kgdb patches for 5.8-rc3
The main change here is a fix for a number of unsafe interactions
between kdb and the console system. The fixes are specific to kdb (pure
kgdb debugging does not use the console system at all). On systems with
an NMI then kdb, if it is enabled, must get messages to the user despite
potentially running from some "difficult" calling contexts. These fixes
avoid using the console system where we have been provided an
alternative (safer) way to interact with the user and, if using the
console system in unavoidable, use oops_in_progress for deadlock
avoidance. These fixes also ensure kdb honours the console enable flag.
Also included is a fix that wraps kgdb trap handling in an RCU read lock
to avoids triggering diagnostic warnings. This is a wide lock scope but
this is OK because kgdb is a stop-the-world debugger. When we stop the
world we put all the CPUs into holding pens and this inhibits RCU update
anyway.
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
kgdb: Avoid suspicious RCU usage warning
At times when I'm using kgdb I see a splat on my console about
suspicious RCU usage. I managed to come up with a case that could
reproduce this that looked like this:
WARNING: suspicious RCU usage
5.7.0-rc4+ #609 Not tainted
-----------------------------
kernel/pid.c:395 find_task_by_pid_ns() needs rcu_read_lock() protection!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
3 locks held by swapper/0/1:
#0: ffffff81b6b8e988 (&dev->mutex){....}-{3:3}, at: __device_attach+0x40/0x13c
#1: ffffffd01109e9e8 (dbg_master_lock){....}-{2:2}, at: kgdb_cpu_enter+0x20c/0x7ac
#2: ffffffd01109ea90 (dbg_slave_lock){....}-{2:2}, at: kgdb_cpu_enter+0x3ec/0x7ac
stack backtrace:
CPU: 7 PID: 1 Comm: swapper/0 Not tainted 5.7.0-rc4+ #609
Hardware name: Google Cheza (rev3+) (DT)
Call trace:
dump_backtrace+0x0/0x1b8
show_stack+0x1c/0x24
dump_stack+0xd4/0x134
lockdep_rcu_suspicious+0xf0/0x100
find_task_by_pid_ns+0x5c/0x80
getthread+0x8c/0xb0
gdb_serial_stub+0x9d4/0xd04
kgdb_cpu_enter+0x284/0x7ac
kgdb_handle_exception+0x174/0x20c
kgdb_brk_fn+0x24/0x30
call_break_hook+0x6c/0x7c
brk_handler+0x20/0x5c
do_debug_exception+0x1c8/0x22c
el1_sync_handler+0x3c/0xe4
el1_sync+0x7c/0x100
rpmh_rsc_probe+0x38/0x420
platform_drv_probe+0x94/0xb4
really_probe+0x134/0x300
driver_probe_device+0x68/0x100
__device_attach_driver+0x90/0xa8
bus_for_each_drv+0x84/0xcc
__device_attach+0xb4/0x13c
device_initial_probe+0x18/0x20
bus_probe_device+0x38/0x98
device_add+0x38c/0x420
If I understand properly we should just be able to blanket kgdb under
one big RCU read lock and the problem should go away. We'll add it to
the beast-of-a-function known as kgdb_cpu_enter().
With this I no longer get any splats and things seem to work fine.
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Link: https://lore.kernel.org/r/20200602154729.v2.1.I70e0d4fd46d5ed2aaf0c98a355e8e1b7a5bb7e4e@changeid
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
1 file changed