc->max_wake_events, GFP_KERNEL);
if (!pmc->wake_type_level_map)
return -ENOMEM;
pmc->wake_type_dual_edge_map = bitmap_zalloc(pmc->soc->max_wake_events, GFP_KERNEL);
if (!pmc->wake_type_dual_edge_map)
return -ENOMEM;
pmc->wake_sw_status_map = bitmap_zalloc(pmc->soc->max_wake_events, GFP_KERNEL);
if (!pmc->wake_sw_status_map)
return -ENOMEM;
pmc->wake_cntrl_level_map = bitmap_zalloc(pmc->soc->max_wake_events, GFP_KERNEL);
if (!pmc->wake_cntrl_level_map)
return -ENOMEM;
}
if (pmc->soc->init)
pmc->soc->init(pmc);
return 0;
}
static void tegra_pmc_init_tsense_reset(struct tegra_pmc *pmc)
{
static const char disabled[] = "emergency thermal reset disabled";
u32 pmu_addr, ctrl_id, reg_addr, reg_data, pinmux;
struct device *dev = pmc->dev;
struct device_node *np;
u32 value, checksum;
if (!pmc->soc->has_tsense_reset)
return;
np = of_get_child_by_name(pmc->dev->of_node, "i2c-thermtrip");
if (!np) {
dev_warn(dev, "i2c-thermtrip node not found, %s.\n", disabled);
return;
}
if (of_property_read_u32(np, "nvidia,i2c-controller-id", &ctrl_id)) {
dev_err(dev, "I2C controller ID missing, %s.\n", disabled);
goto out;
}
if (of_property_read_u32(np, "nvidia,bus-addr", &pmu_addr)) {
dev_err(dev, "nvidia,bus-addr missing, %s.\n", disabled);
goto out;
}
if (of_property_read_u32(np, "nvidia,reg-addr", &reg_addr)) {
dev_err(dev, "nvidia,reg-addr missing, %s.\n", disabled);
goto out;
}
if (of_property_read_u32(np, "nvidia,reg-data", &reg_data)) {
dev_err(dev, "nvidia,reg-data missing, %s.\n", disabled);
goto out;
}
if (of_property_read_u32(np, "nvidia,pinmux-id", &pinmux))
pinmux = 0;
value = tegra_pmc_readl(pmc, PMC_SENSOR_CTRL);
value |= PMC_SENSOR_CTRL_SCRATCH_WRITE;
tegra_pmc_writel(pmc, value, PMC_SENSOR_CTRL);
value = (reg_data << PMC_SCRATCH54_DATA_SHIFT) |
(reg_addr << PMC_SCRATCH54_ADDR_SHIFT);
tegra_pmc_writel(pmc, value, PMC_SCRATCH54);
value = PMC_SCRATCH55_RESET_TEGRA;
value |= ctrl_id << PMC_SCRATCH55_CNTRL_ID_SHIFT;
value |= pinmux << PMC_SCRATCH55_PINMUX_SHIFT;
value |= pmu_addr << PMC_SCRATCH55_I2CSLV1_SHIFT;
/*
* Calculate checksum of SCRATCH54, SCRATCH55 fields. Bits 23:16 will
* contain the checksum and are currently zero, so they are not added.
*/
checksum = reg_addr + reg_data + (value & 0xff) + ((value >> 8) & 0xff)
+ ((value >> 24) & 0xff);
checksum &= 0xff;
checksum = 0x100 - checksum;
value |= checksum << PMC_SCRATCH55_CHECKSUM_SHIFT;
tegra_pmc_writel(pmc, value, PMC_SCRATCH55);
value = tegra_pmc_readl(pmc, PMC_SENSOR_CTRL);
value |= PMC_SENSOR_CTRL_ENABLE_RST;
tegra_pmc_writel(pmc, value, PMC_SENSOR_CTRL);
dev_info(pmc->dev, "emergency thermal reset enabled\n");
out:
of_node_put(np);
}
static int tegra_io_pad_pinctrl_get_groups_count(struct pinctrl_dev *pctl_dev)
{
struct tegra_pmc *pmc = pinctrl_dev_get_drvdata(pctl_dev);
return pmc->soc->num_io_pads;
}
static const char *tegra_io_pad_pinctrl_get_group_name(struct pinctrl_dev *pctl,
unsigned int group)
{
struct tegra_pmc *pmc = pinctrl_dev_get_drvdata(pctl);
return pmc->soc->io_pads[group].name;
}
static int tegra_io_pad_pinctrl_get_group_pins(struct pinctrl_dev *pctl_dev,
unsigned int group,
const unsigned int **pins,
unsigned int *num_pins)
{
struct tegra_pmc *pmc = pinctrl_dev_get_drvdata(pctl_dev);
*pins = &pmc->soc->io_pads[group].id;
*num_pins = 1;
return 0;
}
static const struct pinctrl_ops tegra_io_pad_pinctrl_ops = {
.get_groups_count = tegra_io_pad_pinctrl_get_groups_count,
.get_group_name = tegra_io_pad_pinctrl_get_group_name,
.get_group_pins = tegra_io_pad_pinctrl_get_group_pins,
.dt_node_to_map = pinconf_generic_dt_node_to_map_pin,
.dt_free_map = pinconf_generic_dt_free_map,
};
static int tegra_io_pad_pinconf_get(struct pinctrl_dev *pctl_dev,
unsigned int pin, unsigned long *config)
{
enum pin_config_param param = pinconf_to_config_param(*config);
struct tegra_pmc *pmc = pinctrl_dev_get_drvdata(pctl_dev);
const struct tegra_io_pad_soc *pad;
int ret;
u32 arg;
pad = tegra_io_pad_find(pmc, pin);
if (!pad)
return -EINVAL;
switch (param) {
case PIN_CONFIG_POWER_SOURCE:
ret = tegra_io_pad_get_voltage(pmc, pad->id);
if (ret < 0)
return ret;
arg = ret;
break;
case PIN_CONFIG_MODE_LOW_POWER:
ret = tegra_io_pad_is_powered(pmc, pad->id);
if (ret < 0)
return ret;
arg = !ret;
break;
default:
return -EINVAL;
}
*config = pinconf_to_config_packed(param, arg);
return 0;
}
static int tegra_io_pad_pinconf_set(struct pinctrl_dev *pctl_dev,
unsigned int pin, unsigned long *configs,
unsigned int num_configs)
{
struct tegra_pmc *pmc = pinctrl_dev_get_drvdata(pctl_dev);
const struct tegra_io_pad_soc *pad;
enum pin_config_param param;
unsigned int i;
int err;
u32 arg;
pad = tegra_io_pad_find(pmc, pin);
if (!pad)
return -EINVAL;
for (i = 0; i < num_configs; ++i) {
param = pinconf_to_config_param(configs[i]);
arg = pinconf_to_config_argument(configs[i]);
switch (param) {
case PIN_CONFIG_MODE_LOW_POWER:
if (arg)
err = tegra_io_pad_power_disable(pad->id);
else
err = tegra_io_pad_power_enable(pad->id);
if (err)
return err;
break;
case PIN_CONFIG_POWER_SOURCE:
if (arg != TEGRA_IO_PAD_VOLTAGE_1V8 &&
arg != TEGRA_IO_PAD_VOLTAGE_3V3)
return -EINVAL;
err = tegra_io_pad_set_voltage(pmc, pad->id, arg);
if (err)
return err;
break;
default:
return -EINVAL;
}
}
return 0;
}
static const struct pinconf_ops tegra_io_pad_pinconf_ops = {
.pin_config_get = tegra_io_pad_pinconf_get,
.pin_config_set = tegra_io_pad_pinconf_set,
.is_generic = true,
};
static struct pinctrl_desc tegra_pmc_pctl_desc = {
.pctlops = &tegra_io_pad_pinctrl_ops,
.confops = &tegra_io_pad_pinconf_ops,
};
static int tegra_pmc_pinctrl_init(struct tegra_pmc *pmc)
{
int err;
if (!pmc->soc->num_pin_descs)
return 0;
tegra_pmc_pctl_desc.name = dev_name(pmc->dev);
tegra_pmc_pctl_desc.pins = pmc->soc->pin_descs;
tegra_pmc_pctl_desc.npins = pmc->soc->num_pin_descs;
pmc->pctl_dev = devm_pinctrl_register(pmc->dev, &tegra_pmc_pctl_desc,
pmc);
if (IS_ERR(pmc->pctl_dev)) {
err = PTR_ERR(pmc->pctl_dev);
dev_err(pmc->dev, "failed to register pin controller: %d\n",
err);
return err;
}
return 0;
}
static ssize_t reset_reason_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u32 value;
value = tegra_pmc_readl(pmc, pmc->soc->regs->rst_status);
value &= pmc->soc->regs->rst_source_mask;
value >>= pmc->soc->regs->rst_source_shift;
if (WARN_ON(value >= pmc->soc->num_reset_sources))
return sprintf(buf, "%s\n", "UNKNOWN");
return sprintf(buf, "%s\n", pmc->soc->reset_sources[value]);
}
static DEVICE_ATTR_RO(reset_reason);
static ssize_t reset_level_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u32 value;
value = tegra_pmc_readl(pmc, pmc->soc->regs->rst_status);
value &= pmc->soc->regs->rst_level_mask;
value >>= pmc->soc->regs->rst_level_shift;
if (WARN_ON(value >= pmc->soc->num_reset_levels))
return sprintf(buf, "%s\n", "UNKNOWN");
return sprintf(buf, "%s\n", pmc->soc->reset_levels[value]);
}
static DEVICE_ATTR_RO(reset_level);
static void tegra_pmc_reset_sysfs_init(struct tegra_pmc *pmc)
{
struct device *dev = pmc->dev;
int err = 0;
if (pmc->soc->reset_sources) {
err = device_create_file(dev, &dev_attr_reset_reason);
if (err < 0)
dev_warn(dev,
"failed to create attr \"reset_reason\": %d\n",
err);
}
if (pmc->soc->reset_levels) {
err = device_create_file(dev, &dev_attr_reset_level);
if (err < 0)
dev_warn(dev,
"failed to create attr \"reset_level\": %d\n",
err);
}
}
static int tegra_pmc_irq_translate(struct irq_domain *domain,
struct irq_fwspec *fwspec,
unsigned long *hwirq,
unsigned int *type)
{
if (WARN_ON(fwspec->param_count < 2))
return -EINVAL;
*hwirq = fwspec->param[0];
*type = fwspec->param[1];
return 0;
}
static int tegra_pmc_irq_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int num_irqs, void *data)
{
struct tegra_pmc *pmc = domain->host_data;
const struct tegra_pmc_soc *soc = pmc->soc;
struct irq_fwspec *fwspec = data;
unsigned int i;
int err = 0;
if (WARN_ON(num_irqs > 1))
return -EINVAL;
for (i = 0; i < soc->num_wake_events; i++) {
const struct tegra_wake_event *event = &soc->wake_events[i];
/* IRQ and simple wake events */
if (fwspec->param_count == 2) {
struct irq_fwspec spec;
if (event->id != fwspec->param[0])
continue;
err = irq_domain_set_hwirq_and_chip(domain, virq,
event->id,
&pmc->irq, pmc);
if (err < 0)
break;
/* simple hierarchies stop at the PMC level */
if (event->irq == 0) {
err = irq_domain_disconnect_hierarchy(domain->parent, virq);
break;
}
spec.fwnode = &pmc->dev->of_node->fwnode;
spec.param_count = 3;
spec.param[0] = GIC_SPI;
spec.param[1] = event->irq;
spec.param[2] = fwspec->param[1];
err = irq_domain_alloc_irqs_parent(domain, virq,
num_irqs, &spec);
break;
}
/* GPIO wake events */
if (fwspec->param_count == 3) {
if (event->gpio.instance != fwspec->param[0] ||
event->gpio.pin != fwspec->param[1])
continue;
err = irq_domain_set_hwirq_and_chip(domain, virq,
event->id,
&pmc->irq, pmc);
/* GPIO hierarchies stop at the PMC level */
if (!err && domain->parent)
err = irq_domain_disconnect_hierarchy(domain->parent,
virq);
break;
}
}
/* If there is no wake-up event, there is no PMC mapping */
if (i == soc->num_wake_events)
err = irq_domain_disconnect_hierarchy(domain, virq);
return err;
}
static const struct irq_domain_ops tegra_pmc_irq_domain_ops = {
.translate = tegra_pmc_irq_translate,
.alloc = tegra_pmc_irq_alloc,
};
static int tegra210_pmc_irq_set_wake(struct irq_data *data, unsigned int on)
{
struct tegra_pmc *pmc = irq_data_get_irq_chip_data(data);
unsigned int offset, bit;
u32 value;
offset = data->hwirq / 32;
bit = data->hwirq % 32;
/* clear wake status */
tegra_pmc_writel(pmc, 0, PMC_SW_WAKE_STATUS);
tegra_pmc_writel(pmc, 0, PMC_SW_WAKE2_STATUS);
tegra_pmc_writel(pmc, 0, PMC_WAKE_STATUS);
tegra_pmc_writel(pmc, 0, PMC_WAKE2_STATUS);
/* enable PMC wake */
if (data->hwirq >= 32)
offset = PMC_WAKE2_MASK;
else
offset = PMC_WAKE_MASK;
value = tegra_pmc_readl(pmc, offset);
if (on)
value |= BIT(bit);
else
value &= ~BIT(bit);
tegra_pmc_writel(pmc, value, offset);
return 0;
}
static int tegra210_pmc_irq_set_type(struct irq_data *data, unsigned int type)
{
struct tegra_pmc *pmc = irq_data_get_irq_chip_data(data);
unsigned int offset, bit;
u32 value;
offset = data->hwirq / 32;
bit = data->hwirq % 32;
if (data->hwirq >= 32)
offset = PMC_WAKE2_LEVEL;
else
offset = PMC_WAKE_LEVEL;
value = tegra_pmc_readl(pmc, offset);
switch (type) {
case IRQ_TYPE_EDGE_RISING:
case IRQ_TYPE_LEVEL_HIGH:
value |= BIT(bit);
break;
case IRQ_TYPE_EDGE_FALLING:
case IRQ_TYPE_LEVEL_LOW:
value &= ~BIT(bit);
break;
case IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING:
value ^= BIT(bit);
break;
default:
return -EINVAL;
}
tegra_pmc_writel(pmc, value, offset);
return 0;
}
static void tegra186_pmc_set_wake_filters(struct tegra_pmc *pmc)
{
u32 value;
/* SW Wake (wake83) needs SR_CAPTURE filter to be enabled */
value = readl(pmc->wake + WAKE_AOWAKE_CNTRL(SW_WAKE_ID));
value |= WAKE_AOWAKE_CNTRL_SR_CAPTURE_EN;
writel(value, pmc->wake + WAKE_AOWAKE_CNTRL(SW_WAKE_ID));
dev_dbg(pmc->dev, "WAKE_AOWAKE_CNTRL_83 = 0x%x\n", value);
}
static int tegra186_pmc_irq_set_wake(struct irq_data *data, unsigned int on)
{
struct tegra_pmc *pmc = irq_data_get_irq_chip_data(data);
unsigned int offset, bit;
u32 value;
offset = data->hwirq / 32;
bit = data->hwirq % 32;
/* clear wake status */
writel(0x1, pmc->wake + WAKE_AOWAKE_STATUS_W(data->hwirq));
/* route wake to tier 2 */
value = readl(pmc->wake + WAKE_AOWAKE_TIER2_ROUTING(offset));
if (!on)
value &= ~(1 << bit);
else
value |= 1 << bit;
writel(value, pmc->wake + WAKE_AOWAKE_TIER2_ROUTING(offset));
/* enable wakeup event */
writel(!!on, pmc->wake + WAKE_AOWAKE_MASK_W(data->hwirq));
return 0;
}
static int tegra186_pmc_irq_set_type(struct irq_data *data, unsigned int type)
{
struct tegra_pmc *pmc = irq_data_get_irq_chip_data(data);
u32 value;
value = readl(pmc->wake + WAKE_AOWAKE_CNTRL(data->hwirq));
switch (type) {
case IRQ_TYPE_EDGE_RISING:
case IRQ_TYPE_LEVEL_HIGH:
value |= WAKE_AOWAKE_CNTRL_LEVEL;
set_bit(data->hwirq, pmc->wake_type_level_map);
clear_bit(data->hwirq, pmc->wake_type_dual_edge_map);
break;
case IRQ_TYPE_EDGE_FALLING:
case IRQ_TYPE_LEVEL_LOW:
value &= ~WAKE_AOWAKE_CNTRL_LEVEL;
clear_bit(data->hwirq, pmc->wake_type_level_map);
clear_bit(data->hwirq, pmc->wake_type_dual_edge_map);
break;
case IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING:
value ^= WAKE_AOWAKE_CNTRL_LEVEL;
clear_bit(data->hwirq, pmc->wake_type_level_map);
set_bit(data->hwirq, pmc->wake_type_dual_edge_map);
break;
default:
return -EINVAL;
}
writel(value, pmc->wake + WAKE_AOWAKE_CNTRL(data->hwirq));
return 0;
}
static void tegra_irq_mask_parent(struct irq_data *data)
{
if (data->parent_data)
irq_chip_mask_parent(data);
}
static void tegra_irq_unmask_parent(struct irq_data *data)
{
if (data->parent_data)
irq_chip_unmask_parent(data);
}
static void tegra_irq_eoi_parent(struct irq_data *data)
{
if (data->parent_data)
irq_chip_eoi_parent(data);
}
static int tegra_irq_set_affinity_parent(struct irq_data *data,
const struct cpumask *dest,
bool force)
{
if (data->parent_data)
return irq_chip_set_affinity_parent(data, dest, force);
return -EINVAL;
}
static int tegra_pmc_irq_init(struct tegra_pmc *pmc)
{
struct irq_domain *parent = NULL;
struct device_node *np;
np = of_irq_find_parent(pmc->dev->of_node);
if (np) {
parent = irq_find_host(np);
of_node_put(np);
}
if (!parent)
return 0;
pmc->irq.name = dev_name(pmc->dev);
pmc->irq.irq_mask = tegra_irq_mask_parent;
pmc->irq.irq_unmask = tegra_irq_unmask_parent;
pmc->irq.irq_eoi = tegra_irq_eoi_parent;
pmc->irq.irq_set_affinity = tegra_irq_set_affinity_parent;
pmc->irq.irq_set_type = pmc->soc->irq_set_type;
pmc->irq.irq_set_wake = pmc->soc->irq_set_wake;
pmc->domain = irq_domain_add_hierarchy(parent, 0, 96, pmc->dev->of_node,
&tegra_pmc_irq_domain_ops, pmc);
if (!pmc->domain) {
dev_err(pmc->dev, "failed to allocate domain\n");
return -ENOMEM;
}
return 0;
}
static int tegra_pmc_clk_notify_cb(struct notifier_block *nb,
unsigned long action, void *ptr)
{
struct tegra_pmc *pmc = container_of(nb, struct tegra_pmc, clk_nb);
struct clk_notifier_data *data = ptr;
switch (action) {
case PRE_RATE_CHANGE:
mutex_lock(&pmc->powergates_lock);
break;
case POST_RATE_CHANGE:
pmc->rate = data->new_rate;
fallthrough;
case ABORT_RATE_CHANGE:
mutex_unlock(&pmc->powergates_lock);
break;
default:
WARN_ON_ONCE(1);
return notifier_from_errno(-EINVAL);
}
return NOTIFY_OK;
}
static void pmc_clk_fence_udelay(u32 offset)
{
tegra_pmc_readl(pmc, offset);
/* pmc clk propagation delay 2 us */
udelay(2);
}
static u8 pmc_clk_mux_get_parent(struct clk_hw *hw)
{
struct pmc_clk *clk = to_pmc_clk(hw);
u32 val;
val = tegra_pmc_readl(pmc, clk->offs) >> clk->mux_shift;
val &= PMC_CLK_OUT_MUX_MASK;
return val;
}
static int pmc_clk_mux_set_parent(struct clk_hw *hw, u8 index)
{
struct pmc_clk *clk = to_pmc_clk(hw);
u32 val;
val = tegra_pmc_readl(pmc, clk->offs);
val &= ~(PMC_CLK_OUT_MUX_MASK << clk->mux_shift);
val |= index << clk->mux_shift;
tegra_pmc_writel(pmc, val, clk->offs);
pmc_clk_fence_udelay(clk->offs);
return 0;
}
static int pmc_clk_is_enabled(struct clk_hw *hw)
{
struct pmc_clk *clk = to_pmc_clk(hw);
u32 val;
val = tegra_pmc_readl(pmc, clk->offs) & BIT(clk->force_en_shift);
return val ? 1 : 0;
}
static void pmc_clk_set_state(unsigned long offs, u32 shift, int state)
{
u32 val;
val = tegra_pmc_readl(pmc, offs);
val = state ? (val | BIT(shift)) : (val & ~BIT(shift));
tegra_pmc_writel(pmc, val, offs);
pmc_clk_fence_udelay(offs);
}
static int pmc_clk_enable(struct clk_hw *hw)
{
struct pmc_clk *clk = to_pmc_clk(hw);
pmc_clk_set_state(clk->offs, clk->force_en_shift, 1);
return 0;
}
static void pmc_clk_disable(struct clk_hw *hw)
{
struct pmc_clk *clk = to_pmc_clk(hw);
pmc_clk_set_state(clk->offs, clk->force_en_shift, 0);
}
static const struct clk_ops pmc_clk_ops = {
.get_parent = pmc_clk_mux_get_parent,
.set_parent = pmc_clk_mux_set_parent,
.determine_rate = __clk_mux_determine_rate,
.is_enabled = pmc_clk_is_enabled,
.enable = pmc_clk_enable,
.disable = pmc_clk_disable,
};
static struct clk *
tegra_pmc_clk_out_register(struct tegra_pmc *pmc,
const struct pmc_clk_init_data *data,
unsigned long offset)
{
struct clk_init_data init;
struct pmc_clk *pmc_clk;
pmc_clk = devm_kzalloc(pmc->dev, sizeof(*pmc_clk), GFP_KERNEL);
if (!pmc_clk)
return ERR_PTR(-ENOMEM);
init.name = data->name;
init.ops = &pmc_clk_ops;
init.parent_names = data->parents;
init.num_parents = data->num_parents;
init.flags = CLK_SET_RATE_NO_REPARENT | CLK_SET_RATE_PARENT |
CLK_SET_PARENT_GATE;
pmc_clk->hw.init = &init;
pmc_clk->offs = offset;
pmc_clk->mux_shift = data->mux_shift;
pmc_clk->force_en_shift = data->force_en_shift;
return clk_register(NULL, &pmc_clk->hw);
}
static int pmc_clk_gate_is_enabled(struct clk_hw *hw)
{
struct pmc_clk_gate *gate = to_pmc_clk_gate(hw);
return tegra_pmc_readl(pmc, gate->offs) & BIT(gate->shift) ? 1 : 0;
}
static int pmc_clk_gate_enable(struct clk_hw *hw)
{
struct pmc_clk_gate *gate = to_pmc_clk_gate(hw);
pmc_clk_set_state(gate->offs, gate->shift, 1);
return 0;
}
static void pmc_clk_gate_disable(struct clk_hw *hw)
{
struct pmc_clk_gate *gate = to_pmc_clk_gate(hw);
pmc_clk_set_state(gate->offs, gate->shift, 0);
}
static const struct clk_ops pmc_clk_gate_ops = {
.is_enabled = pmc_clk_gate_is_enabled,
.enable = pmc_clk_gate_enable,
.disable = pmc_clk_gate_disable,
};
static struct clk *
tegra_pmc_clk_gate_register(struct tegra_pmc *pmc, const char *name,
const char *parent_name, unsigned long offset,
u32 shift)
{
struct clk_init_data init;
struct pmc_clk_gate *gate;
gate = devm_kzalloc(pmc->dev, sizeof(*gate), GFP_KERNEL);
if (!gate)
return ERR_PTR(-ENOMEM);
init.name = name;
init.ops = &pmc_clk_gate_ops;
init.parent_names = &parent_name;
init.num_parents = 1;
init.flags = 0;
gate->hw.init = &init;
gate->offs = offset;
gate->shift = shift;
return clk_register(NULL, &gate->hw);
}
static void tegra_pmc_clock_register(struct tegra_pmc *pmc,
struct device_node *np)
{
struct clk *clk;
struct clk_onecell_data *clk_data;
unsigned int num_clks;
int i, err;
num_clks = pmc->soc->num_pmc_clks;
if (pmc->soc->has_blink_output)
num_clks += 1;
if (!num_clks)
return;
clk_data = devm_kmalloc(pmc->dev, sizeof(*clk_data), GFP_KERNEL);
if (!clk_data)
return;
clk_data->clks = devm_kcalloc(pmc->dev, TEGRA_PMC_CLK_MAX,
sizeof(*clk_data->clks), GFP_KERNEL);
if (!clk_data->clks)
return;
clk_data->clk_num = TEGRA_PMC_CLK_MAX;
for (i = 0; i < TEGRA_PMC_CLK_MAX; i++)
clk_data->clks[i] = ERR_PTR(-ENOENT);
for (i = 0; i < pmc->soc->num_pmc_clks; i++) {
const struct pmc_clk_init_data *data;
data = pmc->soc->pmc_clks_data + i;
clk = tegra_pmc_clk_out_register(pmc, data, PMC_CLK_OUT_CNTRL);
if (IS_ERR(clk)) {
dev_warn(pmc->dev, "unable to register clock %s: %d\n",
data->name, PTR_ERR_OR_ZERO(clk));
return;
}
err = clk_register_clkdev(clk, data->name, NULL);
if (err) {
dev_warn(pmc->dev,
"unable to register %s clock lookup: %d\n",
data->name, err);
return;
}
clk_data->clks[data->clk_id] = clk;
}
if (pmc->soc->has_blink_output) {
tegra_pmc_writel(pmc, 0x0, PMC_BLINK_TIMER);
clk = tegra_pmc_clk_gate_register(pmc,
"pmc_blink_override",
"clk_32k",
PMC_DPD_PADS_ORIDE,
PMC_DPD_PADS_ORIDE_BLINK);
if (IS_ERR(clk)) {
dev_warn(pmc->dev,
"unable to register pmc_blink_override: %d\n",
PTR_ERR_OR_ZERO(clk));
return;
}
clk = tegra_pmc_clk_gate_register(pmc, "pmc_blink",
"pmc_blink_override",
PMC_CNTRL,
PMC_CNTRL_BLINK_EN);
if (IS_ERR(clk)) {
dev_warn(pmc->dev,
"unable to register pmc_blink: %d\n",
PTR_ERR_OR_ZERO(clk));
return;
}
err = clk_register_clkdev(clk, "pmc_blink", NULL);
if (err) {
dev_warn(pmc->dev,
"unable to register pmc_blink lookup: %d\n",
err);
return;
}
clk_data->clks[TEGRA_PMC_CLK_BLINK] = clk;
}
err = of_clk_add_provider(np, of_clk_src_onecell_get, clk_data);
if (err)
dev_warn(pmc->dev, "failed to add pmc clock provider: %d\n",
err);
}
static const struct regmap_range pmc_usb_sleepwalk_ranges[] = {
regmap_reg_range(PMC_USB_DEBOUNCE_DEL, PMC_USB_AO),
regmap_reg_range(PMC_UTMIP_UHSIC_TRIGGERS, PMC_UTMIP_UHSIC_SAVED_STATE),
regmap_reg_range(PMC_UTMIP_TERM_PAD_CFG, PMC_UTMIP_UHSIC_FAKE),
regmap_reg_range(PMC_UTMIP_UHSIC_LINE_WAKEUP, PMC_UTMIP_UHSIC_LINE_WAKEUP),
regmap_reg_range(PMC_UTMIP_BIAS_MASTER_CNTRL, PMC_UTMIP_MASTER_CONFIG),
regmap_reg_range(PMC_UTMIP_UHSIC2_TRIGGERS, PMC_UTMIP_MASTER2_CONFIG),
regmap_reg_range(PMC_UTMIP_PAD_CFG0, PMC_UTMIP_UHSIC_SLEEP_CFG1),
regmap_reg_range(PMC_UTMIP_SLEEPWALK_P3, PMC_UTMIP_SLEEPWALK_P3),
};
static const struct regmap_access_table pmc_usb_sleepwalk_table = {
.yes_ranges = pmc_usb_sleepwalk_ranges,
.n_yes_ranges = ARRAY_SIZE(pmc_usb_sleepwalk_ranges),
};
static int tegra_pmc_regmap_readl(void *context, unsigned int offset, unsigned int *value)
{
struct tegra_pmc *pmc = context;
*value = tegra_pmc_readl(pmc, offset);
return 0;
}
static int tegra_pmc_regmap_writel(void *context, unsigned int offset, unsigned int value)
{
struct tegra_pmc *pmc = context;
tegra_pmc_writel(pmc, value, offset);
return 0;
}
static const struct regmap_config usb_sleepwalk_regmap_config = {
.name = "usb_sleepwalk",
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.fast_io = true,
.rd_table = &pmc_usb_sleepwalk_table,
.wr_table = &pmc_usb_sleepwalk_table,
.reg_read = tegra_pmc_regmap_readl,
.reg_write = tegra_pmc_regmap_writel,
};
static int tegra_pmc_regmap_init(struct tegra_pmc *pmc)
{
struct regmap *regmap;
int err;
if (pmc->soc->has_usb_sleepwalk) {
regmap = devm_regmap_init(pmc->dev, NULL, pmc, &usb_sleepwalk_regmap_config);
if (IS_ERR(regmap)) {
err = PTR_ERR(regmap);
dev_err(pmc->dev, "failed to allocate register map (%d)\n", err);
return err;
}
}
return 0;
}
static void tegra_pmc_reset_suspend_mode(void *data)
{
pmc->suspend_mode = TEGRA_SUSPEND_NOT_READY;
}
static int tegra_pmc_probe(struct platform_device *pdev)
{
void __iomem *base;
struct resource *res;
int err;
/*
* Early initialisation should have configured an initial
* register mapping and setup the soc data pointer. If these
* are not valid then something went badly wrong!
*/
if (WARN_ON(!pmc->base || !pmc->soc))
return -ENODEV;
err = tegra_pmc_parse_dt(pmc, pdev->dev.of_node);
if (err < 0)
return err;
err = devm_add_action_or_reset(&pdev->dev, tegra_pmc_reset_suspend_mode,
NULL);
if (err)
return err;
/* take over the memory region from the early initialization */
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "wake");
if (res) {
pmc->wake = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(pmc->wake))
return PTR_ERR(pmc->wake);
} else {
pmc->wake = base;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "aotag");
if (res) {
pmc->aotag = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(pmc->aotag))
return PTR_ERR(pmc->aotag);
} else {
pmc->aotag = base;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "scratch");
if (res) {
pmc->scratch = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(pmc->scratch))
return PTR_ERR(pmc->scratch);
} else {
pmc->scratch = base;
}
pmc->clk = devm_clk_get_optional(&pdev->dev, "pclk");
if (IS_ERR(pmc->clk))
return dev_err_probe(&pdev->dev, PTR_ERR(pmc->clk),
"failed to get pclk\n");
/*
* PMC should be last resort for restarting since it soft-resets
* CPU without resetting everything else.
*/
err = devm_register_reboot_notifier(&pdev->dev,
&tegra_pmc_reboot_notifier);
if (err) {
dev_err(&pdev->dev, "unable to register reboot notifier, %d\n",
err);
return err;
}
err = devm_register_sys_off_handler(&pdev->dev,
SYS_OFF_MODE_RESTART,
SYS_OFF_PRIO_LOW,
tegra_pmc_restart_handler, NULL);
if (err) {
dev_err(&pdev->dev, "failed to register sys-off handler: %d\n",
err);
return err;
}
/*
* PMC should be primary power-off method if it soft-resets CPU,
* asking bootloader to shutdown hardware.
*/
err = devm_register_sys_off_handler(&pdev->dev,
SYS_OFF_MODE_POWER_OFF,
SYS_OFF_PRIO_FIRMWARE,
tegra_pmc_power_off_handler, NULL);
if (err) {
dev_err(&pdev->dev, "failed to register sys-off handler: %d\n",
err);
return err;
}
/*
* PCLK clock rate can't be retrieved using CLK API because it
* causes lockup if CPU enters LP2 idle state from some other
* CLK notifier, hence we're caching the rate's value locally.
*/
if (pmc->clk) {
pmc->clk_nb.notifier_call = tegra_pmc_clk_notify_cb;
err = devm_clk_notifier_register(&pdev->dev, pmc->clk,
&pmc->clk_nb);
if (err) {
dev_err(&pdev->dev,
"failed to register clk notifier\n");
return err;
}
pmc->rate = clk_get_rate(pmc->clk);
}
pmc->dev = &pdev->dev;
err = tegra_pmc_init(pmc);
if (err < 0) {
dev_err(&pdev->dev, "failed to initialize PMC: %d\n", err);
return err;
}
tegra_pmc_init_tsense_reset(pmc);
tegra_pmc_reset_sysfs_init(pmc);
err = tegra_pmc_pinctrl_init(pmc);
if (err)
goto cleanup_sysfs;
err = tegra_pmc_regmap_init(pmc);
if (err < 0)
goto cleanup_sysfs;
err = tegra_powergate_init(pmc, pdev->dev.of_node);
if (err < 0)
goto cleanup_powergates;
err = tegra_pmc_irq_init(pmc);
if (err < 0)
goto cleanup_powergates;
mutex_lock(&pmc->powergates_lock);
iounmap(pmc->base);
pmc->base = base;
mutex_unlock(&pmc->powergates_lock);
tegra_pmc_clock_register(pmc, pdev->dev.of_node);
platform_set_drvdata(pdev, pmc);
tegra_pm_init_suspend();
/* Some wakes require specific filter configuration */
if (pmc->soc->set_wake_filters)
pmc->soc->set_wake_filters(pmc);
debugfs_create_file("powergate", 0444, NULL, NULL, &powergate_fops);
return 0;
cleanup_powergates:
tegra_powergate_remove_all(pdev->dev.of_node);
cleanup_sysfs:
device_remove_file(&pdev->dev, &dev_attr_reset_reason);
device_remove_file(&pdev->dev, &dev_attr_reset_level);
return err;
}
/*
* Ensures that sufficient time is passed for a register write to
* serialize into the 32KHz domain.
*/
static void wke_32kwritel(struct tegra_pmc *pmc, u32 value, unsigned int offset)
{
writel(value, pmc->wake + offset);
udelay(130);
}
static void wke_write_wake_level(struct tegra_pmc *pmc, int wake, int level)
{
unsigned int offset = WAKE_AOWAKE_CNTRL(wake);
u32 value;
value = readl(pmc->wake + offset);
if (level)
value |= WAKE_AOWAKE_CNTRL_LEVEL;
else
value &= ~WAKE_AOWAKE_CNTRL_LEVEL;
writel(value, pmc->wake + offset);
}
static void wke_write_wake_levels(struct tegra_pmc *pmc)
{
unsigned int i;
for (i = 0; i < pmc->soc->max_wake_events; i++)
wke_write_wake_level(pmc, i, test_bit(i, pmc->wake_cntrl_level_map));
}
static void wke_clear_sw_wake_status(struct tegra_pmc *pmc)
{
wke_32kwritel(pmc, 1, WAKE_AOWAKE_SW_STATUS_W_0);
}
static void wke_read_sw_wake_status(struct tegra_pmc *pmc)
{
unsigned long status;
unsigned int wake, i;
for (i = 0; i < pmc->soc->max_wake_events; i++)
wke_write_wake_level(pmc, i, 0);
wke_clear_sw_wake_status(pmc);
wke_32kwritel(pmc, 1, WAKE_LATCH_SW);
/*
* WAKE_AOWAKE_SW_STATUS is edge triggered, so in order to
* obtain the current status of the input wake signals, change
* the polarity of the wake level from 0->1 while latching to force
* a positive edge if the sampled signal is '1'.
*/
for (i = 0; i < pmc->soc->max_wake_events; i++)
wke_write_wake_level(pmc, i, 1);
/*
* Wait for the update to be synced into the 32kHz domain,
* and let enough time lapse, so that the wake signals have time to
* be sampled.
*/
udelay(300);
wke_32kwritel(pmc, 0, WAKE_LATCH_SW);
bitmap_zero(pmc->wake_sw_status_map, pmc->soc->max_wake_events);
for (i = 0; i < pmc->soc->max_wake_vectors; i++) {
status = readl(pmc->wake + WAKE_AOWAKE_SW_STATUS(i));
for_each_set_bit(wake, &status, 32)
set_bit(wake + (i * 32), pmc->wake_sw_status_map);
}
}
static void wke_clear_wake_status(struct tegra_pmc *pmc)
{
unsigned long status;
unsigned int i, wake;
u32 mask;
for (i = 0; i < pmc->soc->max_wake_vectors; i++) {
mask = readl(pmc->wake + WAKE_AOWAKE_TIER2_ROUTING(i));
status = readl(pmc->wake + WAKE_AOWAKE_STATUS_R(i)) & mask;
for_each_set_bit(wake, &status, 32)
wke_32kwritel(pmc, 0x1, WAKE_AOWAKE_STATUS_W((i * 32) + wake));
}
}
/* translate sc7 wake sources back into IRQs to catch edge triggered wakeups */
static void tegra186_pmc_process_wake_events(struct tegra_pmc *pmc, unsigned int index,
unsigned long status)
{
unsigned int wake;
dev_dbg(pmc->dev, "Wake[%d:%d] status=%#lx\n", (index * 32) + 31, index * 32, status);
for_each_set_bit(wake, &status, 32) {
irq_hw_number_t hwirq = wake + 32 * index;
struct irq_desc *desc;
unsigned int irq;
irq = irq_find_mapping(pmc->domain, hwirq);
desc = irq_to_desc(irq);
if (!desc || !desc->action || !desc->action->name) {
dev_dbg(pmc->dev, "Resume caused by WAKE%ld, IRQ %d\n", hwirq, irq);
continue;
}
dev_dbg(