blob: c9153fedea7ff67f175804b68104cbf5acd52bd6 [file] [log] [blame]
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/signal.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/smp_lock.h>
#include <linux/usb.h>
#include <asm/atomic.h>
#include <linux/blk.h>
#include "../scsi/scsi.h"
#include "../scsi/hosts.h"
#include "../scsi/sd.h"
#include "hpusbscsi.h"
#define DEBUG(x...) \
printk( KERN_DEBUG x )
static char *states[]={"FREE", "BEGINNING", "WORKING", "ERROR", "WAIT", "PREMATURE"};
#define TRACE_STATE printk(KERN_DEBUG"hpusbscsi->state = %s at line %d\n", states[hpusbscsi->state], __LINE__)
/* global variables */
struct list_head hpusbscsi_devices;
//LIST_HEAD(hpusbscsi_devices);
/* USB related parts */
static void *
hpusbscsi_usb_probe (struct usb_device *dev, unsigned int interface,
const struct usb_device_id *id)
{
struct hpusbscsi *new;
struct usb_interface_descriptor *altsetting =
&(dev->actconfig->interface[interface].altsetting[0]);
int i, result;
/* basic check */
if (altsetting->bNumEndpoints != 3) {
printk (KERN_ERR "Wrong number of endpoints\n");
return NULL;
}
/* descriptor allocation */
new =
(struct hpusbscsi *) kmalloc (sizeof (struct hpusbscsi),
GFP_KERNEL);
if (new == NULL)
return NULL;
DEBUG ("Allocated memory\n");
memset (new, 0, sizeof (struct hpusbscsi));
new->dataurb = usb_alloc_urb(0);
if (!new->dataurb) {
kfree (new);
return NULL;
}
new->controlurb = usb_alloc_urb(0);
if (!new->controlurb) {
usb_free_urb (new->dataurb);
kfree (new);
return NULL;
}
new->dev = dev;
init_waitqueue_head (&new->pending);
init_waitqueue_head (&new->deathrow);
INIT_LIST_HEAD (&new->lh);
/* finding endpoints */
for (i = 0; i < altsetting->bNumEndpoints; i++) {
if (
(altsetting->endpoint[i].
bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
USB_ENDPOINT_XFER_BULK) {
if (altsetting->endpoint[i].
bEndpointAddress & USB_DIR_IN) {
new->ep_in =
altsetting->endpoint[i].
bEndpointAddress &
USB_ENDPOINT_NUMBER_MASK;
} else {
new->ep_out =
altsetting->endpoint[i].
bEndpointAddress &
USB_ENDPOINT_NUMBER_MASK;
}
} else {
new->ep_int =
altsetting->endpoint[i].
bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
new->interrupt_interval= altsetting->endpoint[i].bInterval;
}
}
/* USB initialisation magic for the simple case */
result = usb_set_interface (dev, altsetting->bInterfaceNumber, 0);
switch (result) {
case 0: /* no error */
break;
case -EPIPE:
usb_clear_halt (dev, usb_sndctrlpipe (dev, 0));
break;
default:
printk (KERN_ERR "unknown error %d from usb_set_interface\n",
result);
goto err_out;
}
/* making a template for the scsi layer to fake detection of a scsi device */
memcpy (&(new->ctempl), &hpusbscsi_scsi_host_template,
sizeof (hpusbscsi_scsi_host_template));
(struct hpusbscsi *) new->ctempl.proc_dir = new;
new->ctempl.module = THIS_MODULE;
if (scsi_register_host(&new->ctempl))
goto err_out;
/* adding to list for module unload */
list_add (&hpusbscsi_devices, &new->lh);
return new;
err_out:
usb_free_urb (new->controlurb);
usb_free_urb (new->dataurb);
kfree (new);
return NULL;
}
static void
hpusbscsi_usb_disconnect (struct usb_device *dev, void *ptr)
{
usb_unlink_urb((((struct hpusbscsi *) ptr)->controlurb));
((struct hpusbscsi *) ptr)->dev = NULL;
}
static struct usb_device_id hpusbscsi_usb_ids[] = {
{USB_DEVICE (0x03f0, 0x0701)}, /* HP 53xx */
{USB_DEVICE (0x03f0, 0x0801)}, /* HP 7400 */
{USB_DEVICE (0x0638, 0x026a)}, /*Scan Dual II */
{} /* Terminating entry */
};
MODULE_DEVICE_TABLE (usb, hpusbscsi_usb_ids);
MODULE_LICENSE("GPL");
static struct usb_driver hpusbscsi_usb_driver = {
name:"hpusbscsi",
probe:hpusbscsi_usb_probe,
disconnect:hpusbscsi_usb_disconnect,
id_table:hpusbscsi_usb_ids,
};
/* module initialisation */
int __init
hpusbscsi_init (void)
{
int result;
INIT_LIST_HEAD (&hpusbscsi_devices);
DEBUG ("Driver loaded\n");
if ((result = usb_register (&hpusbscsi_usb_driver)) < 0) {
printk (KERN_ERR "hpusbscsi: driver registration failed\n");
return -1;
} else {
return 0;
}
}
void __exit
hpusbscsi_exit (void)
{
struct list_head *tmp;
struct list_head *old;
struct hpusbscsi * o;
for (tmp = hpusbscsi_devices.next; tmp != &hpusbscsi_devices;/*nothing */) {
old = tmp;
tmp = tmp->next;
o = (struct hpusbscsi *)old;
usb_unlink_urb(o->controlurb);
scsi_unregister_host(&o->ctempl);
usb_free_urb(o->controlurb);
usb_free_urb(o->dataurb);
kfree(old);
}
usb_deregister (&hpusbscsi_usb_driver);
}
module_init (hpusbscsi_init);
module_exit (hpusbscsi_exit);
/* interface to the scsi layer */
static int
hpusbscsi_scsi_detect (struct SHT *sht)
{
/* Whole function stolen from usb-storage */
struct hpusbscsi *desc = (struct hpusbscsi *) sht->proc_dir;
/* What a hideous hack! */
char local_name[48];
/* set up the name of our subdirectory under /proc/scsi/ */
sprintf (local_name, "hpusbscsi-%d", desc->number);
sht->proc_name = kmalloc (strlen (local_name) + 1, GFP_KERNEL);
/* FIXME: where is this freed ? */
if (!sht->proc_name) {
return 0;
}
strcpy (sht->proc_name, local_name);
sht->proc_dir = NULL;
/* build and submit an interrupt URB for status byte handling */
FILL_INT_URB(desc->controlurb,
desc->dev,
usb_rcvintpipe(desc->dev,desc->ep_int),
&desc->scsi_state_byte,
1,
control_interrupt_callback,
desc,
desc->interrupt_interval
);
if ( 0 > usb_submit_urb(desc->controlurb, GFP_KERNEL)) {
kfree(sht->proc_name);
return 0;
}
/* In host->hostdata we store a pointer to desc */
desc->host = scsi_register (sht, sizeof (desc));
if (desc->host == NULL) {
kfree (sht->proc_name);
usb_unlink_urb(desc->controlurb);
return 0;
}
desc->host->hostdata[0] = (unsigned long) desc;
return 1;
}
static int hpusbscsi_scsi_queuecommand (Scsi_Cmnd *srb, scsi_callback callback)
{
struct hpusbscsi* hpusbscsi = (struct hpusbscsi*)(srb->host->hostdata[0]);
usb_urb_callback usb_callback;
int res;
hpusbscsi->use_count++;
/* we don't answer for anything but our single device on any faked host controller */
if ( srb->device->lun || srb->device->id || srb->device->channel ) {
if (callback) {
srb->result = DID_BAD_TARGET;
callback(srb);
}
goto out;
}
/* Now we need to decide which callback to give to the urb we send the command with */
if (!srb->bufflen) {
usb_callback = simple_command_callback;
} else {
if (likely(srb->use_sg)) {
usb_callback = scatter_gather_callback;
hpusbscsi->fragment = 0;
} else {
usb_callback = simple_payload_callback;
}
/* Now we find out which direction data is to be transfered in */
hpusbscsi->current_data_pipe = DIRECTION_IS_IN(srb->cmnd[0]) ?
usb_rcvbulkpipe(hpusbscsi->dev, hpusbscsi->ep_in)
:
usb_sndbulkpipe(hpusbscsi->dev, hpusbscsi->ep_out)
;
}
TRACE_STATE;
/* We zero the sense buffer to avoid confusing user space */
memset(srb->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
hpusbscsi->state = HP_STATE_BEGINNING;
TRACE_STATE;
/* We prepare the urb for writing out the scsi command */
FILL_BULK_URB(
hpusbscsi->dataurb,
hpusbscsi->dev,
usb_sndbulkpipe(hpusbscsi->dev,hpusbscsi->ep_out),
srb->cmnd,
srb->cmd_len,
usb_callback,
hpusbscsi
);
hpusbscsi->scallback = callback;
hpusbscsi->srb = srb;
res = usb_submit_urb(hpusbscsi->dataurb, GFP_ATOMIC);
if (unlikely(res)) {
hpusbscsi->state = HP_STATE_FREE;
TRACE_STATE;
if (likely(callback != NULL)) {
srb->result = DID_ERROR;
callback(srb);
}
}
out:
hpusbscsi->use_count--;
return 0;
}
static int hpusbscsi_scsi_host_reset (Scsi_Cmnd *srb)
{
struct hpusbscsi* hpusbscsi = (struct hpusbscsi*)(srb->host->hostdata[0]);
printk(KERN_DEBUG"SCSI reset requested.\n");
usb_reset_device(hpusbscsi->dev);
printk(KERN_DEBUG"SCSI reset completed.\n");
hpusbscsi->state = HP_STATE_FREE;
return 0;
}
static int hpusbscsi_scsi_abort (Scsi_Cmnd *srb)
{
struct hpusbscsi* hpusbscsi = (struct hpusbscsi*)(srb->host->hostdata[0]);
printk(KERN_DEBUG"Requested is canceled.\n");
usb_unlink_urb(hpusbscsi->dataurb);
usb_unlink_urb(hpusbscsi->controlurb);
hpusbscsi->state = HP_STATE_FREE;
return SCSI_ABORT_PENDING;
}
/* usb interrupt handlers - they are all running IN INTERRUPT ! */
static void handle_usb_error (struct hpusbscsi *hpusbscsi)
{
if (likely(hpusbscsi->scallback != NULL)) {
hpusbscsi->srb->result = DID_ERROR;
hpusbscsi->scallback(hpusbscsi->srb);
}
hpusbscsi->state = HP_STATE_FREE;
}
static void control_interrupt_callback (struct urb *u)
{
struct hpusbscsi * hpusbscsi = (struct hpusbscsi *)u->context;
DEBUG("Getting status byte %d \n",hpusbscsi->scsi_state_byte);
if(unlikely(u->status < 0)) {
if (likely(hpusbscsi->state != HP_STATE_FREE))
handle_usb_error(hpusbscsi);
return;
}
hpusbscsi->srb->result &= SCSI_ERR_MASK;
hpusbscsi->srb->result |= hpusbscsi->scsi_state_byte<<1;
if (hpusbscsi->scallback != NULL && hpusbscsi->state == HP_STATE_WAIT)
/* we do a callback to the scsi layer if and only if all data has been transfered */
hpusbscsi->scallback(hpusbscsi->srb);
TRACE_STATE;
switch (hpusbscsi->state) {
case HP_STATE_WAIT:
hpusbscsi->state = HP_STATE_FREE;
TRACE_STATE;
break;
case HP_STATE_WORKING:
case HP_STATE_BEGINNING:
hpusbscsi->state = HP_STATE_PREMATURE;
TRACE_STATE;
break;
default:
printk(KERN_ERR"hpusbscsi: Unexpected status report.\n");
TRACE_STATE;
hpusbscsi->state = HP_STATE_FREE;
TRACE_STATE;
break;
}
}
static void simple_command_callback(struct urb *u)
{
struct hpusbscsi * hpusbscsi = (struct hpusbscsi *)u->context;
if (unlikely(u->status<0)) {
handle_usb_error(hpusbscsi);
return;
}
TRACE_STATE;
if (hpusbscsi->state != HP_STATE_PREMATURE) {
TRACE_STATE;
hpusbscsi->state = HP_STATE_WAIT;
} else {
if (likely(hpusbscsi->scallback != NULL))
hpusbscsi->scallback(hpusbscsi->srb);
hpusbscsi->state = HP_STATE_FREE;
TRACE_STATE;
}
}
static void scatter_gather_callback(struct urb *u)
{
struct hpusbscsi * hpusbscsi = (struct hpusbscsi *)u->context;
struct scatterlist *sg = hpusbscsi->srb->buffer;
usb_urb_callback callback;
int res;
DEBUG("Going through scatter/gather\n");
if (unlikely(u->status < 0)) {
handle_usb_error(hpusbscsi);
return;
}
if (hpusbscsi->fragment + 1 != hpusbscsi->srb->use_sg)
callback = scatter_gather_callback;
else
callback = simple_done;
TRACE_STATE;
if (hpusbscsi->state != HP_STATE_PREMATURE)
hpusbscsi->state = HP_STATE_WORKING;
TRACE_STATE;
FILL_BULK_URB(
u,
hpusbscsi->dev,
hpusbscsi->current_data_pipe,
page_address(sg[hpusbscsi->fragment].page) +
sg[hpusbscsi->fragment].offset,
sg[hpusbscsi->fragment++].length,
callback,
hpusbscsi
);
res = usb_submit_urb(u, GFP_ATOMIC);
if (unlikely(res))
hpusbscsi->state = HP_STATE_ERROR;
TRACE_STATE;
}
static void simple_done (struct urb *u)
{
struct hpusbscsi * hpusbscsi = (struct hpusbscsi *)u->context;
if (unlikely(u->status < 0)) {
handle_usb_error(hpusbscsi);
return;
}
DEBUG("Data transfer done\n");
TRACE_STATE;
if (hpusbscsi->state != HP_STATE_PREMATURE) {
if (unlikely(u->status < 0))
hpusbscsi->state = HP_STATE_ERROR;
else
hpusbscsi->state = HP_STATE_WAIT;
TRACE_STATE;
} else {
if (likely(hpusbscsi->scallback != NULL))
hpusbscsi->scallback(hpusbscsi->srb);
hpusbscsi->state = HP_STATE_FREE;
}
}
static void simple_payload_callback (struct urb *u)
{
struct hpusbscsi * hpusbscsi = (struct hpusbscsi *)u->context;
int res;
if (unlikely(u->status<0)) {
handle_usb_error(hpusbscsi);
return;
}
FILL_BULK_URB(
u,
hpusbscsi->dev,
hpusbscsi->current_data_pipe,
hpusbscsi->srb->buffer,
hpusbscsi->srb->bufflen,
simple_done,
hpusbscsi
);
res = usb_submit_urb(u, GFP_ATOMIC);
if (unlikely(res)) {
handle_usb_error(hpusbscsi);
return;
}
TRACE_STATE;
if (hpusbscsi->state != HP_STATE_PREMATURE) {
hpusbscsi->state = HP_STATE_WORKING;
TRACE_STATE;
} else {
if (likely(hpusbscsi->scallback != NULL))
hpusbscsi->scallback(hpusbscsi->srb);
hpusbscsi->state = HP_STATE_FREE;
TRACE_STATE;
}
}