blob: 2c0c5f11d911450256cacd60e7bfeb57b594ad72 [file] [log] [blame]
/* $Id: pci.c,v 1.40 2002-02-10 15:04:46 ecd Exp $
* pci.c: UltraSparc PCI controller support.
*
* Copyright (C) 1997, 1998, 1999 David S. Miller (davem@redhat.com)
* Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1999 Jakub Jelinek (jj@ultra.linux.cz)
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/capability.h>
#include <linux/errno.h>
#include <linux/smp_lock.h>
#include <linux/init.h>
#include <asm/uaccess.h>
#include <asm/pbm.h>
#include <asm/irq.h>
#include <asm/ebus.h>
#include <asm/isa.h>
unsigned long pci_memspace_mask = 0xffffffffUL;
#ifndef CONFIG_PCI
/* A "nop" PCI implementation. */
asmlinkage int sys_pciconfig_read(unsigned long bus, unsigned long dfn,
unsigned long off, unsigned long len,
unsigned char *buf)
{
return 0;
}
asmlinkage int sys_pciconfig_write(unsigned long bus, unsigned long dfn,
unsigned long off, unsigned long len,
unsigned char *buf)
{
return 0;
}
#else
/* List of all PCI controllers found in the system. */
spinlock_t pci_controller_lock = SPIN_LOCK_UNLOCKED;
struct pci_controller_info *pci_controller_root = NULL;
/* Each PCI controller found gets a unique index. */
int pci_num_controllers = 0;
/* Given an 8-bit PCI bus number, this yields the
* controlling PBM module info.
*
* Some explanation is in order here. The Linux APIs for
* the PCI subsystem require that the configuration space
* types are enough to signify PCI configuration space
* accesses correctly. This gives us 8-bits for the bus
* number, however we have multiple PCI controllers on
* UltraSparc systems.
*
* So what we do is give the PCI busses under each controller
* a unique portion of the 8-bit PCI bus number space.
* Therefore one can obtain the controller from the bus
* number. For example, say PSYCHO PBM-A a subordinate bus
* space of 0 to 4, and PBM-B has a space of 0 to 2. PBM-A
* will use 0 to 4, and PBM-B will use 5 to 7.
*/
struct pci_pbm_info *pci_bus2pbm[256];
unsigned char pci_highest_busnum = 0;
/* At boot time the user can give the kernel a command
* line option which controls if and how PCI devices
* are reordered at PCI bus probing time.
*/
int pci_device_reorder = 0;
spinlock_t pci_poke_lock = SPIN_LOCK_UNLOCKED;
volatile int pci_poke_in_progress;
volatile int pci_poke_cpu = -1;
volatile int pci_poke_faulted;
/* Probe for all PCI controllers in the system. */
extern void sabre_init(int, char *);
extern void psycho_init(int, char *);
extern void schizo_init(int, char *);
static struct {
char *model_name;
void (*init)(int, char *);
} pci_controller_table[] = {
{ "SUNW,sabre", sabre_init },
{ "pci108e,a000", sabre_init },
{ "pci108e,a001", sabre_init },
{ "SUNW,psycho", psycho_init },
{ "pci108e,8000", psycho_init },
{ "SUNW,schizo", schizo_init },
{ "pci108e,8001", schizo_init }
};
#define PCI_NUM_CONTROLLER_TYPES (sizeof(pci_controller_table) / \
sizeof(pci_controller_table[0]))
static void pci_controller_init(char *model_name, int namelen, int node)
{
int i;
for (i = 0; i < PCI_NUM_CONTROLLER_TYPES; i++) {
if (!strncmp(model_name,
pci_controller_table[i].model_name,
namelen)) {
pci_controller_table[i].init(node, model_name);
return;
}
}
printk("PCI: Warning unknown controller, model name [%s]\n",
model_name);
printk("PCI: Ignoring controller...\n");
}
/* Find each controller in the system, attach and initialize
* software state structure for each and link into the
* pci_controller_root. Setup the controller enough such
* that bus scanning can be done.
*/
static void pci_controller_probe(void)
{
char namebuf[16];
int node;
printk("PCI: Probing for controllers.\n");
node = prom_getchild(prom_root_node);
while ((node = prom_searchsiblings(node, "pci")) != 0) {
int len;
len = prom_getproperty(node, "model",
namebuf, sizeof(namebuf));
if (len > 0)
pci_controller_init(namebuf, len, node);
else {
len = prom_getproperty(node, "compatible",
namebuf, sizeof(namebuf));
if (len > 0)
pci_controller_init(namebuf, len, node);
}
node = prom_getsibling(node);
if (!node)
break;
}
}
static void pci_scan_each_controller_bus(void)
{
struct pci_controller_info *p;
unsigned long flags;
spin_lock_irqsave(&pci_controller_lock, flags);
for (p = pci_controller_root; p; p = p->next)
p->scan_bus(p);
spin_unlock_irqrestore(&pci_controller_lock, flags);
}
/* Reorder the pci_dev chain, so that onboard devices come first
* and then come the pluggable cards.
*/
static void __init pci_reorder_devs(void)
{
struct list_head *pci_onboard = &pci_devices;
struct list_head *walk = pci_onboard->next;
while (walk != pci_onboard) {
struct pci_dev *pdev = pci_dev_g(walk);
struct list_head *walk_next = walk->next;
if (pdev->irq && (__irq_ino(pdev->irq) & 0x20)) {
list_del(walk);
list_add(walk, pci_onboard);
}
walk = walk_next;
}
}
extern void rs_init(void);
extern void clock_probe(void);
extern void power_init(void);
void __init pcibios_init(void)
{
pci_controller_probe();
if (pci_controller_root == NULL)
return;
pci_scan_each_controller_bus();
if (pci_device_reorder)
pci_reorder_devs();
isa_init();
ebus_init();
rs_init();
clock_probe();
power_init();
}
struct pci_fixup pcibios_fixups[] = {
{ 0 }
};
void pcibios_fixup_bus(struct pci_bus *pbus)
{
struct pci_pbm_info *pbm = pbus->sysdata;
/* Generic PCI bus probing sets these to point at
* &io{port,mem}_resouce which is wrong for us.
*/
pbus->resource[0] = &pbm->io_space;
pbus->resource[1] = &pbm->mem_space;
}
/* NOTE: This can get called before we've fixed up pdev->sysdata. */
int pci_claim_resource(struct pci_dev *pdev, int resource)
{
struct pci_pbm_info *pbm = pci_bus2pbm[pdev->bus->number];
struct resource *res = &pdev->resource[resource];
struct resource *root;
if (!pbm)
return -EINVAL;
if (res->flags & IORESOURCE_IO)
root = &pbm->io_space;
else
root = &pbm->mem_space;
pbm->parent->resource_adjust(pdev, res, root);
return request_resource(root, res);
}
int pci_assign_resource(struct pci_dev *pdev, int resource)
{
struct pcidev_cookie *pcp = pdev->sysdata;
struct pci_pbm_info *pbm = pcp->pbm;
struct resource *res = &pdev->resource[resource];
struct resource *root;
unsigned long min, max, size, align;
int err;
if (res->flags & IORESOURCE_IO) {
root = &pbm->io_space;
min = root->start + 0x400UL;
max = root->end;
} else {
root = &pbm->mem_space;
min = root->start;
max = min + 0x80000000UL;
}
size = res->end - res->start;
align = size + 1;
err = allocate_resource(root, res, size + 1, min, max, align, NULL, NULL);
if (err < 0) {
printk("PCI: Failed to allocate resource %d for %s\n",
resource, pdev->name);
} else {
pbm->parent->base_address_update(pdev, resource);
}
return err;
}
void pcibios_update_resource(struct pci_dev *pdev, struct resource *res1,
struct resource *res2, int index)
{
}
void pcibios_update_irq(struct pci_dev *pdev, int irq)
{
}
void pcibios_fixup_pbus_ranges(struct pci_bus *pbus,
struct pbus_set_ranges_data *pranges)
{
}
void pcibios_align_resource(void *data, struct resource *res, unsigned long size)
{
}
int pcibios_enable_device(struct pci_dev *pdev)
{
return 0;
}
char * __init pcibios_setup(char *str)
{
if (!strcmp(str, "onboardfirst")) {
pci_device_reorder = 1;
return NULL;
}
if (!strcmp(str, "noreorder")) {
pci_device_reorder = 0;
return NULL;
}
return str;
}
/* Platform support for /proc/bus/pci/X/Y mmap()s. */
/* If the user uses a host-bridge as the PCI device, he may use
* this to perform a raw mmap() of the I/O or MEM space behind
* that controller.
*
* This can be useful for execution of x86 PCI bios initialization code
* on a PCI card, like the xfree86 int10 stuff does.
*/
static int __pci_mmap_make_offset_bus(struct pci_dev *pdev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
struct pcidev_cookie *pcp = pdev->sysdata;
struct pci_pbm_info *pbm;
struct pci_controller_info *p;
unsigned long space_size, user_offset, user_size;
if (!pcp)
return -ENXIO;
pbm = pcp->pbm;
if (!pbm)
return -ENXIO;
p = pbm->parent;
if (p->pbms_same_domain) {
unsigned long lowest, highest;
lowest = ~0UL; highest = 0UL;
if (mmap_state == pci_mmap_io) {
if (p->pbm_A.io_space.flags) {
lowest = p->pbm_A.io_space.start;
highest = p->pbm_A.io_space.end + 1;
}
if (p->pbm_B.io_space.flags) {
if (lowest > p->pbm_B.io_space.start)
lowest = p->pbm_B.io_space.start;
if (highest < p->pbm_B.io_space.end + 1)
highest = p->pbm_B.io_space.end + 1;
}
space_size = highest - lowest;
} else {
if (p->pbm_A.mem_space.flags) {
lowest = p->pbm_A.mem_space.start;
highest = p->pbm_A.mem_space.end + 1;
}
if (p->pbm_B.mem_space.flags) {
if (lowest > p->pbm_B.mem_space.start)
lowest = p->pbm_B.mem_space.start;
if (highest < p->pbm_B.mem_space.end + 1)
highest = p->pbm_B.mem_space.end + 1;
}
space_size = highest - lowest;
}
} else {
if (mmap_state == pci_mmap_io) {
space_size = (pbm->io_space.end -
pbm->io_space.start) + 1;
} else {
space_size = (pbm->mem_space.end -
pbm->mem_space.start) + 1;
}
}
/* Make sure the request is in range. */
user_offset = vma->vm_pgoff << PAGE_SHIFT;
user_size = vma->vm_end - vma->vm_start;
if (user_offset >= space_size ||
(user_offset + user_size) > space_size)
return -EINVAL;
if (p->pbms_same_domain) {
unsigned long lowest = ~0UL;
if (mmap_state == pci_mmap_io) {
if (p->pbm_A.io_space.flags)
lowest = p->pbm_A.io_space.start;
if (p->pbm_B.io_space.flags &&
lowest > p->pbm_B.io_space.start)
lowest = p->pbm_B.io_space.start;
} else {
if (p->pbm_A.mem_space.flags)
lowest = p->pbm_A.mem_space.start;
if (p->pbm_B.mem_space.flags &&
lowest > p->pbm_B.mem_space.start)
lowest = p->pbm_B.mem_space.start;
}
vma->vm_pgoff = (lowest + user_offset) >> PAGE_SHIFT;
} else {
if (mmap_state == pci_mmap_io) {
vma->vm_pgoff = (pbm->io_space.start +
user_offset) >> PAGE_SHIFT;
} else {
vma->vm_pgoff = (pbm->mem_space.start +
user_offset) >> PAGE_SHIFT;
}
}
return 0;
}
/* Adjust vm_pgoff of VMA such that it is the physical page offset corresponding
* to the 32-bit pci bus offset for DEV requested by the user.
*
* Basically, the user finds the base address for his device which he wishes
* to mmap. They read the 32-bit value from the config space base register,
* add whatever PAGE_SIZE multiple offset they wish, and feed this into the
* offset parameter of mmap on /proc/bus/pci/XXX for that device.
*
* Returns negative error code on failure, zero on success.
*/
static int __pci_mmap_make_offset(struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
unsigned long user_offset = vma->vm_pgoff << PAGE_SHIFT;
unsigned long user32 = user_offset & pci_memspace_mask;
unsigned long largest_base, this_base, addr32;
int i;
if ((dev->class >> 8) == PCI_CLASS_BRIDGE_HOST)
return __pci_mmap_make_offset_bus(dev, vma, mmap_state);
/* Figure out which base address this is for. */
largest_base = 0UL;
for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
struct resource *rp = &dev->resource[i];
/* Active? */
if (!rp->flags)
continue;
/* Same type? */
if (i == PCI_ROM_RESOURCE) {
if (mmap_state != pci_mmap_mem)
continue;
} else {
if ((mmap_state == pci_mmap_io &&
(rp->flags & IORESOURCE_IO) == 0) ||
(mmap_state == pci_mmap_mem &&
(rp->flags & IORESOURCE_MEM) == 0))
continue;
}
this_base = rp->start;
addr32 = (this_base & PAGE_MASK) & pci_memspace_mask;
if (mmap_state == pci_mmap_io)
addr32 &= 0xffffff;
if (addr32 <= user32 && this_base > largest_base)
largest_base = this_base;
}
if (largest_base == 0UL)
return -EINVAL;
/* Now construct the final physical address. */
if (mmap_state == pci_mmap_io)
vma->vm_pgoff = (((largest_base & ~0xffffffUL) | user32) >> PAGE_SHIFT);
else
vma->vm_pgoff = (((largest_base & ~(pci_memspace_mask)) | user32) >> PAGE_SHIFT);
return 0;
}
/* Set vm_flags of VMA, as appropriate for this architecture, for a pci device
* mapping.
*/
static void __pci_mmap_set_flags(struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
vma->vm_flags |= (VM_SHM | VM_LOCKED);
}
/* Set vm_page_prot of VMA, as appropriate for this architecture, for a pci
* device mapping.
*/
static void __pci_mmap_set_pgprot(struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
/* Our io_remap_page_range takes care of this, do nothing. */
}
extern int io_remap_page_range(struct vm_area_struct *vma, unsigned long from, unsigned long offset,
unsigned long size, pgprot_t prot, int space);
/* Perform the actual remap of the pages for a PCI device mapping, as appropriate
* for this architecture. The region in the process to map is described by vm_start
* and vm_end members of VMA, the base physical address is found in vm_pgoff.
* The pci device structure is provided so that architectures may make mapping
* decisions on a per-device or per-bus basis.
*
* Returns a negative error code on failure, zero on success.
*/
int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state,
int write_combine)
{
int ret;
ret = __pci_mmap_make_offset(dev, vma, mmap_state);
if (ret < 0)
return ret;
__pci_mmap_set_flags(dev, vma, mmap_state);
__pci_mmap_set_pgprot(dev, vma, mmap_state);
ret = io_remap_page_range(vma, vma->vm_start,
(vma->vm_pgoff << PAGE_SHIFT |
(write_combine ? 0x1UL : 0x0UL)),
vma->vm_end - vma->vm_start, vma->vm_page_prot, 0);
if (ret)
return ret;
vma->vm_flags |= VM_IO;
return 0;
}
/* Return the index of the PCI controller for device PDEV. */
int pci_controller_num(struct pci_dev *pdev)
{
struct pcidev_cookie *cookie = pdev->sysdata;
int ret;
if (cookie != NULL) {
struct pci_pbm_info *pbm = cookie->pbm;
if (pbm == NULL || pbm->parent == NULL) {
ret = -ENXIO;
} else {
struct pci_controller_info *p = pbm->parent;
ret = p->index;
if (p->pbms_same_domain == 0)
ret = ((ret << 1) +
((pbm == &pbm->parent->pbm_B) ? 1 : 0));
}
} else {
ret = -ENXIO;
}
return ret;
}
#endif /* !(CONFIG_PCI) */