| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef ARCH_X86_KVM_CPUID_H |
| #define ARCH_X86_KVM_CPUID_H |
| |
| #include "x86.h" |
| #include <asm/cpu.h> |
| #include <asm/processor.h> |
| #include <uapi/asm/kvm_para.h> |
| |
| /* |
| * Hardware-defined CPUID leafs that are scattered in the kernel, but need to |
| * be directly used by KVM. Note, these word values conflict with the kernel's |
| * "bug" caps, but KVM doesn't use those. |
| */ |
| enum kvm_only_cpuid_leafs { |
| CPUID_12_EAX = NCAPINTS, |
| NR_KVM_CPU_CAPS, |
| |
| NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS, |
| }; |
| |
| #define KVM_X86_FEATURE(w, f) ((w)*32 + (f)) |
| |
| /* Intel-defined SGX sub-features, CPUID level 0x12 (EAX). */ |
| #define KVM_X86_FEATURE_SGX1 KVM_X86_FEATURE(CPUID_12_EAX, 0) |
| #define KVM_X86_FEATURE_SGX2 KVM_X86_FEATURE(CPUID_12_EAX, 1) |
| |
| extern u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly; |
| void kvm_set_cpu_caps(void); |
| |
| void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu); |
| void kvm_update_pv_runtime(struct kvm_vcpu *vcpu); |
| struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu, |
| u32 function, u32 index); |
| int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid, |
| struct kvm_cpuid_entry2 __user *entries, |
| unsigned int type); |
| int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, |
| struct kvm_cpuid *cpuid, |
| struct kvm_cpuid_entry __user *entries); |
| int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu, |
| struct kvm_cpuid2 *cpuid, |
| struct kvm_cpuid_entry2 __user *entries); |
| int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu, |
| struct kvm_cpuid2 *cpuid, |
| struct kvm_cpuid_entry2 __user *entries); |
| bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, |
| u32 *ecx, u32 *edx, bool exact_only); |
| |
| int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu); |
| |
| static inline int cpuid_maxphyaddr(struct kvm_vcpu *vcpu) |
| { |
| return vcpu->arch.maxphyaddr; |
| } |
| |
| static inline bool kvm_vcpu_is_illegal_gpa(struct kvm_vcpu *vcpu, gpa_t gpa) |
| { |
| return (gpa >= BIT_ULL(cpuid_maxphyaddr(vcpu))); |
| } |
| |
| struct cpuid_reg { |
| u32 function; |
| u32 index; |
| int reg; |
| }; |
| |
| static const struct cpuid_reg reverse_cpuid[] = { |
| [CPUID_1_EDX] = { 1, 0, CPUID_EDX}, |
| [CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX}, |
| [CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX}, |
| [CPUID_1_ECX] = { 1, 0, CPUID_ECX}, |
| [CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX}, |
| [CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX}, |
| [CPUID_7_0_EBX] = { 7, 0, CPUID_EBX}, |
| [CPUID_D_1_EAX] = { 0xd, 1, CPUID_EAX}, |
| [CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX}, |
| [CPUID_6_EAX] = { 6, 0, CPUID_EAX}, |
| [CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX}, |
| [CPUID_7_ECX] = { 7, 0, CPUID_ECX}, |
| [CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX}, |
| [CPUID_7_EDX] = { 7, 0, CPUID_EDX}, |
| [CPUID_7_1_EAX] = { 7, 1, CPUID_EAX}, |
| [CPUID_12_EAX] = {0x00000012, 0, CPUID_EAX}, |
| }; |
| |
| /* |
| * Reverse CPUID and its derivatives can only be used for hardware-defined |
| * feature words, i.e. words whose bits directly correspond to a CPUID leaf. |
| * Retrieving a feature bit or masking guest CPUID from a Linux-defined word |
| * is nonsensical as the bit number/mask is an arbitrary software-defined value |
| * and can't be used by KVM to query/control guest capabilities. And obviously |
| * the leaf being queried must have an entry in the lookup table. |
| */ |
| static __always_inline void reverse_cpuid_check(unsigned int x86_leaf) |
| { |
| BUILD_BUG_ON(x86_leaf == CPUID_LNX_1); |
| BUILD_BUG_ON(x86_leaf == CPUID_LNX_2); |
| BUILD_BUG_ON(x86_leaf == CPUID_LNX_3); |
| BUILD_BUG_ON(x86_leaf == CPUID_LNX_4); |
| BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid)); |
| BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0); |
| } |
| |
| /* |
| * Translate feature bits that are scattered in the kernel's cpufeatures word |
| * into KVM feature words that align with hardware's definitions. |
| */ |
| static __always_inline u32 __feature_translate(int x86_feature) |
| { |
| if (x86_feature == X86_FEATURE_SGX1) |
| return KVM_X86_FEATURE_SGX1; |
| else if (x86_feature == X86_FEATURE_SGX2) |
| return KVM_X86_FEATURE_SGX2; |
| |
| return x86_feature; |
| } |
| |
| static __always_inline u32 __feature_leaf(int x86_feature) |
| { |
| return __feature_translate(x86_feature) / 32; |
| } |
| |
| /* |
| * Retrieve the bit mask from an X86_FEATURE_* definition. Features contain |
| * the hardware defined bit number (stored in bits 4:0) and a software defined |
| * "word" (stored in bits 31:5). The word is used to index into arrays of |
| * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has(). |
| */ |
| static __always_inline u32 __feature_bit(int x86_feature) |
| { |
| x86_feature = __feature_translate(x86_feature); |
| |
| reverse_cpuid_check(x86_feature / 32); |
| return 1 << (x86_feature & 31); |
| } |
| |
| #define feature_bit(name) __feature_bit(X86_FEATURE_##name) |
| |
| static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature) |
| { |
| unsigned int x86_leaf = __feature_leaf(x86_feature); |
| |
| reverse_cpuid_check(x86_leaf); |
| return reverse_cpuid[x86_leaf]; |
| } |
| |
| static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, |
| u32 reg) |
| { |
| switch (reg) { |
| case CPUID_EAX: |
| return &entry->eax; |
| case CPUID_EBX: |
| return &entry->ebx; |
| case CPUID_ECX: |
| return &entry->ecx; |
| case CPUID_EDX: |
| return &entry->edx; |
| default: |
| BUILD_BUG(); |
| return NULL; |
| } |
| } |
| |
| static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, |
| unsigned int x86_feature) |
| { |
| const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature); |
| |
| return __cpuid_entry_get_reg(entry, cpuid.reg); |
| } |
| |
| static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry, |
| unsigned int x86_feature) |
| { |
| u32 *reg = cpuid_entry_get_reg(entry, x86_feature); |
| |
| return *reg & __feature_bit(x86_feature); |
| } |
| |
| static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry, |
| unsigned int x86_feature) |
| { |
| return cpuid_entry_get(entry, x86_feature); |
| } |
| |
| static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry, |
| unsigned int x86_feature) |
| { |
| u32 *reg = cpuid_entry_get_reg(entry, x86_feature); |
| |
| *reg &= ~__feature_bit(x86_feature); |
| } |
| |
| static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry, |
| unsigned int x86_feature) |
| { |
| u32 *reg = cpuid_entry_get_reg(entry, x86_feature); |
| |
| *reg |= __feature_bit(x86_feature); |
| } |
| |
| static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry, |
| unsigned int x86_feature, |
| bool set) |
| { |
| u32 *reg = cpuid_entry_get_reg(entry, x86_feature); |
| |
| /* |
| * Open coded instead of using cpuid_entry_{clear,set}() to coerce the |
| * compiler into using CMOV instead of Jcc when possible. |
| */ |
| if (set) |
| *reg |= __feature_bit(x86_feature); |
| else |
| *reg &= ~__feature_bit(x86_feature); |
| } |
| |
| static __always_inline void cpuid_entry_override(struct kvm_cpuid_entry2 *entry, |
| unsigned int leaf) |
| { |
| u32 *reg = cpuid_entry_get_reg(entry, leaf * 32); |
| |
| BUILD_BUG_ON(leaf >= ARRAY_SIZE(kvm_cpu_caps)); |
| *reg = kvm_cpu_caps[leaf]; |
| } |
| |
| static __always_inline u32 *guest_cpuid_get_register(struct kvm_vcpu *vcpu, |
| unsigned int x86_feature) |
| { |
| const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature); |
| struct kvm_cpuid_entry2 *entry; |
| |
| entry = kvm_find_cpuid_entry(vcpu, cpuid.function, cpuid.index); |
| if (!entry) |
| return NULL; |
| |
| return __cpuid_entry_get_reg(entry, cpuid.reg); |
| } |
| |
| static __always_inline bool guest_cpuid_has(struct kvm_vcpu *vcpu, |
| unsigned int x86_feature) |
| { |
| u32 *reg; |
| |
| reg = guest_cpuid_get_register(vcpu, x86_feature); |
| if (!reg) |
| return false; |
| |
| return *reg & __feature_bit(x86_feature); |
| } |
| |
| static __always_inline void guest_cpuid_clear(struct kvm_vcpu *vcpu, |
| unsigned int x86_feature) |
| { |
| u32 *reg; |
| |
| reg = guest_cpuid_get_register(vcpu, x86_feature); |
| if (reg) |
| *reg &= ~__feature_bit(x86_feature); |
| } |
| |
| static inline bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpuid_entry2 *best; |
| |
| best = kvm_find_cpuid_entry(vcpu, 0, 0); |
| return best && |
| (is_guest_vendor_amd(best->ebx, best->ecx, best->edx) || |
| is_guest_vendor_hygon(best->ebx, best->ecx, best->edx)); |
| } |
| |
| static inline int guest_cpuid_family(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpuid_entry2 *best; |
| |
| best = kvm_find_cpuid_entry(vcpu, 0x1, 0); |
| if (!best) |
| return -1; |
| |
| return x86_family(best->eax); |
| } |
| |
| static inline int guest_cpuid_model(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpuid_entry2 *best; |
| |
| best = kvm_find_cpuid_entry(vcpu, 0x1, 0); |
| if (!best) |
| return -1; |
| |
| return x86_model(best->eax); |
| } |
| |
| static inline int guest_cpuid_stepping(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpuid_entry2 *best; |
| |
| best = kvm_find_cpuid_entry(vcpu, 0x1, 0); |
| if (!best) |
| return -1; |
| |
| return x86_stepping(best->eax); |
| } |
| |
| static inline bool guest_has_spec_ctrl_msr(struct kvm_vcpu *vcpu) |
| { |
| return (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) || |
| guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) || |
| guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) || |
| guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD)); |
| } |
| |
| static inline bool guest_has_pred_cmd_msr(struct kvm_vcpu *vcpu) |
| { |
| return (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) || |
| guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB)); |
| } |
| |
| static inline bool supports_cpuid_fault(struct kvm_vcpu *vcpu) |
| { |
| return vcpu->arch.msr_platform_info & MSR_PLATFORM_INFO_CPUID_FAULT; |
| } |
| |
| static inline bool cpuid_fault_enabled(struct kvm_vcpu *vcpu) |
| { |
| return vcpu->arch.msr_misc_features_enables & |
| MSR_MISC_FEATURES_ENABLES_CPUID_FAULT; |
| } |
| |
| static __always_inline void kvm_cpu_cap_clear(unsigned int x86_feature) |
| { |
| unsigned int x86_leaf = __feature_leaf(x86_feature); |
| |
| reverse_cpuid_check(x86_leaf); |
| kvm_cpu_caps[x86_leaf] &= ~__feature_bit(x86_feature); |
| } |
| |
| static __always_inline void kvm_cpu_cap_set(unsigned int x86_feature) |
| { |
| unsigned int x86_leaf = __feature_leaf(x86_feature); |
| |
| reverse_cpuid_check(x86_leaf); |
| kvm_cpu_caps[x86_leaf] |= __feature_bit(x86_feature); |
| } |
| |
| static __always_inline u32 kvm_cpu_cap_get(unsigned int x86_feature) |
| { |
| unsigned int x86_leaf = __feature_leaf(x86_feature); |
| |
| reverse_cpuid_check(x86_leaf); |
| return kvm_cpu_caps[x86_leaf] & __feature_bit(x86_feature); |
| } |
| |
| static __always_inline bool kvm_cpu_cap_has(unsigned int x86_feature) |
| { |
| return !!kvm_cpu_cap_get(x86_feature); |
| } |
| |
| static __always_inline void kvm_cpu_cap_check_and_set(unsigned int x86_feature) |
| { |
| if (boot_cpu_has(x86_feature)) |
| kvm_cpu_cap_set(x86_feature); |
| } |
| |
| static inline bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa) |
| { |
| return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu)); |
| } |
| |
| static __always_inline bool guest_pv_has(struct kvm_vcpu *vcpu, |
| unsigned int kvm_feature) |
| { |
| if (!vcpu->arch.pv_cpuid.enforce) |
| return true; |
| |
| return vcpu->arch.pv_cpuid.features & (1u << kvm_feature); |
| } |
| |
| #endif |