blob: 058cfa168abe78a7bca76befd582bb20f8687dd2 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2019 Western Digital Corporation or its affiliates.
*
* Authors:
* Anup Patel <anup.patel@wdc.com>
*/
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <asm/csr.h>
#define INSN_OPCODE_MASK 0x007c
#define INSN_OPCODE_SHIFT 2
#define INSN_OPCODE_SYSTEM 28
#define INSN_MASK_WFI 0xffffff00
#define INSN_MATCH_WFI 0x10500000
#define INSN_MATCH_LB 0x3
#define INSN_MASK_LB 0x707f
#define INSN_MATCH_LH 0x1003
#define INSN_MASK_LH 0x707f
#define INSN_MATCH_LW 0x2003
#define INSN_MASK_LW 0x707f
#define INSN_MATCH_LD 0x3003
#define INSN_MASK_LD 0x707f
#define INSN_MATCH_LBU 0x4003
#define INSN_MASK_LBU 0x707f
#define INSN_MATCH_LHU 0x5003
#define INSN_MASK_LHU 0x707f
#define INSN_MATCH_LWU 0x6003
#define INSN_MASK_LWU 0x707f
#define INSN_MATCH_SB 0x23
#define INSN_MASK_SB 0x707f
#define INSN_MATCH_SH 0x1023
#define INSN_MASK_SH 0x707f
#define INSN_MATCH_SW 0x2023
#define INSN_MASK_SW 0x707f
#define INSN_MATCH_SD 0x3023
#define INSN_MASK_SD 0x707f
#define INSN_MATCH_C_LD 0x6000
#define INSN_MASK_C_LD 0xe003
#define INSN_MATCH_C_SD 0xe000
#define INSN_MASK_C_SD 0xe003
#define INSN_MATCH_C_LW 0x4000
#define INSN_MASK_C_LW 0xe003
#define INSN_MATCH_C_SW 0xc000
#define INSN_MASK_C_SW 0xe003
#define INSN_MATCH_C_LDSP 0x6002
#define INSN_MASK_C_LDSP 0xe003
#define INSN_MATCH_C_SDSP 0xe002
#define INSN_MASK_C_SDSP 0xe003
#define INSN_MATCH_C_LWSP 0x4002
#define INSN_MASK_C_LWSP 0xe003
#define INSN_MATCH_C_SWSP 0xc002
#define INSN_MASK_C_SWSP 0xe003
#define INSN_16BIT_MASK 0x3
#define INSN_IS_16BIT(insn) (((insn) & INSN_16BIT_MASK) != INSN_16BIT_MASK)
#define INSN_LEN(insn) (INSN_IS_16BIT(insn) ? 2 : 4)
#ifdef CONFIG_64BIT
#define LOG_REGBYTES 3
#else
#define LOG_REGBYTES 2
#endif
#define REGBYTES (1 << LOG_REGBYTES)
#define SH_RD 7
#define SH_RS1 15
#define SH_RS2 20
#define SH_RS2C 2
#define RV_X(x, s, n) (((x) >> (s)) & ((1 << (n)) - 1))
#define RVC_LW_IMM(x) ((RV_X(x, 6, 1) << 2) | \
(RV_X(x, 10, 3) << 3) | \
(RV_X(x, 5, 1) << 6))
#define RVC_LD_IMM(x) ((RV_X(x, 10, 3) << 3) | \
(RV_X(x, 5, 2) << 6))
#define RVC_LWSP_IMM(x) ((RV_X(x, 4, 3) << 2) | \
(RV_X(x, 12, 1) << 5) | \
(RV_X(x, 2, 2) << 6))
#define RVC_LDSP_IMM(x) ((RV_X(x, 5, 2) << 3) | \
(RV_X(x, 12, 1) << 5) | \
(RV_X(x, 2, 3) << 6))
#define RVC_SWSP_IMM(x) ((RV_X(x, 9, 4) << 2) | \
(RV_X(x, 7, 2) << 6))
#define RVC_SDSP_IMM(x) ((RV_X(x, 10, 3) << 3) | \
(RV_X(x, 7, 3) << 6))
#define RVC_RS1S(insn) (8 + RV_X(insn, SH_RD, 3))
#define RVC_RS2S(insn) (8 + RV_X(insn, SH_RS2C, 3))
#define RVC_RS2(insn) RV_X(insn, SH_RS2C, 5)
#define SHIFT_RIGHT(x, y) \
((y) < 0 ? ((x) << -(y)) : ((x) >> (y)))
#define REG_MASK \
((1 << (5 + LOG_REGBYTES)) - (1 << LOG_REGBYTES))
#define REG_OFFSET(insn, pos) \
(SHIFT_RIGHT((insn), (pos) - LOG_REGBYTES) & REG_MASK)
#define REG_PTR(insn, pos, regs) \
(ulong *)((ulong)(regs) + REG_OFFSET(insn, pos))
#define GET_RM(insn) (((insn) >> 12) & 7)
#define GET_RS1(insn, regs) (*REG_PTR(insn, SH_RS1, regs))
#define GET_RS2(insn, regs) (*REG_PTR(insn, SH_RS2, regs))
#define GET_RS1S(insn, regs) (*REG_PTR(RVC_RS1S(insn), 0, regs))
#define GET_RS2S(insn, regs) (*REG_PTR(RVC_RS2S(insn), 0, regs))
#define GET_RS2C(insn, regs) (*REG_PTR(insn, SH_RS2C, regs))
#define GET_SP(regs) (*REG_PTR(2, 0, regs))
#define SET_RD(insn, regs, val) (*REG_PTR(insn, SH_RD, regs) = (val))
#define IMM_I(insn) ((s32)(insn) >> 20)
#define IMM_S(insn) (((s32)(insn) >> 25 << 5) | \
(s32)(((insn) >> 7) & 0x1f))
#define MASK_FUNCT3 0x7000
static int truly_illegal_insn(struct kvm_vcpu *vcpu,
struct kvm_run *run,
ulong insn)
{
struct kvm_cpu_trap utrap = { 0 };
/* Redirect trap to Guest VCPU */
utrap.sepc = vcpu->arch.guest_context.sepc;
utrap.scause = EXC_INST_ILLEGAL;
utrap.stval = insn;
kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
return 1;
}
static int system_opcode_insn(struct kvm_vcpu *vcpu,
struct kvm_run *run,
ulong insn)
{
if ((insn & INSN_MASK_WFI) == INSN_MATCH_WFI) {
vcpu->stat.wfi_exit_stat++;
if (!kvm_arch_vcpu_runnable(vcpu)) {
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->arch.srcu_idx);
kvm_vcpu_block(vcpu);
vcpu->arch.srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
kvm_clear_request(KVM_REQ_UNHALT, vcpu);
}
vcpu->arch.guest_context.sepc += INSN_LEN(insn);
return 1;
}
return truly_illegal_insn(vcpu, run, insn);
}
static int virtual_inst_fault(struct kvm_vcpu *vcpu, struct kvm_run *run,
struct kvm_cpu_trap *trap)
{
unsigned long insn = trap->stval;
struct kvm_cpu_trap utrap = { 0 };
struct kvm_cpu_context *ct;
if (unlikely(INSN_IS_16BIT(insn))) {
if (insn == 0) {
ct = &vcpu->arch.guest_context;
insn = kvm_riscv_vcpu_unpriv_read(vcpu, true,
ct->sepc,
&utrap);
if (utrap.scause) {
utrap.sepc = ct->sepc;
kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
return 1;
}
}
if (INSN_IS_16BIT(insn))
return truly_illegal_insn(vcpu, run, insn);
}
switch ((insn & INSN_OPCODE_MASK) >> INSN_OPCODE_SHIFT) {
case INSN_OPCODE_SYSTEM:
return system_opcode_insn(vcpu, run, insn);
default:
return truly_illegal_insn(vcpu, run, insn);
}
}
static int emulate_load(struct kvm_vcpu *vcpu, struct kvm_run *run,
unsigned long fault_addr, unsigned long htinst)
{
u8 data_buf[8];
unsigned long insn;
int shift = 0, len = 0, insn_len = 0;
struct kvm_cpu_trap utrap = { 0 };
struct kvm_cpu_context *ct = &vcpu->arch.guest_context;
/* Determine trapped instruction */
if (htinst & 0x1) {
/*
* Bit[0] == 1 implies trapped instruction value is
* transformed instruction or custom instruction.
*/
insn = htinst | INSN_16BIT_MASK;
insn_len = (htinst & BIT(1)) ? INSN_LEN(insn) : 2;
} else {
/*
* Bit[0] == 0 implies trapped instruction value is
* zero or special value.
*/
insn = kvm_riscv_vcpu_unpriv_read(vcpu, true, ct->sepc,
&utrap);
if (utrap.scause) {
/* Redirect trap if we failed to read instruction */
utrap.sepc = ct->sepc;
kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
return 1;
}
insn_len = INSN_LEN(insn);
}
/* Decode length of MMIO and shift */
if ((insn & INSN_MASK_LW) == INSN_MATCH_LW) {
len = 4;
shift = 8 * (sizeof(ulong) - len);
} else if ((insn & INSN_MASK_LB) == INSN_MATCH_LB) {
len = 1;
shift = 8 * (sizeof(ulong) - len);
} else if ((insn & INSN_MASK_LBU) == INSN_MATCH_LBU) {
len = 1;
shift = 8 * (sizeof(ulong) - len);
#ifdef CONFIG_64BIT
} else if ((insn & INSN_MASK_LD) == INSN_MATCH_LD) {
len = 8;
shift = 8 * (sizeof(ulong) - len);
} else if ((insn & INSN_MASK_LWU) == INSN_MATCH_LWU) {
len = 4;
#endif
} else if ((insn & INSN_MASK_LH) == INSN_MATCH_LH) {
len = 2;
shift = 8 * (sizeof(ulong) - len);
} else if ((insn & INSN_MASK_LHU) == INSN_MATCH_LHU) {
len = 2;
#ifdef CONFIG_64BIT
} else if ((insn & INSN_MASK_C_LD) == INSN_MATCH_C_LD) {
len = 8;
shift = 8 * (sizeof(ulong) - len);
insn = RVC_RS2S(insn) << SH_RD;
} else if ((insn & INSN_MASK_C_LDSP) == INSN_MATCH_C_LDSP &&
((insn >> SH_RD) & 0x1f)) {
len = 8;
shift = 8 * (sizeof(ulong) - len);
#endif
} else if ((insn & INSN_MASK_C_LW) == INSN_MATCH_C_LW) {
len = 4;
shift = 8 * (sizeof(ulong) - len);
insn = RVC_RS2S(insn) << SH_RD;
} else if ((insn & INSN_MASK_C_LWSP) == INSN_MATCH_C_LWSP &&
((insn >> SH_RD) & 0x1f)) {
len = 4;
shift = 8 * (sizeof(ulong) - len);
} else {
return -EOPNOTSUPP;
}
/* Fault address should be aligned to length of MMIO */
if (fault_addr & (len - 1))
return -EIO;
/* Save instruction decode info */
vcpu->arch.mmio_decode.insn = insn;
vcpu->arch.mmio_decode.insn_len = insn_len;
vcpu->arch.mmio_decode.shift = shift;
vcpu->arch.mmio_decode.len = len;
vcpu->arch.mmio_decode.return_handled = 0;
/* Update MMIO details in kvm_run struct */
run->mmio.is_write = false;
run->mmio.phys_addr = fault_addr;
run->mmio.len = len;
/* Try to handle MMIO access in the kernel */
if (!kvm_io_bus_read(vcpu, KVM_MMIO_BUS, fault_addr, len, data_buf)) {
/* Successfully handled MMIO access in the kernel so resume */
memcpy(run->mmio.data, data_buf, len);
vcpu->stat.mmio_exit_kernel++;
kvm_riscv_vcpu_mmio_return(vcpu, run);
return 1;
}
/* Exit to userspace for MMIO emulation */
vcpu->stat.mmio_exit_user++;
run->exit_reason = KVM_EXIT_MMIO;
return 0;
}
static int emulate_store(struct kvm_vcpu *vcpu, struct kvm_run *run,
unsigned long fault_addr, unsigned long htinst)
{
u8 data8;
u16 data16;
u32 data32;
u64 data64;
ulong data;
unsigned long insn;
int len = 0, insn_len = 0;
struct kvm_cpu_trap utrap = { 0 };
struct kvm_cpu_context *ct = &vcpu->arch.guest_context;
/* Determine trapped instruction */
if (htinst & 0x1) {
/*
* Bit[0] == 1 implies trapped instruction value is
* transformed instruction or custom instruction.
*/
insn = htinst | INSN_16BIT_MASK;
insn_len = (htinst & BIT(1)) ? INSN_LEN(insn) : 2;
} else {
/*
* Bit[0] == 0 implies trapped instruction value is
* zero or special value.
*/
insn = kvm_riscv_vcpu_unpriv_read(vcpu, true, ct->sepc,
&utrap);
if (utrap.scause) {
/* Redirect trap if we failed to read instruction */
utrap.sepc = ct->sepc;
kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
return 1;
}
insn_len = INSN_LEN(insn);
}
data = GET_RS2(insn, &vcpu->arch.guest_context);
data8 = data16 = data32 = data64 = data;
if ((insn & INSN_MASK_SW) == INSN_MATCH_SW) {
len = 4;
} else if ((insn & INSN_MASK_SB) == INSN_MATCH_SB) {
len = 1;
#ifdef CONFIG_64BIT
} else if ((insn & INSN_MASK_SD) == INSN_MATCH_SD) {
len = 8;
#endif
} else if ((insn & INSN_MASK_SH) == INSN_MATCH_SH) {
len = 2;
#ifdef CONFIG_64BIT
} else if ((insn & INSN_MASK_C_SD) == INSN_MATCH_C_SD) {
len = 8;
data64 = GET_RS2S(insn, &vcpu->arch.guest_context);
} else if ((insn & INSN_MASK_C_SDSP) == INSN_MATCH_C_SDSP &&
((insn >> SH_RD) & 0x1f)) {
len = 8;
data64 = GET_RS2C(insn, &vcpu->arch.guest_context);
#endif
} else if ((insn & INSN_MASK_C_SW) == INSN_MATCH_C_SW) {
len = 4;
data32 = GET_RS2S(insn, &vcpu->arch.guest_context);
} else if ((insn & INSN_MASK_C_SWSP) == INSN_MATCH_C_SWSP &&
((insn >> SH_RD) & 0x1f)) {
len = 4;
data32 = GET_RS2C(insn, &vcpu->arch.guest_context);
} else {
return -EOPNOTSUPP;
}
/* Fault address should be aligned to length of MMIO */
if (fault_addr & (len - 1))
return -EIO;
/* Save instruction decode info */
vcpu->arch.mmio_decode.insn = insn;
vcpu->arch.mmio_decode.insn_len = insn_len;
vcpu->arch.mmio_decode.shift = 0;
vcpu->arch.mmio_decode.len = len;
vcpu->arch.mmio_decode.return_handled = 0;
/* Copy data to kvm_run instance */
switch (len) {
case 1:
*((u8 *)run->mmio.data) = data8;
break;
case 2:
*((u16 *)run->mmio.data) = data16;
break;
case 4:
*((u32 *)run->mmio.data) = data32;
break;
case 8:
*((u64 *)run->mmio.data) = data64;
break;
default:
return -EOPNOTSUPP;
};
/* Update MMIO details in kvm_run struct */
run->mmio.is_write = true;
run->mmio.phys_addr = fault_addr;
run->mmio.len = len;
/* Try to handle MMIO access in the kernel */
if (!kvm_io_bus_write(vcpu, KVM_MMIO_BUS,
fault_addr, len, run->mmio.data)) {
/* Successfully handled MMIO access in the kernel so resume */
vcpu->stat.mmio_exit_kernel++;
kvm_riscv_vcpu_mmio_return(vcpu, run);
return 1;
}
/* Exit to userspace for MMIO emulation */
vcpu->stat.mmio_exit_user++;
run->exit_reason = KVM_EXIT_MMIO;
return 0;
}
static int stage2_page_fault(struct kvm_vcpu *vcpu, struct kvm_run *run,
struct kvm_cpu_trap *trap)
{
struct kvm_memory_slot *memslot;
unsigned long hva, fault_addr;
bool writeable;
gfn_t gfn;
int ret;
fault_addr = (trap->htval << 2) | (trap->stval & 0x3);
gfn = fault_addr >> PAGE_SHIFT;
memslot = gfn_to_memslot(vcpu->kvm, gfn);
hva = gfn_to_hva_memslot_prot(memslot, gfn, &writeable);
if (kvm_is_error_hva(hva) ||
(trap->scause == EXC_STORE_GUEST_PAGE_FAULT && !writeable)) {
switch (trap->scause) {
case EXC_LOAD_GUEST_PAGE_FAULT:
return emulate_load(vcpu, run, fault_addr,
trap->htinst);
case EXC_STORE_GUEST_PAGE_FAULT:
return emulate_store(vcpu, run, fault_addr,
trap->htinst);
default:
return -EOPNOTSUPP;
};
}
ret = kvm_riscv_stage2_map(vcpu, memslot, fault_addr, hva,
(trap->scause == EXC_STORE_GUEST_PAGE_FAULT) ? true : false);
if (ret < 0)
return ret;
return 1;
}
/**
* kvm_riscv_vcpu_unpriv_read -- Read machine word from Guest memory
*
* @vcpu: The VCPU pointer
* @read_insn: Flag representing whether we are reading instruction
* @guest_addr: Guest address to read
* @trap: Output pointer to trap details
*/
unsigned long kvm_riscv_vcpu_unpriv_read(struct kvm_vcpu *vcpu,
bool read_insn,
unsigned long guest_addr,
struct kvm_cpu_trap *trap)
{
register unsigned long taddr asm("a0") = (unsigned long)trap;
register unsigned long ttmp asm("a1");
register unsigned long val asm("t0");
register unsigned long tmp asm("t1");
register unsigned long addr asm("t2") = guest_addr;
unsigned long flags;
unsigned long old_stvec, old_hstatus;
local_irq_save(flags);
old_hstatus = csr_swap(CSR_HSTATUS, vcpu->arch.guest_context.hstatus);
old_stvec = csr_swap(CSR_STVEC, (ulong)&__kvm_riscv_unpriv_trap);
if (read_insn) {
/*
* HLVX.HU instruction
* 0110010 00011 rs1 100 rd 1110011
*/
asm volatile ("\n"
".option push\n"
".option norvc\n"
"add %[ttmp], %[taddr], 0\n"
/*
* HLVX.HU %[val], (%[addr])
* HLVX.HU t0, (t2)
* 0110010 00011 00111 100 00101 1110011
*/
".word 0x6433c2f3\n"
"andi %[tmp], %[val], 3\n"
"addi %[tmp], %[tmp], -3\n"
"bne %[tmp], zero, 2f\n"
"addi %[addr], %[addr], 2\n"
/*
* HLVX.HU %[tmp], (%[addr])
* HLVX.HU t1, (t2)
* 0110010 00011 00111 100 00110 1110011
*/
".word 0x6433c373\n"
"sll %[tmp], %[tmp], 16\n"
"add %[val], %[val], %[tmp]\n"
"2:\n"
".option pop"
: [val] "=&r" (val), [tmp] "=&r" (tmp),
[taddr] "+&r" (taddr), [ttmp] "+&r" (ttmp),
[addr] "+&r" (addr) : : "memory");
if (trap->scause == EXC_LOAD_PAGE_FAULT)
trap->scause = EXC_INST_PAGE_FAULT;
} else {
/*
* HLV.D instruction
* 0110110 00000 rs1 100 rd 1110011
*
* HLV.W instruction
* 0110100 00000 rs1 100 rd 1110011
*/
asm volatile ("\n"
".option push\n"
".option norvc\n"
"add %[ttmp], %[taddr], 0\n"
#ifdef CONFIG_64BIT
/*
* HLV.D %[val], (%[addr])
* HLV.D t0, (t2)
* 0110110 00000 00111 100 00101 1110011
*/
".word 0x6c03c2f3\n"
#else
/*
* HLV.W %[val], (%[addr])
* HLV.W t0, (t2)
* 0110100 00000 00111 100 00101 1110011
*/
".word 0x6803c2f3\n"
#endif
".option pop"
: [val] "=&r" (val),
[taddr] "+&r" (taddr), [ttmp] "+&r" (ttmp)
: [addr] "r" (addr) : "memory");
}
csr_write(CSR_STVEC, old_stvec);
csr_write(CSR_HSTATUS, old_hstatus);
local_irq_restore(flags);
return val;
}
/**
* kvm_riscv_vcpu_trap_redirect -- Redirect trap to Guest
*
* @vcpu: The VCPU pointer
* @trap: Trap details
*/
void kvm_riscv_vcpu_trap_redirect(struct kvm_vcpu *vcpu,
struct kvm_cpu_trap *trap)
{
unsigned long vsstatus = csr_read(CSR_VSSTATUS);
/* Change Guest SSTATUS.SPP bit */
vsstatus &= ~SR_SPP;
if (vcpu->arch.guest_context.sstatus & SR_SPP)
vsstatus |= SR_SPP;
/* Change Guest SSTATUS.SPIE bit */
vsstatus &= ~SR_SPIE;
if (vsstatus & SR_SIE)
vsstatus |= SR_SPIE;
/* Clear Guest SSTATUS.SIE bit */
vsstatus &= ~SR_SIE;
/* Update Guest SSTATUS */
csr_write(CSR_VSSTATUS, vsstatus);
/* Update Guest SCAUSE, STVAL, and SEPC */
csr_write(CSR_VSCAUSE, trap->scause);
csr_write(CSR_VSTVAL, trap->stval);
csr_write(CSR_VSEPC, trap->sepc);
/* Set Guest PC to Guest exception vector */
vcpu->arch.guest_context.sepc = csr_read(CSR_VSTVEC);
}
/**
* kvm_riscv_vcpu_mmio_return -- Handle MMIO loads after user space emulation
* or in-kernel IO emulation
*
* @vcpu: The VCPU pointer
* @run: The VCPU run struct containing the mmio data
*/
int kvm_riscv_vcpu_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
u8 data8;
u16 data16;
u32 data32;
u64 data64;
ulong insn;
int len, shift;
if (vcpu->arch.mmio_decode.return_handled)
return 0;
vcpu->arch.mmio_decode.return_handled = 1;
insn = vcpu->arch.mmio_decode.insn;
if (run->mmio.is_write)
goto done;
len = vcpu->arch.mmio_decode.len;
shift = vcpu->arch.mmio_decode.shift;
switch (len) {
case 1:
data8 = *((u8 *)run->mmio.data);
SET_RD(insn, &vcpu->arch.guest_context,
(ulong)data8 << shift >> shift);
break;
case 2:
data16 = *((u16 *)run->mmio.data);
SET_RD(insn, &vcpu->arch.guest_context,
(ulong)data16 << shift >> shift);
break;
case 4:
data32 = *((u32 *)run->mmio.data);
SET_RD(insn, &vcpu->arch.guest_context,
(ulong)data32 << shift >> shift);
break;
case 8:
data64 = *((u64 *)run->mmio.data);
SET_RD(insn, &vcpu->arch.guest_context,
(ulong)data64 << shift >> shift);
break;
default:
return -EOPNOTSUPP;
};
done:
/* Move to next instruction */
vcpu->arch.guest_context.sepc += vcpu->arch.mmio_decode.insn_len;
return 0;
}
/*
* Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
* proper exit to userspace.
*/
int kvm_riscv_vcpu_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
struct kvm_cpu_trap *trap)
{
int ret;
/* If we got host interrupt then do nothing */
if (trap->scause & CAUSE_IRQ_FLAG)
return 1;
/* Handle guest traps */
ret = -EFAULT;
run->exit_reason = KVM_EXIT_UNKNOWN;
switch (trap->scause) {
case EXC_VIRTUAL_INST_FAULT:
if (vcpu->arch.guest_context.hstatus & HSTATUS_SPV)
ret = virtual_inst_fault(vcpu, run, trap);
break;
case EXC_INST_GUEST_PAGE_FAULT:
case EXC_LOAD_GUEST_PAGE_FAULT:
case EXC_STORE_GUEST_PAGE_FAULT:
if (vcpu->arch.guest_context.hstatus & HSTATUS_SPV)
ret = stage2_page_fault(vcpu, run, trap);
break;
case EXC_SUPERVISOR_SYSCALL:
if (vcpu->arch.guest_context.hstatus & HSTATUS_SPV)
ret = kvm_riscv_vcpu_sbi_ecall(vcpu, run);
break;
default:
break;
};
/* Print details in-case of error */
if (ret < 0) {
kvm_err("VCPU exit error %d\n", ret);
kvm_err("SEPC=0x%lx SSTATUS=0x%lx HSTATUS=0x%lx\n",
vcpu->arch.guest_context.sepc,
vcpu->arch.guest_context.sstatus,
vcpu->arch.guest_context.hstatus);
kvm_err("SCAUSE=0x%lx STVAL=0x%lx HTVAL=0x%lx HTINST=0x%lx\n",
trap->scause, trap->stval, trap->htval, trap->htinst);
}
return ret;
}