| /* $Id: pci.c,v 1.40 2002-02-10 15:04:46 ecd Exp $ |
| * pci.c: UltraSparc PCI controller support. |
| * |
| * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@redhat.com) |
| * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be) |
| * Copyright (C) 1999 Jakub Jelinek (jj@ultra.linux.cz) |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/sched.h> |
| #include <linux/capability.h> |
| #include <linux/errno.h> |
| #include <linux/smp_lock.h> |
| #include <linux/init.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/pbm.h> |
| #include <asm/irq.h> |
| #include <asm/ebus.h> |
| #include <asm/isa.h> |
| |
| unsigned long pci_memspace_mask = 0xffffffffUL; |
| |
| #ifndef CONFIG_PCI |
| /* A "nop" PCI implementation. */ |
| asmlinkage int sys_pciconfig_read(unsigned long bus, unsigned long dfn, |
| unsigned long off, unsigned long len, |
| unsigned char *buf) |
| { |
| return 0; |
| } |
| asmlinkage int sys_pciconfig_write(unsigned long bus, unsigned long dfn, |
| unsigned long off, unsigned long len, |
| unsigned char *buf) |
| { |
| return 0; |
| } |
| #else |
| |
| /* List of all PCI controllers found in the system. */ |
| spinlock_t pci_controller_lock = SPIN_LOCK_UNLOCKED; |
| struct pci_controller_info *pci_controller_root = NULL; |
| |
| /* Each PCI controller found gets a unique index. */ |
| int pci_num_controllers = 0; |
| |
| /* Given an 8-bit PCI bus number, this yields the |
| * controlling PBM module info. |
| * |
| * Some explanation is in order here. The Linux APIs for |
| * the PCI subsystem require that the configuration space |
| * types are enough to signify PCI configuration space |
| * accesses correctly. This gives us 8-bits for the bus |
| * number, however we have multiple PCI controllers on |
| * UltraSparc systems. |
| * |
| * So what we do is give the PCI busses under each controller |
| * a unique portion of the 8-bit PCI bus number space. |
| * Therefore one can obtain the controller from the bus |
| * number. For example, say PSYCHO PBM-A a subordinate bus |
| * space of 0 to 4, and PBM-B has a space of 0 to 2. PBM-A |
| * will use 0 to 4, and PBM-B will use 5 to 7. |
| */ |
| struct pci_pbm_info *pci_bus2pbm[256]; |
| unsigned char pci_highest_busnum = 0; |
| |
| /* At boot time the user can give the kernel a command |
| * line option which controls if and how PCI devices |
| * are reordered at PCI bus probing time. |
| */ |
| int pci_device_reorder = 0; |
| |
| spinlock_t pci_poke_lock = SPIN_LOCK_UNLOCKED; |
| volatile int pci_poke_in_progress; |
| volatile int pci_poke_cpu = -1; |
| volatile int pci_poke_faulted; |
| |
| /* Probe for all PCI controllers in the system. */ |
| extern void sabre_init(int, char *); |
| extern void psycho_init(int, char *); |
| extern void schizo_init(int, char *); |
| |
| static struct { |
| char *model_name; |
| void (*init)(int, char *); |
| } pci_controller_table[] = { |
| { "SUNW,sabre", sabre_init }, |
| { "pci108e,a000", sabre_init }, |
| { "pci108e,a001", sabre_init }, |
| { "SUNW,psycho", psycho_init }, |
| { "pci108e,8000", psycho_init }, |
| { "SUNW,schizo", schizo_init }, |
| { "pci108e,8001", schizo_init } |
| }; |
| #define PCI_NUM_CONTROLLER_TYPES (sizeof(pci_controller_table) / \ |
| sizeof(pci_controller_table[0])) |
| |
| static void pci_controller_init(char *model_name, int namelen, int node) |
| { |
| int i; |
| |
| for (i = 0; i < PCI_NUM_CONTROLLER_TYPES; i++) { |
| if (!strncmp(model_name, |
| pci_controller_table[i].model_name, |
| namelen)) { |
| pci_controller_table[i].init(node, model_name); |
| return; |
| } |
| } |
| printk("PCI: Warning unknown controller, model name [%s]\n", |
| model_name); |
| printk("PCI: Ignoring controller...\n"); |
| } |
| |
| /* Find each controller in the system, attach and initialize |
| * software state structure for each and link into the |
| * pci_controller_root. Setup the controller enough such |
| * that bus scanning can be done. |
| */ |
| static void pci_controller_probe(void) |
| { |
| char namebuf[16]; |
| int node; |
| |
| printk("PCI: Probing for controllers.\n"); |
| node = prom_getchild(prom_root_node); |
| while ((node = prom_searchsiblings(node, "pci")) != 0) { |
| int len; |
| |
| len = prom_getproperty(node, "model", |
| namebuf, sizeof(namebuf)); |
| if (len > 0) |
| pci_controller_init(namebuf, len, node); |
| else { |
| len = prom_getproperty(node, "compatible", |
| namebuf, sizeof(namebuf)); |
| if (len > 0) |
| pci_controller_init(namebuf, len, node); |
| } |
| node = prom_getsibling(node); |
| if (!node) |
| break; |
| } |
| } |
| |
| static void pci_scan_each_controller_bus(void) |
| { |
| struct pci_controller_info *p; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&pci_controller_lock, flags); |
| for (p = pci_controller_root; p; p = p->next) |
| p->scan_bus(p); |
| spin_unlock_irqrestore(&pci_controller_lock, flags); |
| } |
| |
| /* Reorder the pci_dev chain, so that onboard devices come first |
| * and then come the pluggable cards. |
| */ |
| static void __init pci_reorder_devs(void) |
| { |
| struct list_head *pci_onboard = &pci_devices; |
| struct list_head *walk = pci_onboard->next; |
| |
| while (walk != pci_onboard) { |
| struct pci_dev *pdev = pci_dev_g(walk); |
| struct list_head *walk_next = walk->next; |
| |
| if (pdev->irq && (__irq_ino(pdev->irq) & 0x20)) { |
| list_del(walk); |
| list_add(walk, pci_onboard); |
| } |
| |
| walk = walk_next; |
| } |
| } |
| |
| extern void rs_init(void); |
| extern void clock_probe(void); |
| extern void power_init(void); |
| |
| void __init pcibios_init(void) |
| { |
| pci_controller_probe(); |
| if (pci_controller_root == NULL) |
| return; |
| |
| pci_scan_each_controller_bus(); |
| |
| if (pci_device_reorder) |
| pci_reorder_devs(); |
| |
| isa_init(); |
| ebus_init(); |
| rs_init(); |
| clock_probe(); |
| power_init(); |
| } |
| |
| struct pci_fixup pcibios_fixups[] = { |
| { 0 } |
| }; |
| |
| void pcibios_fixup_bus(struct pci_bus *pbus) |
| { |
| struct pci_pbm_info *pbm = pbus->sysdata; |
| |
| /* Generic PCI bus probing sets these to point at |
| * &io{port,mem}_resouce which is wrong for us. |
| */ |
| pbus->resource[0] = &pbm->io_space; |
| pbus->resource[1] = &pbm->mem_space; |
| } |
| |
| /* NOTE: This can get called before we've fixed up pdev->sysdata. */ |
| int pci_claim_resource(struct pci_dev *pdev, int resource) |
| { |
| struct pci_pbm_info *pbm = pci_bus2pbm[pdev->bus->number]; |
| struct resource *res = &pdev->resource[resource]; |
| struct resource *root; |
| |
| if (!pbm) |
| return -EINVAL; |
| |
| if (res->flags & IORESOURCE_IO) |
| root = &pbm->io_space; |
| else |
| root = &pbm->mem_space; |
| |
| pbm->parent->resource_adjust(pdev, res, root); |
| |
| return request_resource(root, res); |
| } |
| |
| int pci_assign_resource(struct pci_dev *pdev, int resource) |
| { |
| struct pcidev_cookie *pcp = pdev->sysdata; |
| struct pci_pbm_info *pbm = pcp->pbm; |
| struct resource *res = &pdev->resource[resource]; |
| struct resource *root; |
| unsigned long min, max, size, align; |
| int err; |
| |
| if (res->flags & IORESOURCE_IO) { |
| root = &pbm->io_space; |
| min = root->start + 0x400UL; |
| max = root->end; |
| } else { |
| root = &pbm->mem_space; |
| min = root->start; |
| max = min + 0x80000000UL; |
| } |
| |
| size = res->end - res->start; |
| align = size + 1; |
| |
| err = allocate_resource(root, res, size + 1, min, max, align, NULL, NULL); |
| if (err < 0) { |
| printk("PCI: Failed to allocate resource %d for %s\n", |
| resource, pdev->name); |
| } else { |
| pbm->parent->base_address_update(pdev, resource); |
| } |
| |
| return err; |
| } |
| |
| void pcibios_update_resource(struct pci_dev *pdev, struct resource *res1, |
| struct resource *res2, int index) |
| { |
| } |
| |
| void pcibios_update_irq(struct pci_dev *pdev, int irq) |
| { |
| } |
| |
| void pcibios_fixup_pbus_ranges(struct pci_bus *pbus, |
| struct pbus_set_ranges_data *pranges) |
| { |
| } |
| |
| void pcibios_align_resource(void *data, struct resource *res, unsigned long size) |
| { |
| } |
| |
| int pcibios_enable_device(struct pci_dev *pdev) |
| { |
| return 0; |
| } |
| |
| char * __init pcibios_setup(char *str) |
| { |
| if (!strcmp(str, "onboardfirst")) { |
| pci_device_reorder = 1; |
| return NULL; |
| } |
| if (!strcmp(str, "noreorder")) { |
| pci_device_reorder = 0; |
| return NULL; |
| } |
| return str; |
| } |
| |
| /* Platform support for /proc/bus/pci/X/Y mmap()s. */ |
| |
| /* If the user uses a host-bridge as the PCI device, he may use |
| * this to perform a raw mmap() of the I/O or MEM space behind |
| * that controller. |
| * |
| * This can be useful for execution of x86 PCI bios initialization code |
| * on a PCI card, like the xfree86 int10 stuff does. |
| */ |
| static int __pci_mmap_make_offset_bus(struct pci_dev *pdev, struct vm_area_struct *vma, |
| enum pci_mmap_state mmap_state) |
| { |
| struct pcidev_cookie *pcp = pdev->sysdata; |
| struct pci_pbm_info *pbm; |
| struct pci_controller_info *p; |
| unsigned long space_size, user_offset, user_size; |
| |
| if (!pcp) |
| return -ENXIO; |
| pbm = pcp->pbm; |
| if (!pbm) |
| return -ENXIO; |
| |
| p = pbm->parent; |
| if (p->pbms_same_domain) { |
| unsigned long lowest, highest; |
| |
| lowest = ~0UL; highest = 0UL; |
| if (mmap_state == pci_mmap_io) { |
| if (p->pbm_A.io_space.flags) { |
| lowest = p->pbm_A.io_space.start; |
| highest = p->pbm_A.io_space.end + 1; |
| } |
| if (p->pbm_B.io_space.flags) { |
| if (lowest > p->pbm_B.io_space.start) |
| lowest = p->pbm_B.io_space.start; |
| if (highest < p->pbm_B.io_space.end + 1) |
| highest = p->pbm_B.io_space.end + 1; |
| } |
| space_size = highest - lowest; |
| } else { |
| if (p->pbm_A.mem_space.flags) { |
| lowest = p->pbm_A.mem_space.start; |
| highest = p->pbm_A.mem_space.end + 1; |
| } |
| if (p->pbm_B.mem_space.flags) { |
| if (lowest > p->pbm_B.mem_space.start) |
| lowest = p->pbm_B.mem_space.start; |
| if (highest < p->pbm_B.mem_space.end + 1) |
| highest = p->pbm_B.mem_space.end + 1; |
| } |
| space_size = highest - lowest; |
| } |
| } else { |
| if (mmap_state == pci_mmap_io) { |
| space_size = (pbm->io_space.end - |
| pbm->io_space.start) + 1; |
| } else { |
| space_size = (pbm->mem_space.end - |
| pbm->mem_space.start) + 1; |
| } |
| } |
| |
| /* Make sure the request is in range. */ |
| user_offset = vma->vm_pgoff << PAGE_SHIFT; |
| user_size = vma->vm_end - vma->vm_start; |
| |
| if (user_offset >= space_size || |
| (user_offset + user_size) > space_size) |
| return -EINVAL; |
| |
| if (p->pbms_same_domain) { |
| unsigned long lowest = ~0UL; |
| |
| if (mmap_state == pci_mmap_io) { |
| if (p->pbm_A.io_space.flags) |
| lowest = p->pbm_A.io_space.start; |
| if (p->pbm_B.io_space.flags && |
| lowest > p->pbm_B.io_space.start) |
| lowest = p->pbm_B.io_space.start; |
| } else { |
| if (p->pbm_A.mem_space.flags) |
| lowest = p->pbm_A.mem_space.start; |
| if (p->pbm_B.mem_space.flags && |
| lowest > p->pbm_B.mem_space.start) |
| lowest = p->pbm_B.mem_space.start; |
| } |
| vma->vm_pgoff = (lowest + user_offset) >> PAGE_SHIFT; |
| } else { |
| if (mmap_state == pci_mmap_io) { |
| vma->vm_pgoff = (pbm->io_space.start + |
| user_offset) >> PAGE_SHIFT; |
| } else { |
| vma->vm_pgoff = (pbm->mem_space.start + |
| user_offset) >> PAGE_SHIFT; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Adjust vm_pgoff of VMA such that it is the physical page offset corresponding |
| * to the 32-bit pci bus offset for DEV requested by the user. |
| * |
| * Basically, the user finds the base address for his device which he wishes |
| * to mmap. They read the 32-bit value from the config space base register, |
| * add whatever PAGE_SIZE multiple offset they wish, and feed this into the |
| * offset parameter of mmap on /proc/bus/pci/XXX for that device. |
| * |
| * Returns negative error code on failure, zero on success. |
| */ |
| static int __pci_mmap_make_offset(struct pci_dev *dev, struct vm_area_struct *vma, |
| enum pci_mmap_state mmap_state) |
| { |
| unsigned long user_offset = vma->vm_pgoff << PAGE_SHIFT; |
| unsigned long user32 = user_offset & pci_memspace_mask; |
| unsigned long largest_base, this_base, addr32; |
| int i; |
| |
| if ((dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) |
| return __pci_mmap_make_offset_bus(dev, vma, mmap_state); |
| |
| /* Figure out which base address this is for. */ |
| largest_base = 0UL; |
| for (i = 0; i <= PCI_ROM_RESOURCE; i++) { |
| struct resource *rp = &dev->resource[i]; |
| |
| /* Active? */ |
| if (!rp->flags) |
| continue; |
| |
| /* Same type? */ |
| if (i == PCI_ROM_RESOURCE) { |
| if (mmap_state != pci_mmap_mem) |
| continue; |
| } else { |
| if ((mmap_state == pci_mmap_io && |
| (rp->flags & IORESOURCE_IO) == 0) || |
| (mmap_state == pci_mmap_mem && |
| (rp->flags & IORESOURCE_MEM) == 0)) |
| continue; |
| } |
| |
| this_base = rp->start; |
| |
| addr32 = (this_base & PAGE_MASK) & pci_memspace_mask; |
| |
| if (mmap_state == pci_mmap_io) |
| addr32 &= 0xffffff; |
| |
| if (addr32 <= user32 && this_base > largest_base) |
| largest_base = this_base; |
| } |
| |
| if (largest_base == 0UL) |
| return -EINVAL; |
| |
| /* Now construct the final physical address. */ |
| if (mmap_state == pci_mmap_io) |
| vma->vm_pgoff = (((largest_base & ~0xffffffUL) | user32) >> PAGE_SHIFT); |
| else |
| vma->vm_pgoff = (((largest_base & ~(pci_memspace_mask)) | user32) >> PAGE_SHIFT); |
| |
| return 0; |
| } |
| |
| /* Set vm_flags of VMA, as appropriate for this architecture, for a pci device |
| * mapping. |
| */ |
| static void __pci_mmap_set_flags(struct pci_dev *dev, struct vm_area_struct *vma, |
| enum pci_mmap_state mmap_state) |
| { |
| vma->vm_flags |= (VM_SHM | VM_LOCKED); |
| } |
| |
| /* Set vm_page_prot of VMA, as appropriate for this architecture, for a pci |
| * device mapping. |
| */ |
| static void __pci_mmap_set_pgprot(struct pci_dev *dev, struct vm_area_struct *vma, |
| enum pci_mmap_state mmap_state) |
| { |
| /* Our io_remap_page_range takes care of this, do nothing. */ |
| } |
| |
| extern int io_remap_page_range(struct vm_area_struct *vma, unsigned long from, unsigned long offset, |
| unsigned long size, pgprot_t prot, int space); |
| |
| /* Perform the actual remap of the pages for a PCI device mapping, as appropriate |
| * for this architecture. The region in the process to map is described by vm_start |
| * and vm_end members of VMA, the base physical address is found in vm_pgoff. |
| * The pci device structure is provided so that architectures may make mapping |
| * decisions on a per-device or per-bus basis. |
| * |
| * Returns a negative error code on failure, zero on success. |
| */ |
| int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma, |
| enum pci_mmap_state mmap_state, |
| int write_combine) |
| { |
| int ret; |
| |
| ret = __pci_mmap_make_offset(dev, vma, mmap_state); |
| if (ret < 0) |
| return ret; |
| |
| __pci_mmap_set_flags(dev, vma, mmap_state); |
| __pci_mmap_set_pgprot(dev, vma, mmap_state); |
| |
| ret = io_remap_page_range(vma, vma->vm_start, |
| (vma->vm_pgoff << PAGE_SHIFT | |
| (write_combine ? 0x1UL : 0x0UL)), |
| vma->vm_end - vma->vm_start, vma->vm_page_prot, 0); |
| if (ret) |
| return ret; |
| |
| vma->vm_flags |= VM_IO; |
| return 0; |
| } |
| |
| /* Return the index of the PCI controller for device PDEV. */ |
| |
| int pci_controller_num(struct pci_dev *pdev) |
| { |
| struct pcidev_cookie *cookie = pdev->sysdata; |
| int ret; |
| |
| if (cookie != NULL) { |
| struct pci_pbm_info *pbm = cookie->pbm; |
| if (pbm == NULL || pbm->parent == NULL) { |
| ret = -ENXIO; |
| } else { |
| struct pci_controller_info *p = pbm->parent; |
| |
| ret = p->index; |
| if (p->pbms_same_domain == 0) |
| ret = ((ret << 1) + |
| ((pbm == &pbm->parent->pbm_B) ? 1 : 0)); |
| } |
| } else { |
| ret = -ENXIO; |
| } |
| |
| return ret; |
| } |
| |
| #endif /* !(CONFIG_PCI) */ |