blob: 3e34704f507c06cfb01ede9a794fb8f2f9cf4190 [file] [log] [blame]
/*
* linux/fs/exec.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*/
/*
* #!-checking implemented by tytso.
*/
/*
* Demand-loading implemented 01.12.91 - no need to read anything but
* the header into memory. The inode of the executable is put into
* "current->executable", and page faults do the actual loading. Clean.
*
* Once more I can proudly say that linux stood up to being changed: it
* was less than 2 hours work to get demand-loading completely implemented.
*
* Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
* current->executable is only used by the procfs. This allows a dispatch
* table to check for several different types of binary formats. We keep
* trying until we recognize the file or we run out of supported binary
* formats.
*/
#include <linux/config.h>
#include <linux/slab.h>
#include <linux/file.h>
#include <linux/mman.h>
#include <linux/a.out.h>
#include <linux/stat.h>
#include <linux/fcntl.h>
#include <linux/smp_lock.h>
#include <linux/init.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/spinlock.h>
#include <linux/personality.h>
#define __NO_VERSION__
#include <linux/module.h>
#include <asm/uaccess.h>
#include <asm/pgalloc.h>
#include <asm/mmu_context.h>
#ifdef CONFIG_KMOD
#include <linux/kmod.h>
#endif
int core_uses_pid;
static struct linux_binfmt *formats;
static rwlock_t binfmt_lock = RW_LOCK_UNLOCKED;
int register_binfmt(struct linux_binfmt * fmt)
{
struct linux_binfmt ** tmp = &formats;
if (!fmt)
return -EINVAL;
if (fmt->next)
return -EBUSY;
write_lock(&binfmt_lock);
while (*tmp) {
if (fmt == *tmp) {
write_unlock(&binfmt_lock);
return -EBUSY;
}
tmp = &(*tmp)->next;
}
fmt->next = formats;
formats = fmt;
write_unlock(&binfmt_lock);
return 0;
}
int unregister_binfmt(struct linux_binfmt * fmt)
{
struct linux_binfmt ** tmp = &formats;
write_lock(&binfmt_lock);
while (*tmp) {
if (fmt == *tmp) {
*tmp = fmt->next;
write_unlock(&binfmt_lock);
return 0;
}
tmp = &(*tmp)->next;
}
write_unlock(&binfmt_lock);
return -EINVAL;
}
static inline void put_binfmt(struct linux_binfmt * fmt)
{
if (fmt->module)
__MOD_DEC_USE_COUNT(fmt->module);
}
/*
* Note that a shared library must be both readable and executable due to
* security reasons.
*
* Also note that we take the address to load from from the file itself.
*/
asmlinkage long sys_uselib(const char * library)
{
struct file * file;
struct nameidata nd;
int error;
error = user_path_walk(library, &nd);
if (error)
goto out;
error = -EINVAL;
if (!S_ISREG(nd.dentry->d_inode->i_mode))
goto exit;
error = permission(nd.dentry->d_inode, MAY_READ | MAY_EXEC);
if (error)
goto exit;
file = dentry_open(nd.dentry, nd.mnt, O_RDONLY);
error = PTR_ERR(file);
if (IS_ERR(file))
goto out;
error = -ENOEXEC;
if(file->f_op && file->f_op->read) {
struct linux_binfmt * fmt;
read_lock(&binfmt_lock);
for (fmt = formats ; fmt ; fmt = fmt->next) {
if (!fmt->load_shlib)
continue;
if (!try_inc_mod_count(fmt->module))
continue;
read_unlock(&binfmt_lock);
error = fmt->load_shlib(file);
read_lock(&binfmt_lock);
put_binfmt(fmt);
if (error != -ENOEXEC)
break;
}
read_unlock(&binfmt_lock);
}
fput(file);
out:
return error;
exit:
path_release(&nd);
goto out;
}
/*
* count() counts the number of arguments/envelopes
*/
static int count(char ** argv, int max)
{
int i = 0;
if (argv != NULL) {
for (;;) {
char * p;
if (get_user(p, argv))
return -EFAULT;
if (!p)
break;
argv++;
if(++i > max)
return -E2BIG;
}
}
return i;
}
/*
* 'copy_strings()' copies argument/envelope strings from user
* memory to free pages in kernel mem. These are in a format ready
* to be put directly into the top of new user memory.
*/
int copy_strings(int argc,char ** argv, struct linux_binprm *bprm)
{
while (argc-- > 0) {
char *str;
int len;
unsigned long pos;
if (get_user(str, argv+argc) || !(len = strnlen_user(str, bprm->p)))
return -EFAULT;
if (bprm->p < len)
return -E2BIG;
bprm->p -= len;
/* XXX: add architecture specific overflow check here. */
pos = bprm->p;
while (len > 0) {
char *kaddr;
int i, new, err;
struct page *page;
int offset, bytes_to_copy;
offset = pos % PAGE_SIZE;
i = pos/PAGE_SIZE;
page = bprm->page[i];
new = 0;
if (!page) {
page = alloc_page(GFP_HIGHUSER);
bprm->page[i] = page;
if (!page)
return -ENOMEM;
new = 1;
}
kaddr = kmap(page);
if (new && offset)
memset(kaddr, 0, offset);
bytes_to_copy = PAGE_SIZE - offset;
if (bytes_to_copy > len) {
bytes_to_copy = len;
if (new)
memset(kaddr+offset+len, 0, PAGE_SIZE-offset-len);
}
err = copy_from_user(kaddr + offset, str, bytes_to_copy);
kunmap(page);
if (err)
return -EFAULT;
pos += bytes_to_copy;
str += bytes_to_copy;
len -= bytes_to_copy;
}
}
return 0;
}
/*
* Like copy_strings, but get argv and its values from kernel memory.
*/
int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
{
int r;
mm_segment_t oldfs = get_fs();
set_fs(KERNEL_DS);
r = copy_strings(argc, argv, bprm);
set_fs(oldfs);
return r;
}
/*
* This routine is used to map in a page into an address space: needed by
* execve() for the initial stack and environment pages.
*
* tsk->mmap_sem is held for writing.
*/
void put_dirty_page(struct task_struct * tsk, struct page *page, unsigned long address)
{
pgd_t * pgd;
pmd_t * pmd;
pte_t * pte;
if (page_count(page) != 1)
printk(KERN_ERR "mem_map disagrees with %p at %08lx\n", page, address);
pgd = pgd_offset(tsk->mm, address);
spin_lock(&tsk->mm->page_table_lock);
pmd = pmd_alloc(tsk->mm, pgd, address);
if (!pmd)
goto out;
pte = pte_alloc(tsk->mm, pmd, address);
if (!pte)
goto out;
if (!pte_none(*pte))
goto out;
lru_cache_add(page);
flush_dcache_page(page);
flush_page_to_ram(page);
set_pte(pte, pte_mkdirty(pte_mkwrite(mk_pte(page, PAGE_COPY))));
tsk->mm->rss++;
spin_unlock(&tsk->mm->page_table_lock);
/* no need for flush_tlb */
return;
out:
spin_unlock(&tsk->mm->page_table_lock);
__free_page(page);
force_sig(SIGKILL, tsk);
return;
}
int setup_arg_pages(struct linux_binprm *bprm)
{
unsigned long stack_base;
struct vm_area_struct *mpnt;
int i;
stack_base = STACK_TOP - MAX_ARG_PAGES*PAGE_SIZE;
bprm->p += stack_base;
if (bprm->loader)
bprm->loader += stack_base;
bprm->exec += stack_base;
mpnt = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
if (!mpnt)
return -ENOMEM;
down_write(&current->mm->mmap_sem);
{
mpnt->vm_mm = current->mm;
mpnt->vm_start = PAGE_MASK & (unsigned long) bprm->p;
mpnt->vm_end = STACK_TOP;
mpnt->vm_page_prot = PAGE_COPY;
mpnt->vm_flags = VM_STACK_FLAGS;
mpnt->vm_ops = NULL;
mpnt->vm_pgoff = 0;
mpnt->vm_file = NULL;
mpnt->vm_private_data = (void *) 0;
insert_vm_struct(current->mm, mpnt);
current->mm->total_vm = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
}
for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
struct page *page = bprm->page[i];
if (page) {
bprm->page[i] = NULL;
put_dirty_page(current,page,stack_base);
}
stack_base += PAGE_SIZE;
}
up_write(&current->mm->mmap_sem);
return 0;
}
struct file *open_exec(const char *name)
{
struct nameidata nd;
struct inode *inode;
struct file *file;
int err = 0;
if (path_init(name, LOOKUP_FOLLOW|LOOKUP_POSITIVE, &nd))
err = path_walk(name, &nd);
file = ERR_PTR(err);
if (!err) {
inode = nd.dentry->d_inode;
file = ERR_PTR(-EACCES);
if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
S_ISREG(inode->i_mode)) {
int err = permission(inode, MAY_EXEC);
if (!err && !(inode->i_mode & 0111))
err = -EACCES;
file = ERR_PTR(err);
if (!err) {
file = dentry_open(nd.dentry, nd.mnt, O_RDONLY);
if (!IS_ERR(file)) {
err = deny_write_access(file);
if (err) {
fput(file);
file = ERR_PTR(err);
}
}
out:
return file;
}
}
path_release(&nd);
}
goto out;
}
int kernel_read(struct file *file, unsigned long offset,
char * addr, unsigned long count)
{
mm_segment_t old_fs;
loff_t pos = offset;
int result = -ENOSYS;
if (!file->f_op->read)
goto fail;
old_fs = get_fs();
set_fs(get_ds());
result = file->f_op->read(file, addr, count, &pos);
set_fs(old_fs);
fail:
return result;
}
static int exec_mmap(void)
{
struct mm_struct * mm, * old_mm;
old_mm = current->mm;
if (old_mm && atomic_read(&old_mm->mm_users) == 1) {
mm_release();
exit_mmap(old_mm);
return 0;
}
mm = mm_alloc();
if (mm) {
struct mm_struct *active_mm;
if (init_new_context(current, mm)) {
mmdrop(mm);
return -ENOMEM;
}
/* Add it to the list of mm's */
spin_lock(&mmlist_lock);
list_add(&mm->mmlist, &init_mm.mmlist);
mmlist_nr++;
spin_unlock(&mmlist_lock);
task_lock(current);
active_mm = current->active_mm;
current->mm = mm;
current->active_mm = mm;
task_unlock(current);
activate_mm(active_mm, mm);
mm_release();
if (old_mm) {
if (active_mm != old_mm) BUG();
mmput(old_mm);
return 0;
}
mmdrop(active_mm);
return 0;
}
return -ENOMEM;
}
/*
* This function makes sure the current process has its own signal table,
* so that flush_signal_handlers can later reset the handlers without
* disturbing other processes. (Other processes might share the signal
* table via the CLONE_SIGNAL option to clone().)
*/
static inline int make_private_signals(void)
{
struct signal_struct * newsig;
if (atomic_read(&current->sig->count) <= 1)
return 0;
newsig = kmem_cache_alloc(sigact_cachep, GFP_KERNEL);
if (newsig == NULL)
return -ENOMEM;
spin_lock_init(&newsig->siglock);
atomic_set(&newsig->count, 1);
memcpy(newsig->action, current->sig->action, sizeof(newsig->action));
spin_lock_irq(&current->sigmask_lock);
current->sig = newsig;
spin_unlock_irq(&current->sigmask_lock);
return 0;
}
/*
* If make_private_signals() made a copy of the signal table, decrement the
* refcount of the original table, and free it if necessary.
* We don't do that in make_private_signals() so that we can back off
* in flush_old_exec() if an error occurs after calling make_private_signals().
*/
static inline void release_old_signals(struct signal_struct * oldsig)
{
if (current->sig == oldsig)
return;
if (atomic_dec_and_test(&oldsig->count))
kmem_cache_free(sigact_cachep, oldsig);
}
/*
* These functions flushes out all traces of the currently running executable
* so that a new one can be started
*/
static inline void flush_old_files(struct files_struct * files)
{
long j = -1;
write_lock(&files->file_lock);
for (;;) {
unsigned long set, i;
j++;
i = j * __NFDBITS;
if (i >= files->max_fds || i >= files->max_fdset)
break;
set = files->close_on_exec->fds_bits[j];
if (!set)
continue;
files->close_on_exec->fds_bits[j] = 0;
write_unlock(&files->file_lock);
for ( ; set ; i++,set >>= 1) {
if (set & 1) {
sys_close(i);
}
}
write_lock(&files->file_lock);
}
write_unlock(&files->file_lock);
}
/*
* An execve() will automatically "de-thread" the process.
* Note: we don't have to hold the tasklist_lock to test
* whether we migth need to do this. If we're not part of
* a thread group, there is no way we can become one
* dynamically. And if we are, we only need to protect the
* unlink - even if we race with the last other thread exit,
* at worst the list_del_init() might end up being a no-op.
*/
static inline void de_thread(struct task_struct *tsk)
{
if (!list_empty(&tsk->thread_group)) {
write_lock_irq(&tasklist_lock);
list_del_init(&tsk->thread_group);
write_unlock_irq(&tasklist_lock);
}
/* Minor oddity: this might stay the same. */
tsk->tgid = tsk->pid;
}
int flush_old_exec(struct linux_binprm * bprm)
{
char * name;
int i, ch, retval;
struct signal_struct * oldsig;
/*
* Make sure we have a private signal table
*/
oldsig = current->sig;
retval = make_private_signals();
if (retval) goto flush_failed;
/*
* Release all of the old mmap stuff
*/
retval = exec_mmap();
if (retval) goto mmap_failed;
/* This is the point of no return */
release_old_signals(oldsig);
current->sas_ss_sp = current->sas_ss_size = 0;
if (current->euid == current->uid && current->egid == current->gid)
current->mm->dumpable = 1;
name = bprm->filename;
for (i=0; (ch = *(name++)) != '\0';) {
if (ch == '/')
i = 0;
else
if (i < 15)
current->comm[i++] = ch;
}
current->comm[i] = '\0';
flush_thread();
de_thread(current);
if (bprm->e_uid != current->euid || bprm->e_gid != current->egid ||
permission(bprm->file->f_dentry->d_inode,MAY_READ))
current->mm->dumpable = 0;
/* An exec changes our domain. We are no longer part of the thread
group */
current->self_exec_id++;
flush_signal_handlers(current);
flush_old_files(current->files);
return 0;
mmap_failed:
flush_failed:
spin_lock_irq(&current->sigmask_lock);
if (current->sig != oldsig) {
kmem_cache_free(sigact_cachep, current->sig);
current->sig = oldsig;
}
spin_unlock_irq(&current->sigmask_lock);
return retval;
}
/*
* We mustn't allow tracing of suid binaries, unless
* the tracer has the capability to trace anything..
*/
static inline int must_not_trace_exec(struct task_struct * p)
{
return (p->ptrace & PT_PTRACED) && !(p->ptrace & PT_PTRACE_CAP);
}
/*
* Fill the binprm structure from the inode.
* Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
*/
int prepare_binprm(struct linux_binprm *bprm)
{
int mode;
struct inode * inode = bprm->file->f_dentry->d_inode;
mode = inode->i_mode;
/*
* Check execute perms again - if the caller has CAP_DAC_OVERRIDE,
* vfs_permission lets a non-executable through
*/
if (!(mode & 0111)) /* with at least _one_ execute bit set */
return -EACCES;
if (bprm->file->f_op == NULL)
return -EACCES;
bprm->e_uid = current->euid;
bprm->e_gid = current->egid;
if(!(bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)) {
/* Set-uid? */
if (mode & S_ISUID)
bprm->e_uid = inode->i_uid;
/* Set-gid? */
/*
* If setgid is set but no group execute bit then this
* is a candidate for mandatory locking, not a setgid
* executable.
*/
if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
bprm->e_gid = inode->i_gid;
}
/* We don't have VFS support for capabilities yet */
cap_clear(bprm->cap_inheritable);
cap_clear(bprm->cap_permitted);
cap_clear(bprm->cap_effective);
/* To support inheritance of root-permissions and suid-root
* executables under compatibility mode, we raise all three
* capability sets for the file.
*
* If only the real uid is 0, we only raise the inheritable
* and permitted sets of the executable file.
*/
if (!issecure(SECURE_NOROOT)) {
if (bprm->e_uid == 0 || current->uid == 0) {
cap_set_full(bprm->cap_inheritable);
cap_set_full(bprm->cap_permitted);
}
if (bprm->e_uid == 0)
cap_set_full(bprm->cap_effective);
}
memset(bprm->buf,0,BINPRM_BUF_SIZE);
return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
}
/*
* This function is used to produce the new IDs and capabilities
* from the old ones and the file's capabilities.
*
* The formula used for evolving capabilities is:
*
* pI' = pI
* (***) pP' = (fP & X) | (fI & pI)
* pE' = pP' & fE [NB. fE is 0 or ~0]
*
* I=Inheritable, P=Permitted, E=Effective // p=process, f=file
* ' indicates post-exec(), and X is the global 'cap_bset'.
*
*/
void compute_creds(struct linux_binprm *bprm)
{
kernel_cap_t new_permitted, working;
int do_unlock = 0;
new_permitted = cap_intersect(bprm->cap_permitted, cap_bset);
working = cap_intersect(bprm->cap_inheritable,
current->cap_inheritable);
new_permitted = cap_combine(new_permitted, working);
if (bprm->e_uid != current->uid || bprm->e_gid != current->gid ||
!cap_issubset(new_permitted, current->cap_permitted)) {
current->mm->dumpable = 0;
lock_kernel();
if (must_not_trace_exec(current)
|| atomic_read(&current->fs->count) > 1
|| atomic_read(&current->files->count) > 1
|| atomic_read(&current->sig->count) > 1) {
if(!capable(CAP_SETUID)) {
bprm->e_uid = current->uid;
bprm->e_gid = current->gid;
}
if(!capable(CAP_SETPCAP)) {
new_permitted = cap_intersect(new_permitted,
current->cap_permitted);
}
}
do_unlock = 1;
}
/* For init, we want to retain the capabilities set
* in the init_task struct. Thus we skip the usual
* capability rules */
if (current->pid != 1) {
current->cap_permitted = new_permitted;
current->cap_effective =
cap_intersect(new_permitted, bprm->cap_effective);
}
/* AUD: Audit candidate if current->cap_effective is set */
current->suid = current->euid = current->fsuid = bprm->e_uid;
current->sgid = current->egid = current->fsgid = bprm->e_gid;
if(do_unlock)
unlock_kernel();
current->keep_capabilities = 0;
}
void remove_arg_zero(struct linux_binprm *bprm)
{
if (bprm->argc) {
unsigned long offset;
char * kaddr;
struct page *page;
offset = bprm->p % PAGE_SIZE;
goto inside;
while (bprm->p++, *(kaddr+offset++)) {
if (offset != PAGE_SIZE)
continue;
offset = 0;
kunmap(page);
inside:
page = bprm->page[bprm->p/PAGE_SIZE];
kaddr = kmap(page);
}
kunmap(page);
bprm->argc--;
}
}
/*
* cycle the list of binary formats handler, until one recognizes the image
*/
int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
{
int try,retval=0;
struct linux_binfmt *fmt;
#ifdef __alpha__
/* handle /sbin/loader.. */
{
struct exec * eh = (struct exec *) bprm->buf;
if (!bprm->loader && eh->fh.f_magic == 0x183 &&
(eh->fh.f_flags & 0x3000) == 0x3000)
{
struct file * file;
unsigned long loader;
allow_write_access(bprm->file);
fput(bprm->file);
bprm->file = NULL;
loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
file = open_exec("/sbin/loader");
retval = PTR_ERR(file);
if (IS_ERR(file))
return retval;
/* Remember if the application is TASO. */
bprm->sh_bang = eh->ah.entry < 0x100000000;
bprm->file = file;
bprm->loader = loader;
retval = prepare_binprm(bprm);
if (retval<0)
return retval;
/* should call search_binary_handler recursively here,
but it does not matter */
}
}
#endif
/* kernel module loader fixup */
/* so we don't try to load run modprobe in kernel space. */
set_fs(USER_DS);
for (try=0; try<2; try++) {
read_lock(&binfmt_lock);
for (fmt = formats ; fmt ; fmt = fmt->next) {
int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
if (!fn)
continue;
if (!try_inc_mod_count(fmt->module))
continue;
read_unlock(&binfmt_lock);
retval = fn(bprm, regs);
if (retval >= 0) {
put_binfmt(fmt);
allow_write_access(bprm->file);
if (bprm->file)
fput(bprm->file);
bprm->file = NULL;
current->did_exec = 1;
return retval;
}
read_lock(&binfmt_lock);
put_binfmt(fmt);
if (retval != -ENOEXEC)
break;
if (!bprm->file) {
read_unlock(&binfmt_lock);
return retval;
}
}
read_unlock(&binfmt_lock);
if (retval != -ENOEXEC) {
break;
#ifdef CONFIG_KMOD
}else{
#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
char modname[20];
if (printable(bprm->buf[0]) &&
printable(bprm->buf[1]) &&
printable(bprm->buf[2]) &&
printable(bprm->buf[3]))
break; /* -ENOEXEC */
sprintf(modname, "binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
request_module(modname);
#endif
}
}
return retval;
}
/*
* sys_execve() executes a new program.
*/
int do_execve(char * filename, char ** argv, char ** envp, struct pt_regs * regs)
{
struct linux_binprm bprm;
struct file *file;
int retval;
int i;
file = open_exec(filename);
retval = PTR_ERR(file);
if (IS_ERR(file))
return retval;
bprm.p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
memset(bprm.page, 0, MAX_ARG_PAGES*sizeof(bprm.page[0]));
bprm.file = file;
bprm.filename = filename;
bprm.sh_bang = 0;
bprm.loader = 0;
bprm.exec = 0;
if ((bprm.argc = count(argv, bprm.p / sizeof(void *))) < 0) {
allow_write_access(file);
fput(file);
return bprm.argc;
}
if ((bprm.envc = count(envp, bprm.p / sizeof(void *))) < 0) {
allow_write_access(file);
fput(file);
return bprm.envc;
}
retval = prepare_binprm(&bprm);
if (retval < 0)
goto out;
retval = copy_strings_kernel(1, &bprm.filename, &bprm);
if (retval < 0)
goto out;
bprm.exec = bprm.p;
retval = copy_strings(bprm.envc, envp, &bprm);
if (retval < 0)
goto out;
retval = copy_strings(bprm.argc, argv, &bprm);
if (retval < 0)
goto out;
retval = search_binary_handler(&bprm,regs);
if (retval >= 0)
/* execve success */
return retval;
out:
/* Something went wrong, return the inode and free the argument pages*/
allow_write_access(bprm.file);
if (bprm.file)
fput(bprm.file);
for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
struct page * page = bprm.page[i];
if (page)
__free_page(page);
}
return retval;
}
void set_binfmt(struct linux_binfmt *new)
{
struct linux_binfmt *old = current->binfmt;
if (new && new->module)
__MOD_INC_USE_COUNT(new->module);
current->binfmt = new;
if (old && old->module)
__MOD_DEC_USE_COUNT(old->module);
}
int do_coredump(long signr, struct pt_regs * regs)
{
struct linux_binfmt * binfmt;
char corename[6+sizeof(current->comm)+10];
struct file * file;
struct inode * inode;
int retval = 0;
lock_kernel();
binfmt = current->binfmt;
if (!binfmt || !binfmt->core_dump)
goto fail;
if (!current->mm->dumpable)
goto fail;
current->mm->dumpable = 0;
if (current->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
goto fail;
memcpy(corename,"core.", 5);
corename[4] = '\0';
if (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)
sprintf(&corename[4], ".%d", current->pid);
file = filp_open(corename, O_CREAT | 2 | O_NOFOLLOW, 0600);
if (IS_ERR(file))
goto fail;
inode = file->f_dentry->d_inode;
if (inode->i_nlink > 1)
goto close_fail; /* multiple links - don't dump */
if (d_unhashed(file->f_dentry))
goto close_fail;
if (!S_ISREG(inode->i_mode))
goto close_fail;
if (!file->f_op)
goto close_fail;
if (!file->f_op->write)
goto close_fail;
if (do_truncate(file->f_dentry, 0) != 0)
goto close_fail;
retval = binfmt->core_dump(signr, regs, file);
close_fail:
filp_close(file, NULL);
fail:
unlock_kernel();
return retval;
}