blob: 480440f4701fb8c546d9e39c640295cad4224b46 [file] [log] [blame]
/*
* An async IO implementation for Linux
* Written by Benjamin LaHaise <bcrl@kvack.org>
*
* Implements an efficient asynchronous io interface.
*
* Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
*
* See ../COPYING for licensing terms.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/time.h>
#include <linux/aio_abi.h>
#include <linux/export.h>
#include <linux/syscalls.h>
#include <linux/backing-dev.h>
#include <linux/uio.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/mmu_context.h>
#include <linux/percpu.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include <linux/aio.h>
#include <linux/highmem.h>
#include <linux/workqueue.h>
#include <linux/security.h>
#include <linux/eventfd.h>
#include <linux/blkdev.h>
#include <linux/compat.h>
#include <linux/migrate.h>
#include <linux/ramfs.h>
#include <linux/percpu-refcount.h>
#include <linux/mount.h>
#include <asm/kmap_types.h>
#include <asm/uaccess.h>
#include "internal.h"
#define AIO_RING_MAGIC 0xa10a10a1
#define AIO_RING_COMPAT_FEATURES 1
#define AIO_RING_INCOMPAT_FEATURES 0
struct aio_ring {
unsigned id; /* kernel internal index number */
unsigned nr; /* number of io_events */
unsigned head; /* Written to by userland or under ring_lock
* mutex by aio_read_events_ring(). */
unsigned tail;
unsigned magic;
unsigned compat_features;
unsigned incompat_features;
unsigned header_length; /* size of aio_ring */
struct io_event io_events[0];
}; /* 128 bytes + ring size */
#define AIO_RING_PAGES 8
struct kioctx_table {
struct rcu_head rcu;
unsigned nr;
struct kioctx *table[];
};
struct kioctx_cpu {
unsigned reqs_available;
};
struct ctx_rq_wait {
struct completion comp;
atomic_t count;
};
struct kioctx {
struct percpu_ref users;
atomic_t dead;
struct percpu_ref reqs;
unsigned long user_id;
struct __percpu kioctx_cpu *cpu;
/*
* For percpu reqs_available, number of slots we move to/from global
* counter at a time:
*/
unsigned req_batch;
/*
* This is what userspace passed to io_setup(), it's not used for
* anything but counting against the global max_reqs quota.
*
* The real limit is nr_events - 1, which will be larger (see
* aio_setup_ring())
*/
unsigned max_reqs;
/* Size of ringbuffer, in units of struct io_event */
unsigned nr_events;
unsigned long mmap_base;
unsigned long mmap_size;
struct page **ring_pages;
long nr_pages;
struct work_struct free_work;
/*
* signals when all in-flight requests are done
*/
struct ctx_rq_wait *rq_wait;
struct {
/*
* This counts the number of available slots in the ringbuffer,
* so we avoid overflowing it: it's decremented (if positive)
* when allocating a kiocb and incremented when the resulting
* io_event is pulled off the ringbuffer.
*
* We batch accesses to it with a percpu version.
*/
atomic_t reqs_available;
} ____cacheline_aligned_in_smp;
struct {
spinlock_t ctx_lock;
struct list_head active_reqs; /* used for cancellation */
} ____cacheline_aligned_in_smp;
struct {
struct mutex ring_lock;
wait_queue_head_t wait;
} ____cacheline_aligned_in_smp;
struct {
unsigned tail;
unsigned completed_events;
spinlock_t completion_lock;
} ____cacheline_aligned_in_smp;
struct page *internal_pages[AIO_RING_PAGES];
struct file *aio_ring_file;
unsigned id;
};
/*
* We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
* cancelled or completed (this makes a certain amount of sense because
* successful cancellation - io_cancel() - does deliver the completion to
* userspace).
*
* And since most things don't implement kiocb cancellation and we'd really like
* kiocb completion to be lockless when possible, we use ki_cancel to
* synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
* with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
*/
#define KIOCB_CANCELLED ((void *) (~0ULL))
struct aio_kiocb {
struct kiocb common;
struct kioctx *ki_ctx;
kiocb_cancel_fn *ki_cancel;
struct iocb __user *ki_user_iocb; /* user's aiocb */
__u64 ki_user_data; /* user's data for completion */
struct list_head ki_list; /* the aio core uses this
* for cancellation */
/*
* If the aio_resfd field of the userspace iocb is not zero,
* this is the underlying eventfd context to deliver events to.
*/
struct eventfd_ctx *ki_eventfd;
};
/*------ sysctl variables----*/
static DEFINE_SPINLOCK(aio_nr_lock);
unsigned long aio_nr; /* current system wide number of aio requests */
unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
/*----end sysctl variables---*/
static struct kmem_cache *kiocb_cachep;
static struct kmem_cache *kioctx_cachep;
static struct vfsmount *aio_mnt;
static const struct file_operations aio_ring_fops;
static const struct address_space_operations aio_ctx_aops;
static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
{
struct qstr this = QSTR_INIT("[aio]", 5);
struct file *file;
struct path path;
struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
if (IS_ERR(inode))
return ERR_CAST(inode);
inode->i_mapping->a_ops = &aio_ctx_aops;
inode->i_mapping->private_data = ctx;
inode->i_size = PAGE_SIZE * nr_pages;
path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
if (!path.dentry) {
iput(inode);
return ERR_PTR(-ENOMEM);
}
path.mnt = mntget(aio_mnt);
d_instantiate(path.dentry, inode);
file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
if (IS_ERR(file)) {
path_put(&path);
return file;
}
file->f_flags = O_RDWR;
return file;
}
static struct dentry *aio_mount(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
static const struct dentry_operations ops = {
.d_dname = simple_dname,
};
return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC);
}
/* aio_setup
* Creates the slab caches used by the aio routines, panic on
* failure as this is done early during the boot sequence.
*/
static int __init aio_setup(void)
{
static struct file_system_type aio_fs = {
.name = "aio",
.mount = aio_mount,
.kill_sb = kill_anon_super,
};
aio_mnt = kern_mount(&aio_fs);
if (IS_ERR(aio_mnt))
panic("Failed to create aio fs mount.");
kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
return 0;
}
__initcall(aio_setup);
static void put_aio_ring_file(struct kioctx *ctx)
{
struct file *aio_ring_file = ctx->aio_ring_file;
if (aio_ring_file) {
truncate_setsize(aio_ring_file->f_inode, 0);
/* Prevent further access to the kioctx from migratepages */
spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
aio_ring_file->f_inode->i_mapping->private_data = NULL;
ctx->aio_ring_file = NULL;
spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
fput(aio_ring_file);
}
}
static void aio_free_ring(struct kioctx *ctx)
{
int i;
/* Disconnect the kiotx from the ring file. This prevents future
* accesses to the kioctx from page migration.
*/
put_aio_ring_file(ctx);
for (i = 0; i < ctx->nr_pages; i++) {
struct page *page;
pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
page_count(ctx->ring_pages[i]));
page = ctx->ring_pages[i];
if (!page)
continue;
ctx->ring_pages[i] = NULL;
put_page(page);
}
if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
kfree(ctx->ring_pages);
ctx->ring_pages = NULL;
}
}
static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
{
vma->vm_flags |= VM_DONTEXPAND;
vma->vm_ops = &generic_file_vm_ops;
return 0;
}
static int aio_ring_remap(struct file *file, struct vm_area_struct *vma)
{
struct mm_struct *mm = vma->vm_mm;
struct kioctx_table *table;
int i, res = -EINVAL;
spin_lock(&mm->ioctx_lock);
rcu_read_lock();
table = rcu_dereference(mm->ioctx_table);
for (i = 0; i < table->nr; i++) {
struct kioctx *ctx;
ctx = table->table[i];
if (ctx && ctx->aio_ring_file == file) {
if (!atomic_read(&ctx->dead)) {
ctx->user_id = ctx->mmap_base = vma->vm_start;
res = 0;
}
break;
}
}
rcu_read_unlock();
spin_unlock(&mm->ioctx_lock);
return res;
}
static const struct file_operations aio_ring_fops = {
.mmap = aio_ring_mmap,
.mremap = aio_ring_remap,
};
#if IS_ENABLED(CONFIG_MIGRATION)
static int aio_migratepage(struct address_space *mapping, struct page *new,
struct page *old, enum migrate_mode mode)
{
struct kioctx *ctx;
unsigned long flags;
pgoff_t idx;
int rc;
rc = 0;
/* mapping->private_lock here protects against the kioctx teardown. */
spin_lock(&mapping->private_lock);
ctx = mapping->private_data;
if (!ctx) {
rc = -EINVAL;
goto out;
}
/* The ring_lock mutex. The prevents aio_read_events() from writing
* to the ring's head, and prevents page migration from mucking in
* a partially initialized kiotx.
*/
if (!mutex_trylock(&ctx->ring_lock)) {
rc = -EAGAIN;
goto out;
}
idx = old->index;
if (idx < (pgoff_t)ctx->nr_pages) {
/* Make sure the old page hasn't already been changed */
if (ctx->ring_pages[idx] != old)
rc = -EAGAIN;
} else
rc = -EINVAL;
if (rc != 0)
goto out_unlock;
/* Writeback must be complete */
BUG_ON(PageWriteback(old));
get_page(new);
rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
if (rc != MIGRATEPAGE_SUCCESS) {
put_page(new);
goto out_unlock;
}
/* Take completion_lock to prevent other writes to the ring buffer
* while the old page is copied to the new. This prevents new
* events from being lost.
*/
spin_lock_irqsave(&ctx->completion_lock, flags);
migrate_page_copy(new, old);
BUG_ON(ctx->ring_pages[idx] != old);
ctx->ring_pages[idx] = new;
spin_unlock_irqrestore(&ctx->completion_lock, flags);
/* The old page is no longer accessible. */
put_page(old);
out_unlock:
mutex_unlock(&ctx->ring_lock);
out:
spin_unlock(&mapping->private_lock);
return rc;
}
#endif
static const struct address_space_operations aio_ctx_aops = {
.set_page_dirty = __set_page_dirty_no_writeback,
#if IS_ENABLED(CONFIG_MIGRATION)
.migratepage = aio_migratepage,
#endif
};
static int aio_setup_ring(struct kioctx *ctx)
{
struct aio_ring *ring;
unsigned nr_events = ctx->max_reqs;
struct mm_struct *mm = current->mm;
unsigned long size, unused;
int nr_pages;
int i;
struct file *file;
/* Compensate for the ring buffer's head/tail overlap entry */
nr_events += 2; /* 1 is required, 2 for good luck */
size = sizeof(struct aio_ring);
size += sizeof(struct io_event) * nr_events;
nr_pages = PFN_UP(size);
if (nr_pages < 0)
return -EINVAL;
file = aio_private_file(ctx, nr_pages);
if (IS_ERR(file)) {
ctx->aio_ring_file = NULL;
return -ENOMEM;
}
ctx->aio_ring_file = file;
nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
/ sizeof(struct io_event);
ctx->ring_pages = ctx->internal_pages;
if (nr_pages > AIO_RING_PAGES) {
ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
GFP_KERNEL);
if (!ctx->ring_pages) {
put_aio_ring_file(ctx);
return -ENOMEM;
}
}
for (i = 0; i < nr_pages; i++) {
struct page *page;
page = find_or_create_page(file->f_inode->i_mapping,
i, GFP_HIGHUSER | __GFP_ZERO);
if (!page)
break;
pr_debug("pid(%d) page[%d]->count=%d\n",
current->pid, i, page_count(page));
SetPageUptodate(page);
unlock_page(page);
ctx->ring_pages[i] = page;
}
ctx->nr_pages = i;
if (unlikely(i != nr_pages)) {
aio_free_ring(ctx);
return -ENOMEM;
}
ctx->mmap_size = nr_pages * PAGE_SIZE;
pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
down_write(&mm->mmap_sem);
ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
PROT_READ | PROT_WRITE,
MAP_SHARED, 0, &unused);
up_write(&mm->mmap_sem);
if (IS_ERR((void *)ctx->mmap_base)) {
ctx->mmap_size = 0;
aio_free_ring(ctx);
return -ENOMEM;
}
pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
ctx->user_id = ctx->mmap_base;
ctx->nr_events = nr_events; /* trusted copy */
ring = kmap_atomic(ctx->ring_pages[0]);
ring->nr = nr_events; /* user copy */
ring->id = ~0U;
ring->head = ring->tail = 0;
ring->magic = AIO_RING_MAGIC;
ring->compat_features = AIO_RING_COMPAT_FEATURES;
ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
ring->header_length = sizeof(struct aio_ring);
kunmap_atomic(ring);
flush_dcache_page(ctx->ring_pages[0]);
return 0;
}
#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
{
struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
struct kioctx *ctx = req->ki_ctx;
unsigned long flags;
spin_lock_irqsave(&ctx->ctx_lock, flags);
if (!req->ki_list.next)
list_add(&req->ki_list, &ctx->active_reqs);
req->ki_cancel = cancel;
spin_unlock_irqrestore(&ctx->ctx_lock, flags);
}
EXPORT_SYMBOL(kiocb_set_cancel_fn);
static int kiocb_cancel(struct aio_kiocb *kiocb)
{
kiocb_cancel_fn *old, *cancel;
/*
* Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
* actually has a cancel function, hence the cmpxchg()
*/
cancel = ACCESS_ONCE(kiocb->ki_cancel);
do {
if (!cancel || cancel == KIOCB_CANCELLED)
return -EINVAL;
old = cancel;
cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
} while (cancel != old);
return cancel(&kiocb->common);
}
static void free_ioctx(struct work_struct *work)
{
struct kioctx *ctx = container_of(work, struct kioctx, free_work);
pr_debug("freeing %p\n", ctx);
aio_free_ring(ctx);
free_percpu(ctx->cpu);
percpu_ref_exit(&ctx->reqs);
percpu_ref_exit(&ctx->users);
kmem_cache_free(kioctx_cachep, ctx);
}
static void free_ioctx_reqs(struct percpu_ref *ref)
{
struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
/* At this point we know that there are no any in-flight requests */
if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
complete(&ctx->rq_wait->comp);
INIT_WORK(&ctx->free_work, free_ioctx);
schedule_work(&ctx->free_work);
}
/*
* When this function runs, the kioctx has been removed from the "hash table"
* and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
* now it's safe to cancel any that need to be.
*/
static void free_ioctx_users(struct percpu_ref *ref)
{
struct kioctx *ctx = container_of(ref, struct kioctx, users);
struct aio_kiocb *req;
spin_lock_irq(&ctx->ctx_lock);
while (!list_empty(&ctx->active_reqs)) {
req = list_first_entry(&ctx->active_reqs,
struct aio_kiocb, ki_list);
list_del_init(&req->ki_list);
kiocb_cancel(req);
}
spin_unlock_irq(&ctx->ctx_lock);
percpu_ref_kill(&ctx->reqs);
percpu_ref_put(&ctx->reqs);
}
static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
{
unsigned i, new_nr;
struct kioctx_table *table, *old;
struct aio_ring *ring;
spin_lock(&mm->ioctx_lock);
table = rcu_dereference_raw(mm->ioctx_table);
while (1) {
if (table)
for (i = 0; i < table->nr; i++)
if (!table->table[i]) {
ctx->id = i;
table->table[i] = ctx;
spin_unlock(&mm->ioctx_lock);
/* While kioctx setup is in progress,
* we are protected from page migration
* changes ring_pages by ->ring_lock.
*/
ring = kmap_atomic(ctx->ring_pages[0]);
ring->id = ctx->id;
kunmap_atomic(ring);
return 0;
}
new_nr = (table ? table->nr : 1) * 4;
spin_unlock(&mm->ioctx_lock);
table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
new_nr, GFP_KERNEL);
if (!table)
return -ENOMEM;
table->nr = new_nr;
spin_lock(&mm->ioctx_lock);
old = rcu_dereference_raw(mm->ioctx_table);
if (!old) {
rcu_assign_pointer(mm->ioctx_table, table);
} else if (table->nr > old->nr) {
memcpy(table->table, old->table,
old->nr * sizeof(struct kioctx *));
rcu_assign_pointer(mm->ioctx_table, table);
kfree_rcu(old, rcu);
} else {
kfree(table);
table = old;
}
}
}
static void aio_nr_sub(unsigned nr)
{
spin_lock(&aio_nr_lock);
if (WARN_ON(aio_nr - nr > aio_nr))
aio_nr = 0;
else
aio_nr -= nr;
spin_unlock(&aio_nr_lock);
}
/* ioctx_alloc
* Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
*/
static struct kioctx *ioctx_alloc(unsigned nr_events)
{
struct mm_struct *mm = current->mm;
struct kioctx *ctx;
int err = -ENOMEM;
/*
* We keep track of the number of available ringbuffer slots, to prevent
* overflow (reqs_available), and we also use percpu counters for this.
*
* So since up to half the slots might be on other cpu's percpu counters
* and unavailable, double nr_events so userspace sees what they
* expected: additionally, we move req_batch slots to/from percpu
* counters at a time, so make sure that isn't 0:
*/
nr_events = max(nr_events, num_possible_cpus() * 4);
nr_events *= 2;
/* Prevent overflows */
if (nr_events > (0x10000000U / sizeof(struct io_event))) {
pr_debug("ENOMEM: nr_events too high\n");
return ERR_PTR(-EINVAL);
}
if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
return ERR_PTR(-EAGAIN);
ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
if (!ctx)
return ERR_PTR(-ENOMEM);
ctx->max_reqs = nr_events;
spin_lock_init(&ctx->ctx_lock);
spin_lock_init(&ctx->completion_lock);
mutex_init(&ctx->ring_lock);
/* Protect against page migration throughout kiotx setup by keeping
* the ring_lock mutex held until setup is complete. */
mutex_lock(&ctx->ring_lock);
init_waitqueue_head(&ctx->wait);
INIT_LIST_HEAD(&ctx->active_reqs);
if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
goto err;
if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
goto err;
ctx->cpu = alloc_percpu(struct kioctx_cpu);
if (!ctx->cpu)
goto err;
err = aio_setup_ring(ctx);
if (err < 0)
goto err;
atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
if (ctx->req_batch < 1)
ctx->req_batch = 1;
/* limit the number of system wide aios */
spin_lock(&aio_nr_lock);
if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
aio_nr + nr_events < aio_nr) {
spin_unlock(&aio_nr_lock);
err = -EAGAIN;
goto err_ctx;
}
aio_nr += ctx->max_reqs;
spin_unlock(&aio_nr_lock);
percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
err = ioctx_add_table(ctx, mm);
if (err)
goto err_cleanup;
/* Release the ring_lock mutex now that all setup is complete. */
mutex_unlock(&ctx->ring_lock);
pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
ctx, ctx->user_id, mm, ctx->nr_events);
return ctx;
err_cleanup:
aio_nr_sub(ctx->max_reqs);
err_ctx:
atomic_set(&ctx->dead, 1);
if (ctx->mmap_size)
vm_munmap(ctx->mmap_base, ctx->mmap_size);
aio_free_ring(ctx);
err:
mutex_unlock(&ctx->ring_lock);
free_percpu(ctx->cpu);
percpu_ref_exit(&ctx->reqs);
percpu_ref_exit(&ctx->users);
kmem_cache_free(kioctx_cachep, ctx);
pr_debug("error allocating ioctx %d\n", err);
return ERR_PTR(err);
}
/* kill_ioctx
* Cancels all outstanding aio requests on an aio context. Used
* when the processes owning a context have all exited to encourage
* the rapid destruction of the kioctx.
*/
static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
struct ctx_rq_wait *wait)
{
struct kioctx_table *table;
spin_lock(&mm->ioctx_lock);
if (atomic_xchg(&ctx->dead, 1)) {
spin_unlock(&mm->ioctx_lock);
return -EINVAL;
}
table = rcu_dereference_raw(mm->ioctx_table);
WARN_ON(ctx != table->table[ctx->id]);
table->table[ctx->id] = NULL;
spin_unlock(&mm->ioctx_lock);
/* percpu_ref_kill() will do the necessary call_rcu() */
wake_up_all(&ctx->wait);
/*
* It'd be more correct to do this in free_ioctx(), after all
* the outstanding kiocbs have finished - but by then io_destroy
* has already returned, so io_setup() could potentially return
* -EAGAIN with no ioctxs actually in use (as far as userspace
* could tell).
*/
aio_nr_sub(ctx->max_reqs);
if (ctx->mmap_size)
vm_munmap(ctx->mmap_base, ctx->mmap_size);
ctx->rq_wait = wait;
percpu_ref_kill(&ctx->users);
return 0;
}
/*
* exit_aio: called when the last user of mm goes away. At this point, there is
* no way for any new requests to be submited or any of the io_* syscalls to be
* called on the context.
*
* There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
* them.
*/
void exit_aio(struct mm_struct *mm)
{
struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
struct ctx_rq_wait wait;
int i, skipped;
if (!table)
return;
atomic_set(&wait.count, table->nr);
init_completion(&wait.comp);
skipped = 0;
for (i = 0; i < table->nr; ++i) {
struct kioctx *ctx = table->table[i];
if (!ctx) {
skipped++;
continue;
}
/*
* We don't need to bother with munmap() here - exit_mmap(mm)
* is coming and it'll unmap everything. And we simply can't,
* this is not necessarily our ->mm.
* Since kill_ioctx() uses non-zero ->mmap_size as indicator
* that it needs to unmap the area, just set it to 0.
*/
ctx->mmap_size = 0;
kill_ioctx(mm, ctx, &wait);
}
if (!atomic_sub_and_test(skipped, &wait.count)) {
/* Wait until all IO for the context are done. */
wait_for_completion(&wait.comp);
}
RCU_INIT_POINTER(mm->ioctx_table, NULL);
kfree(table);
}
static void put_reqs_available(struct kioctx *ctx, unsigned nr)
{
struct kioctx_cpu *kcpu;
unsigned long flags;
local_irq_save(flags);
kcpu = this_cpu_ptr(ctx->cpu);
kcpu->reqs_available += nr;
while (kcpu->reqs_available >= ctx->req_batch * 2) {
kcpu->reqs_available -= ctx->req_batch;
atomic_add(ctx->req_batch, &ctx->reqs_available);
}
local_irq_restore(flags);
}
static bool get_reqs_available(struct kioctx *ctx)
{
struct kioctx_cpu *kcpu;
bool ret = false;
unsigned long flags;
local_irq_save(flags);
kcpu = this_cpu_ptr(ctx->cpu);
if (!kcpu->reqs_available) {
int old, avail = atomic_read(&ctx->reqs_available);
do {
if (avail < ctx->req_batch)
goto out;
old = avail;
avail = atomic_cmpxchg(&ctx->reqs_available,
avail, avail - ctx->req_batch);
} while (avail != old);
kcpu->reqs_available += ctx->req_batch;
}
ret = true;
kcpu->reqs_available--;
out:
local_irq_restore(flags);
return ret;
}
/* refill_reqs_available
* Updates the reqs_available reference counts used for tracking the
* number of free slots in the completion ring. This can be called
* from aio_complete() (to optimistically update reqs_available) or
* from aio_get_req() (the we're out of events case). It must be
* called holding ctx->completion_lock.
*/
static void refill_reqs_available(struct kioctx *ctx, unsigned head,
unsigned tail)
{
unsigned events_in_ring, completed;
/* Clamp head since userland can write to it. */
head %= ctx->nr_events;
if (head <= tail)
events_in_ring = tail - head;
else
events_in_ring = ctx->nr_events - (head - tail);
completed = ctx->completed_events;
if (events_in_ring < completed)
completed -= events_in_ring;
else
completed = 0;
if (!completed)
return;
ctx->completed_events -= completed;
put_reqs_available(ctx, completed);
}
/* user_refill_reqs_available
* Called to refill reqs_available when aio_get_req() encounters an
* out of space in the completion ring.
*/
static void user_refill_reqs_available(struct kioctx *ctx)
{
spin_lock_irq(&ctx->completion_lock);
if (ctx->completed_events) {
struct aio_ring *ring;
unsigned head;
/* Access of ring->head may race with aio_read_events_ring()
* here, but that's okay since whether we read the old version
* or the new version, and either will be valid. The important
* part is that head cannot pass tail since we prevent
* aio_complete() from updating tail by holding
* ctx->completion_lock. Even if head is invalid, the check
* against ctx->completed_events below will make sure we do the
* safe/right thing.
*/
ring = kmap_atomic(ctx->ring_pages[0]);
head = ring->head;
kunmap_atomic(ring);
refill_reqs_available(ctx, head, ctx->tail);
}
spin_unlock_irq(&ctx->completion_lock);
}
/* aio_get_req
* Allocate a slot for an aio request.
* Returns NULL if no requests are free.
*/
static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
{
struct aio_kiocb *req;
if (!get_reqs_available(ctx)) {
user_refill_reqs_available(ctx);
if (!get_reqs_available(ctx))
return NULL;
}
req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
if (unlikely(!req))
goto out_put;
percpu_ref_get(&ctx->reqs);
req->ki_ctx = ctx;
return req;
out_put:
put_reqs_available(ctx, 1);
return NULL;
}
static void kiocb_free(struct aio_kiocb *req)
{
if (req->common.ki_filp)
fput(req->common.ki_filp);
if (req->ki_eventfd != NULL)
eventfd_ctx_put(req->ki_eventfd);
kmem_cache_free(kiocb_cachep, req);
}
static struct kioctx *lookup_ioctx(unsigned long ctx_id)
{
struct aio_ring __user *ring = (void __user *)ctx_id;
struct mm_struct *mm = current->mm;
struct kioctx *ctx, *ret = NULL;
struct kioctx_table *table;
unsigned id;
if (get_user(id, &ring->id))
return NULL;
rcu_read_lock();
table = rcu_dereference(mm->ioctx_table);
if (!table || id >= table->nr)
goto out;
ctx = table->table[id];
if (ctx && ctx->user_id == ctx_id) {
percpu_ref_get(&ctx->users);
ret = ctx;
}
out:
rcu_read_unlock();
return ret;
}
/* aio_complete
* Called when the io request on the given iocb is complete.
*/
static void aio_complete(struct kiocb *kiocb, long res, long res2)
{
struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
struct kioctx *ctx = iocb->ki_ctx;
struct aio_ring *ring;
struct io_event *ev_page, *event;
unsigned tail, pos, head;
unsigned long flags;
/*
* Special case handling for sync iocbs:
* - events go directly into the iocb for fast handling
* - the sync task with the iocb in its stack holds the single iocb
* ref, no other paths have a way to get another ref
* - the sync task helpfully left a reference to itself in the iocb
*/
BUG_ON(is_sync_kiocb(kiocb));
if (iocb->ki_list.next) {
unsigned long flags;
spin_lock_irqsave(&ctx->ctx_lock, flags);
list_del(&iocb->ki_list);
spin_unlock_irqrestore(&ctx->ctx_lock, flags);
}
/*
* Add a completion event to the ring buffer. Must be done holding
* ctx->completion_lock to prevent other code from messing with the tail
* pointer since we might be called from irq context.
*/
spin_lock_irqsave(&ctx->completion_lock, flags);
tail = ctx->tail;
pos = tail + AIO_EVENTS_OFFSET;
if (++tail >= ctx->nr_events)
tail = 0;
ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
event = ev_page + pos % AIO_EVENTS_PER_PAGE;
event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
event->data = iocb->ki_user_data;
event->res = res;
event->res2 = res2;
kunmap_atomic(ev_page);
flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
res, res2);
/* after flagging the request as done, we
* must never even look at it again
*/
smp_wmb(); /* make event visible before updating tail */
ctx->tail = tail;
ring = kmap_atomic(ctx->ring_pages[0]);
head = ring->head;
ring->tail = tail;
kunmap_atomic(ring);
flush_dcache_page(ctx->ring_pages[0]);
ctx->completed_events++;
if (ctx->completed_events > 1)
refill_reqs_available(ctx, head, tail);
spin_unlock_irqrestore(&ctx->completion_lock, flags);
pr_debug("added to ring %p at [%u]\n", iocb, tail);
/*
* Check if the user asked us to deliver the result through an
* eventfd. The eventfd_signal() function is safe to be called
* from IRQ context.
*/
if (iocb->ki_eventfd != NULL)
eventfd_signal(iocb->ki_eventfd, 1);
/* everything turned out well, dispose of the aiocb. */
kiocb_free(iocb);
/*
* We have to order our ring_info tail store above and test
* of the wait list below outside the wait lock. This is
* like in wake_up_bit() where clearing a bit has to be
* ordered with the unlocked test.
*/
smp_mb();
if (waitqueue_active(&ctx->wait))
wake_up(&ctx->wait);
percpu_ref_put(&ctx->reqs);
}
/* aio_read_events_ring
* Pull an event off of the ioctx's event ring. Returns the number of
* events fetched
*/
static long aio_read_events_ring(struct kioctx *ctx,
struct io_event __user *event, long nr)
{
struct aio_ring *ring;
unsigned head, tail, pos;
long ret = 0;
int copy_ret;
/*
* The mutex can block and wake us up and that will cause
* wait_event_interruptible_hrtimeout() to schedule without sleeping
* and repeat. This should be rare enough that it doesn't cause
* peformance issues. See the comment in read_events() for more detail.
*/
sched_annotate_sleep();
mutex_lock(&ctx->ring_lock);
/* Access to ->ring_pages here is protected by ctx->ring_lock. */
ring = kmap_atomic(ctx->ring_pages[0]);
head = ring->head;
tail = ring->tail;
kunmap_atomic(ring);
/*
* Ensure that once we've read the current tail pointer, that
* we also see the events that were stored up to the tail.
*/
smp_rmb();
pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
if (head == tail)
goto out;
head %= ctx->nr_events;
tail %= ctx->nr_events;
while (ret < nr) {
long avail;
struct io_event *ev;
struct page *page;
avail = (head <= tail ? tail : ctx->nr_events) - head;
if (head == tail)
break;
avail = min(avail, nr - ret);
avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
pos = head + AIO_EVENTS_OFFSET;
page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
pos %= AIO_EVENTS_PER_PAGE;
ev = kmap(page);
copy_ret = copy_to_user(event + ret, ev + pos,
sizeof(*ev) * avail);
kunmap(page);
if (unlikely(copy_ret)) {
ret = -EFAULT;
goto out;
}
ret += avail;
head += avail;
head %= ctx->nr_events;
}
ring = kmap_atomic(ctx->ring_pages[0]);
ring->head = head;
kunmap_atomic(ring);
flush_dcache_page(ctx->ring_pages[0]);
pr_debug("%li h%u t%u\n", ret, head, tail);
out:
mutex_unlock(&ctx->ring_lock);
return ret;
}
static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
struct io_event __user *event, long *i)
{
long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
if (ret > 0)
*i += ret;
if (unlikely(atomic_read(&ctx->dead)))
ret = -EINVAL;
if (!*i)
*i = ret;
return ret < 0 || *i >= min_nr;
}
static long read_events(struct kioctx *ctx, long min_nr, long nr,
struct io_event __user *event,
struct timespec __user *timeout)
{
ktime_t until = { .tv64 = KTIME_MAX };
long ret = 0;
if (timeout) {
struct timespec ts;
if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
return -EFAULT;
until = timespec_to_ktime(ts);
}
/*
* Note that aio_read_events() is being called as the conditional - i.e.
* we're calling it after prepare_to_wait() has set task state to
* TASK_INTERRUPTIBLE.
*
* But aio_read_events() can block, and if it blocks it's going to flip
* the task state back to TASK_RUNNING.
*
* This should be ok, provided it doesn't flip the state back to
* TASK_RUNNING and return 0 too much - that causes us to spin. That
* will only happen if the mutex_lock() call blocks, and we then find
* the ringbuffer empty. So in practice we should be ok, but it's
* something to be aware of when touching this code.
*/
if (until.tv64 == 0)
aio_read_events(ctx, min_nr, nr, event, &ret);
else
wait_event_interruptible_hrtimeout(ctx->wait,
aio_read_events(ctx, min_nr, nr, event, &ret),
until);
if (!ret && signal_pending(current))
ret = -EINTR;
return ret;
}
/* sys_io_setup:
* Create an aio_context capable of receiving at least nr_events.
* ctxp must not point to an aio_context that already exists, and
* must be initialized to 0 prior to the call. On successful
* creation of the aio_context, *ctxp is filled in with the resulting
* handle. May fail with -EINVAL if *ctxp is not initialized,
* if the specified nr_events exceeds internal limits. May fail
* with -EAGAIN if the specified nr_events exceeds the user's limit
* of available events. May fail with -ENOMEM if insufficient kernel
* resources are available. May fail with -EFAULT if an invalid
* pointer is passed for ctxp. Will fail with -ENOSYS if not
* implemented.
*/
SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
{
struct kioctx *ioctx = NULL;
unsigned long ctx;
long ret;
ret = get_user(ctx, ctxp);
if (unlikely(ret))
goto out;
ret = -EINVAL;
if (unlikely(ctx || nr_events == 0)) {
pr_debug("EINVAL: ctx %lu nr_events %u\n",
ctx, nr_events);
goto out;
}
ioctx = ioctx_alloc(nr_events);
ret = PTR_ERR(ioctx);
if (!IS_ERR(ioctx)) {
ret = put_user(ioctx->user_id, ctxp);
if (ret)
kill_ioctx(current->mm, ioctx, NULL);
percpu_ref_put(&ioctx->users);
}
out:
return ret;
}
/* sys_io_destroy:
* Destroy the aio_context specified. May cancel any outstanding
* AIOs and block on completion. Will fail with -ENOSYS if not
* implemented. May fail with -EINVAL if the context pointed to
* is invalid.
*/
SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
{
struct kioctx *ioctx = lookup_ioctx(ctx);
if (likely(NULL != ioctx)) {
struct ctx_rq_wait wait;
int ret;
init_completion(&wait.comp);
atomic_set(&wait.count, 1);
/* Pass requests_done to kill_ioctx() where it can be set
* in a thread-safe way. If we try to set it here then we have
* a race condition if two io_destroy() called simultaneously.
*/
ret = kill_ioctx(current->mm, ioctx, &wait);
percpu_ref_put(&ioctx->users);
/* Wait until all IO for the context are done. Otherwise kernel
* keep using user-space buffers even if user thinks the context
* is destroyed.
*/
if (!ret)
wait_for_completion(&wait.comp);
return ret;
}
pr_debug("EINVAL: invalid context id\n");
return -EINVAL;
}
typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
static int aio_setup_vectored_rw(int rw, char __user *buf, size_t len,
struct iovec **iovec,
bool compat,
struct iov_iter *iter)
{
#ifdef CONFIG_COMPAT
if (compat)
return compat_import_iovec(rw,
(struct compat_iovec __user *)buf,
len, UIO_FASTIOV, iovec, iter);
#endif
return import_iovec(rw, (struct iovec __user *)buf,
len, UIO_FASTIOV, iovec, iter);
}
/*
* aio_run_iocb:
* Performs the initial checks and io submission.
*/
static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
char __user *buf, size_t len, bool compat)
{
struct file *file = req->ki_filp;
ssize_t ret;
int rw;
fmode_t mode;
rw_iter_op *iter_op;
struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
struct iov_iter iter;
switch (opcode) {
case IOCB_CMD_PREAD:
case IOCB_CMD_PREADV:
mode = FMODE_READ;
rw = READ;
iter_op = file->f_op->read_iter;
goto rw_common;
case IOCB_CMD_PWRITE:
case IOCB_CMD_PWRITEV:
mode = FMODE_WRITE;
rw = WRITE;
iter_op = file->f_op->write_iter;
goto rw_common;
rw_common:
if (unlikely(!(file->f_mode & mode)))
return -EBADF;
if (!iter_op)
return -EINVAL;
if (opcode == IOCB_CMD_PREADV || opcode == IOCB_CMD_PWRITEV)
ret = aio_setup_vectored_rw(rw, buf, len,
&iovec, compat, &iter);
else {
ret = import_single_range(rw, buf, len, iovec, &iter);
iovec = NULL;
}
if (!ret)
ret = rw_verify_area(rw, file, &req->ki_pos,
iov_iter_count(&iter));
if (ret < 0) {
kfree(iovec);
return ret;
}
len = ret;
if (rw == WRITE)
file_start_write(file);
ret = iter_op(req, &iter);
if (rw == WRITE)
file_end_write(file);
kfree(iovec);
break;
case IOCB_CMD_FDSYNC:
if (!file->f_op->aio_fsync)
return -EINVAL;
ret = file->f_op->aio_fsync(req, 1);
break;
case IOCB_CMD_FSYNC:
if (!file->f_op->aio_fsync)
return -EINVAL;
ret = file->f_op->aio_fsync(req, 0);
break;
default:
pr_debug("EINVAL: no operation provided\n");
return -EINVAL;
}
if (ret != -EIOCBQUEUED) {
/*
* There's no easy way to restart the syscall since other AIO's
* may be already running. Just fail this IO with EINTR.
*/
if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
ret == -ERESTARTNOHAND ||
ret == -ERESTART_RESTARTBLOCK))
ret = -EINTR;
aio_complete(req, ret, 0);
}
return 0;
}
static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
struct iocb *iocb, bool compat)
{
struct aio_kiocb *req;
ssize_t ret;
/* enforce forwards compatibility on users */
if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
pr_debug("EINVAL: reserve field set\n");
return -EINVAL;
}
/* prevent overflows */
if (unlikely(
(iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
(iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
((ssize_t)iocb->aio_nbytes < 0)
)) {
pr_debug("EINVAL: overflow check\n");
return -EINVAL;
}
req = aio_get_req(ctx);
if (unlikely(!req))
return -EAGAIN;
req->common.ki_filp = fget(iocb->aio_fildes);
if (unlikely(!req->common.ki_filp)) {
ret = -EBADF;
goto out_put_req;
}
req->common.ki_pos = iocb->aio_offset;
req->common.ki_complete = aio_complete;
req->common.ki_flags = iocb_flags(req->common.ki_filp);
if (iocb->aio_flags & IOCB_FLAG_RESFD) {
/*
* If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
* instance of the file* now. The file descriptor must be
* an eventfd() fd, and will be signaled for each completed
* event using the eventfd_signal() function.
*/
req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
if (IS_ERR(req->ki_eventfd)) {
ret = PTR_ERR(req->ki_eventfd);
req->ki_eventfd = NULL;
goto out_put_req;
}
req->common.ki_flags |= IOCB_EVENTFD;
}
ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
if (unlikely(ret)) {
pr_debug("EFAULT: aio_key\n");
goto out_put_req;
}
req->ki_user_iocb = user_iocb;
req->ki_user_data = iocb->aio_data;
ret = aio_run_iocb(&req->common, iocb->aio_lio_opcode,
(char __user *)(unsigned long)iocb->aio_buf,
iocb->aio_nbytes,
compat);
if (ret)
goto out_put_req;
return 0;
out_put_req:
put_reqs_available(ctx, 1);
percpu_ref_put(&ctx->reqs);
kiocb_free(req);
return ret;
}
long do_io_submit(aio_context_t ctx_id, long nr,
struct iocb __user *__user *iocbpp, bool compat)
{
struct kioctx *ctx;
long ret = 0;
int i = 0;
struct blk_plug plug;
if (unlikely(nr < 0))
return -EINVAL;
if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
nr = LONG_MAX/sizeof(*iocbpp);
if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
return -EFAULT;
ctx = lookup_ioctx(ctx_id);
if (unlikely(!ctx)) {
pr_debug("EINVAL: invalid context id\n");
return -EINVAL;
}
blk_start_plug(&plug);
/*
* AKPM: should this return a partial result if some of the IOs were
* successfully submitted?
*/
for (i=0; i<nr; i++) {
struct iocb __user *user_iocb;
struct iocb tmp;
if (unlikely(__get_user(user_iocb, iocbpp + i))) {
ret = -EFAULT;
break;
}
if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
ret = -EFAULT;
break;
}
ret = io_submit_one(ctx, user_iocb, &tmp, compat);
if (ret)
break;
}
blk_finish_plug(&plug);
percpu_ref_put(&ctx->users);
return i ? i : ret;
}
/* sys_io_submit:
* Queue the nr iocbs pointed to by iocbpp for processing. Returns
* the number of iocbs queued. May return -EINVAL if the aio_context
* specified by ctx_id is invalid, if nr is < 0, if the iocb at
* *iocbpp[0] is not properly initialized, if the operation specified
* is invalid for the file descriptor in the iocb. May fail with
* -EFAULT if any of the data structures point to invalid data. May
* fail with -EBADF if the file descriptor specified in the first
* iocb is invalid. May fail with -EAGAIN if insufficient resources
* are available to queue any iocbs. Will return 0 if nr is 0. Will
* fail with -ENOSYS if not implemented.
*/
SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
struct iocb __user * __user *, iocbpp)
{
return do_io_submit(ctx_id, nr, iocbpp, 0);
}
/* lookup_kiocb
* Finds a given iocb for cancellation.
*/
static struct aio_kiocb *
lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
{
struct aio_kiocb *kiocb;
assert_spin_locked(&ctx->ctx_lock);
if (key != KIOCB_KEY)
return NULL;
/* TODO: use a hash or array, this sucks. */
list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
if (kiocb->ki_user_iocb == iocb)
return kiocb;
}
return NULL;
}
/* sys_io_cancel:
* Attempts to cancel an iocb previously passed to io_submit. If
* the operation is successfully cancelled, the resulting event is
* copied into the memory pointed to by result without being placed
* into the completion queue and 0 is returned. May fail with
* -EFAULT if any of the data structures pointed to are invalid.
* May fail with -EINVAL if aio_context specified by ctx_id is
* invalid. May fail with -EAGAIN if the iocb specified was not
* cancelled. Will fail with -ENOSYS if not implemented.
*/
SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
struct io_event __user *, result)
{
struct kioctx *ctx;
struct aio_kiocb *kiocb;
u32 key;
int ret;
ret = get_user(key, &iocb->aio_key);
if (unlikely(ret))
return -EFAULT;
ctx = lookup_ioctx(ctx_id);
if (unlikely(!ctx))
return -EINVAL;
spin_lock_irq(&ctx->ctx_lock);
kiocb = lookup_kiocb(ctx, iocb, key);
if (kiocb)
ret = kiocb_cancel(kiocb);
else
ret = -EINVAL;
spin_unlock_irq(&ctx->ctx_lock);
if (!ret) {
/*
* The result argument is no longer used - the io_event is
* always delivered via the ring buffer. -EINPROGRESS indicates
* cancellation is progress:
*/
ret = -EINPROGRESS;
}
percpu_ref_put(&ctx->users);
return ret;
}
/* io_getevents:
* Attempts to read at least min_nr events and up to nr events from
* the completion queue for the aio_context specified by ctx_id. If
* it succeeds, the number of read events is returned. May fail with
* -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
* out of range, if timeout is out of range. May fail with -EFAULT
* if any of the memory specified is invalid. May return 0 or
* < min_nr if the timeout specified by timeout has elapsed
* before sufficient events are available, where timeout == NULL
* specifies an infinite timeout. Note that the timeout pointed to by
* timeout is relative. Will fail with -ENOSYS if not implemented.
*/
SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
long, min_nr,
long, nr,
struct io_event __user *, events,
struct timespec __user *, timeout)
{
struct kioctx *ioctx = lookup_ioctx(ctx_id);
long ret = -EINVAL;
if (likely(ioctx)) {
if (likely(min_nr <= nr && min_nr >= 0))
ret = read_events(ioctx, min_nr, nr, events, timeout);
percpu_ref_put(&ioctx->users);
}
return ret;
}