| /****************************************************************************** |
| * |
| * Module Name: os.c - Linux OSL functions |
| * $Revision: 49 $ |
| * |
| *****************************************************************************/ |
| |
| /* |
| * os.c - OS-dependent functions |
| * |
| * Copyright (C) 2000 Andrew Henroid |
| * Copyright (C) 2001 Andrew Grover |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| /* Changes |
| * |
| * Christopher Liebman <liebman@sponsera.com> 2001-5-15 |
| * - Fixed improper kernel_thread parameters |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/mm.h> |
| #include <linux/pci.h> |
| #include <linux/interrupt.h> |
| #include <linux/kmod.h> |
| #include <linux/delay.h> |
| #include <asm/io.h> |
| #include <acpi.h> |
| |
| #ifdef CONFIG_ACPI_EFI |
| #include <asm/efi.h> |
| #endif |
| |
| #ifdef _IA64 |
| #include <asm/hw_irq.h> |
| #endif |
| |
| #define _COMPONENT ACPI_OS_SERVICES |
| MODULE_NAME ("os") |
| |
| typedef struct |
| { |
| OSD_EXECUTION_CALLBACK function; |
| void *context; |
| } ACPI_OS_DPC; |
| |
| |
| /***************************************************************************** |
| * Debugger Stuff |
| *****************************************************************************/ |
| |
| #ifdef ENABLE_DEBUGGER |
| |
| #include <linux/kdb.h> |
| |
| /* stuff for debugger support */ |
| int acpi_in_debugger = 0; |
| extern NATIVE_CHAR line_buf[80]; |
| |
| #endif |
| |
| |
| /***************************************************************************** |
| * Globals |
| *****************************************************************************/ |
| |
| static int acpi_irq_irq = 0; |
| static OSD_HANDLER acpi_irq_handler = NULL; |
| static void *acpi_irq_context = NULL; |
| |
| |
| /****************************************************************************** |
| * Functions |
| *****************************************************************************/ |
| |
| acpi_status |
| acpi_os_initialize(void) |
| { |
| return AE_OK; |
| } |
| |
| acpi_status |
| acpi_os_terminate(void) |
| { |
| if (acpi_irq_handler) { |
| acpi_os_remove_interrupt_handler(acpi_irq_irq, |
| acpi_irq_handler); |
| } |
| |
| return AE_OK; |
| } |
| |
| s32 |
| acpi_os_printf(const NATIVE_CHAR *fmt,...) |
| { |
| s32 size; |
| va_list args; |
| va_start(args, fmt); |
| size = acpi_os_vprintf(fmt, args); |
| va_end(args); |
| |
| return size; |
| } |
| |
| s32 |
| acpi_os_vprintf(const NATIVE_CHAR *fmt, va_list args) |
| { |
| static char buffer[512]; |
| int size = vsprintf(buffer, fmt, args); |
| |
| #ifdef ENABLE_DEBUGGER |
| if (acpi_in_debugger) { |
| kdb_printf("%s", buffer); |
| } else { |
| printk("%s", buffer); |
| } |
| #else |
| printk("%s", buffer); |
| #endif |
| |
| return size; |
| } |
| |
| void * |
| acpi_os_allocate(u32 size) |
| { |
| return kmalloc(size, GFP_KERNEL); |
| } |
| |
| void * |
| acpi_os_callocate(u32 size) |
| { |
| void *ptr = acpi_os_allocate(size); |
| if (ptr) |
| memset(ptr, 0, size); |
| |
| return ptr; |
| } |
| |
| void |
| acpi_os_free(void *ptr) |
| { |
| kfree(ptr); |
| } |
| |
| |
| acpi_status |
| acpi_os_get_root_pointer(u32 flags, ACPI_PHYSICAL_ADDRESS *phys_addr) |
| { |
| #ifndef CONFIG_ACPI_EFI |
| if (ACPI_FAILURE(acpi_find_root_pointer(flags, phys_addr))) { |
| printk(KERN_ERR "ACPI: System description tables not found\n"); |
| return AE_ERROR; |
| } |
| #else /*CONFIG_ACPI_EFI*/ |
| if (efi.acpi20) |
| *phys_addr = (ACPI_PHYSICAL_ADDRESS) efi.acpi20; |
| else if (efi.acpi) |
| *phys_addr = (ACPI_PHYSICAL_ADDRESS) efi.acpi; |
| else { |
| printk(KERN_ERR "ACPI: System description tables not found\n"); |
| *phys_addr = NULL; |
| return AE_ERROR; |
| } |
| #endif /*CONFIG_ACPI_EFI*/ |
| |
| return AE_OK; |
| } |
| |
| acpi_status |
| acpi_os_map_memory(ACPI_PHYSICAL_ADDRESS phys, u32 size, void **virt) |
| { |
| if (phys > ULONG_MAX) { |
| printk(KERN_ERR "ACPI: Cannot map memory that high\n"); |
| return AE_ERROR; |
| } |
| |
| *virt = ioremap((unsigned long) phys, size); |
| if (!*virt) |
| return AE_ERROR; |
| |
| return AE_OK; |
| } |
| |
| void |
| acpi_os_unmap_memory(void *virt, u32 size) |
| { |
| iounmap(virt); |
| } |
| |
| acpi_status |
| acpi_os_get_physical_address(void *virt, ACPI_PHYSICAL_ADDRESS *phys) |
| { |
| if(!phys || !virt) |
| return AE_BAD_PARAMETER; |
| |
| *phys = virt_to_phys(virt); |
| |
| return AE_OK; |
| } |
| |
| static void |
| acpi_irq(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| (*acpi_irq_handler)(acpi_irq_context); |
| } |
| |
| acpi_status |
| acpi_os_install_interrupt_handler(u32 irq, OSD_HANDLER handler, void *context) |
| { |
| #ifdef _IA64 |
| irq = isa_irq_to_vector(irq); |
| #endif /*_IA64*/ |
| acpi_irq_irq = irq; |
| acpi_irq_handler = handler; |
| acpi_irq_context = context; |
| if (request_irq(irq, |
| acpi_irq, |
| SA_SHIRQ, |
| "acpi", |
| acpi_irq)) { |
| printk(KERN_ERR "ACPI: SCI (IRQ%d) allocation failed\n", irq); |
| return AE_ERROR; |
| } |
| |
| return AE_OK; |
| } |
| |
| acpi_status |
| acpi_os_remove_interrupt_handler(u32 irq, OSD_HANDLER handler) |
| { |
| if (acpi_irq_handler) { |
| #ifdef _IA64 |
| irq = isa_irq_to_vector(irq); |
| #endif /*_IA64*/ |
| free_irq(irq, acpi_irq); |
| acpi_irq_handler = NULL; |
| } |
| |
| return AE_OK; |
| } |
| |
| /* |
| * Running in interpreter thread context, safe to sleep |
| */ |
| |
| void |
| acpi_os_sleep(u32 sec, u32 ms) |
| { |
| current->state = TASK_INTERRUPTIBLE; |
| schedule_timeout(HZ * sec + (ms * HZ) / 1000); |
| } |
| |
| void |
| acpi_os_stall(u32 us) |
| { |
| if (us > 10000) { |
| mdelay(us / 1000); |
| } |
| else { |
| udelay(us); |
| } |
| } |
| |
| acpi_status |
| acpi_os_read_port( |
| ACPI_IO_ADDRESS port, |
| void *value, |
| u32 width) |
| { |
| u32 dummy; |
| |
| if (!value) |
| value = &dummy; |
| |
| switch (width) |
| { |
| case 8: |
| *(u8*) value = inb(port); |
| break; |
| case 16: |
| *(u16*) value = inw(port); |
| break; |
| case 32: |
| *(u32*) value = inl(port); |
| break; |
| default: |
| BUG(); |
| } |
| |
| return AE_OK; |
| } |
| |
| acpi_status |
| acpi_os_write_port( |
| ACPI_IO_ADDRESS port, |
| NATIVE_UINT value, |
| u32 width) |
| { |
| switch (width) |
| { |
| case 8: |
| outb(value, port); |
| break; |
| case 16: |
| outw(value, port); |
| break; |
| case 32: |
| outl(value, port); |
| break; |
| default: |
| BUG(); |
| } |
| |
| return AE_OK; |
| } |
| |
| acpi_status |
| acpi_os_read_memory( |
| ACPI_PHYSICAL_ADDRESS phys_addr, |
| void *value, |
| u32 width) |
| { |
| u32 dummy; |
| |
| if (!value) |
| value = &dummy; |
| |
| switch (width) |
| { |
| case 8: |
| *(u8*) value = *(u8*) phys_to_virt(phys_addr); |
| break; |
| case 16: |
| *(u16*) value = *(u16*) phys_to_virt(phys_addr); |
| break; |
| case 32: |
| *(u32*) value = *(u32*) phys_to_virt(phys_addr); |
| break; |
| default: |
| BUG(); |
| } |
| |
| return AE_OK; |
| } |
| |
| acpi_status |
| acpi_os_write_memory( |
| ACPI_PHYSICAL_ADDRESS phys_addr, |
| u32 value, |
| u32 width) |
| { |
| switch (width) |
| { |
| case 8: |
| *(u8*) phys_to_virt(phys_addr) = value; |
| break; |
| case 16: |
| *(u16*) phys_to_virt(phys_addr) = value; |
| break; |
| case 32: |
| *(u32*) phys_to_virt(phys_addr) = value; |
| break; |
| default: |
| BUG(); |
| } |
| |
| return AE_OK; |
| } |
| |
| |
| #ifdef CONFIG_ACPI_PCI |
| |
| /* Architecture-dependent low-level PCI configuration access functions. */ |
| extern int (*pci_config_read)(int seg, int bus, int dev, int fn, int reg, int len, u32 *val); |
| extern int (*pci_config_write)(int seg, int bus, int dev, int fn, int reg, int len, u32 val); |
| |
| acpi_status |
| acpi_os_read_pci_configuration ( |
| acpi_pci_id *pci_id, |
| u32 reg, |
| void *value, |
| u32 width) |
| { |
| int result = 0; |
| if (!value) |
| return AE_ERROR; |
| |
| switch (width) |
| { |
| case 8: |
| result = pci_config_read(pci_id->segment, pci_id->bus, |
| pci_id->device, pci_id->function, reg, 1, value); |
| break; |
| case 16: |
| result = pci_config_read(pci_id->segment, pci_id->bus, |
| pci_id->device, pci_id->function, reg, 2, value); |
| break; |
| case 32: |
| result = pci_config_read(pci_id->segment, pci_id->bus, |
| pci_id->device, pci_id->function, reg, 4, value); |
| break; |
| default: |
| BUG(); |
| } |
| |
| return (result ? AE_ERROR : AE_OK); |
| } |
| |
| acpi_status |
| acpi_os_write_pci_configuration ( |
| acpi_pci_id *pci_id, |
| u32 reg, |
| NATIVE_UINT value, |
| u32 width) |
| { |
| int result = 0; |
| |
| switch (width) |
| { |
| case 8: |
| result = pci_config_write(pci_id->segment, pci_id->bus, |
| pci_id->device, pci_id->function, reg, 1, value); |
| break; |
| case 16: |
| result = pci_config_write(pci_id->segment, pci_id->bus, |
| pci_id->device, pci_id->function, reg, 2, value); |
| break; |
| case 32: |
| result = pci_config_write(pci_id->segment, pci_id->bus, |
| pci_id->device, pci_id->function, reg, 4, value); |
| break; |
| default: |
| BUG(); |
| } |
| |
| return (result ? AE_ERROR : AE_OK); |
| } |
| |
| #else /*CONFIG_ACPI_PCI*/ |
| |
| acpi_status |
| acpi_os_read_pci_configuration ( |
| acpi_pci_id *pci_id, |
| u32 reg, |
| void *value, |
| u32 width) |
| { |
| int devfn = PCI_DEVFN(pci_id->device, pci_id->function); |
| struct pci_dev *dev = pci_find_slot(pci_id->bus, devfn); |
| |
| if (!value || !dev) |
| return AE_ERROR; |
| |
| switch (width) |
| { |
| case 8: |
| if (pci_read_config_byte(dev, reg, (u8*) value)) |
| return AE_ERROR; |
| break; |
| case 16: |
| if (pci_read_config_word(dev, reg, (u16*) value)) |
| return AE_ERROR; |
| break; |
| case 32: |
| if (pci_read_config_dword(dev, reg, (u32*) value)) |
| return AE_ERROR; |
| break; |
| default: |
| BUG(); |
| } |
| |
| return AE_OK; |
| } |
| |
| acpi_status |
| acpi_os_write_pci_configuration ( |
| acpi_pci_id *pci_id, |
| u32 reg, |
| u32 value, |
| u32 width) |
| { |
| int devfn = PCI_DEVFN(pci_id->device, pci_id->function); |
| struct pci_dev *dev = pci_find_slot(pci_id->bus, devfn); |
| |
| if (!dev) |
| return AE_ERROR; |
| |
| switch (width) |
| { |
| case 8: |
| if (pci_write_config_byte(dev, reg, value)) |
| return AE_ERROR; |
| break; |
| case 16: |
| if (pci_write_config_word(dev, reg, value)) |
| return AE_ERROR; |
| break; |
| case 32: |
| if (pci_write_config_dword(dev, reg, value)) |
| return AE_ERROR; |
| break; |
| default: |
| BUG(); |
| } |
| |
| return AE_OK; |
| } |
| |
| #endif /*CONFIG_ACPI_PCI*/ |
| |
| |
| acpi_status |
| acpi_os_load_module ( |
| char *module_name) |
| { |
| PROC_NAME("acpi_os_load_module"); |
| |
| if (!module_name) |
| return AE_BAD_PARAMETER; |
| |
| if (0 > request_module(module_name)) { |
| ACPI_DEBUG_PRINT ((ACPI_DB_WARN, "Unable to load module [%s].\n", module_name)); |
| return AE_ERROR; |
| } |
| |
| return AE_OK; |
| } |
| |
| acpi_status |
| acpi_os_unload_module ( |
| char *module_name) |
| { |
| if (!module_name) |
| return AE_BAD_PARAMETER; |
| |
| /* TODO: How on Linux? */ |
| /* this is done automatically for all modules with |
| use_count = 0, I think. see: MOD_INC_USE_COUNT -ASG */ |
| |
| return AE_OK; |
| } |
| |
| |
| /* |
| * See acpi_os_queue_for_execution() |
| */ |
| static int |
| acpi_os_queue_exec ( |
| void *context) |
| { |
| ACPI_OS_DPC *dpc = (ACPI_OS_DPC*)context; |
| |
| PROC_NAME("acpi_os_queue_exec"); |
| |
| daemonize(); |
| strcpy(current->comm, "kacpidpc"); |
| |
| if (!dpc || !dpc->function) |
| return AE_BAD_PARAMETER; |
| |
| ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Executing function [%p(%p)].\n", dpc->function, dpc->context)); |
| |
| dpc->function(dpc->context); |
| |
| kfree(dpc); |
| |
| return 1; |
| } |
| |
| static void |
| acpi_os_schedule_exec ( |
| void *context) |
| { |
| ACPI_OS_DPC *dpc = NULL; |
| int thread_pid = -1; |
| |
| PROC_NAME("acpi_os_schedule_exec"); |
| |
| dpc = (ACPI_OS_DPC*)context; |
| if (!dpc) { |
| ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Invalid (NULL) context.\n")); |
| return; |
| } |
| |
| ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Creating new thread to run function [%p(%p)].\n", dpc->function, dpc->context)); |
| |
| thread_pid = kernel_thread(acpi_os_queue_exec, dpc, |
| (CLONE_FS | CLONE_FILES | SIGCHLD)); |
| if (thread_pid < 0) { |
| ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Call to kernel_thread() failed.\n")); |
| acpi_os_free(dpc); |
| } |
| } |
| |
| acpi_status |
| acpi_os_queue_for_execution( |
| u32 priority, |
| OSD_EXECUTION_CALLBACK function, |
| void *context) |
| { |
| acpi_status status = AE_OK; |
| ACPI_OS_DPC *dpc = NULL; |
| |
| PROC_NAME("acpi_os_queue_for_execution"); |
| |
| ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Scheduling function [%p(%p)] for deferred execution.\n", function, context)); |
| |
| if (!function) |
| return AE_BAD_PARAMETER; |
| |
| /* |
| * Queue via DPC: |
| * -------------- |
| * Note that we have to use two different processes for queuing DPCs: |
| * Interrupt-Level: Use schedule_task; can't spawn a new thread. |
| * Kernel-Level: Spawn a new kernel thread, as schedule_task has |
| * its limitations (e.g. single-threaded model), and |
| * all other task queues run at interrupt-level. |
| */ |
| switch (priority) { |
| |
| case OSD_PRIORITY_GPE: |
| { |
| static struct tq_struct task; |
| |
| /* |
| * Allocate/initialize DPC structure. Note that this memory will be |
| * freed by the callee. |
| */ |
| dpc = kmalloc(sizeof(ACPI_OS_DPC), GFP_ATOMIC); |
| if (!dpc) |
| return AE_NO_MEMORY; |
| |
| dpc->function = function; |
| dpc->context = context; |
| |
| memset(&task, 0, sizeof(struct tq_struct)); |
| |
| task.routine = acpi_os_schedule_exec; |
| task.data = (void*)dpc; |
| |
| if (schedule_task(&task) < 0) { |
| ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Call to schedule_task() failed.\n")); |
| status = AE_ERROR; |
| } |
| } |
| break; |
| |
| default: |
| /* |
| * Allocate/initialize DPC structure. Note that this memory will be |
| * freed by the callee. |
| */ |
| dpc = kmalloc(sizeof(ACPI_OS_DPC), GFP_KERNEL); |
| if (!dpc) |
| return AE_NO_MEMORY; |
| |
| dpc->function = function; |
| dpc->context = context; |
| |
| acpi_os_schedule_exec(dpc); |
| break; |
| } |
| |
| return status; |
| } |
| |
| |
| acpi_status |
| acpi_os_create_semaphore( |
| u32 max_units, |
| u32 initial_units, |
| acpi_handle *handle) |
| { |
| struct semaphore *sem = NULL; |
| |
| PROC_NAME("acpi_os_create_semaphore"); |
| |
| sem = acpi_os_callocate(sizeof(struct semaphore)); |
| if (!sem) |
| return AE_NO_MEMORY; |
| |
| sema_init(sem, initial_units); |
| |
| *handle = (acpi_handle*)sem; |
| |
| ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Creating semaphore[%p|%d].\n", *handle, initial_units)); |
| |
| return AE_OK; |
| } |
| |
| |
| /* |
| * TODO: A better way to delete semaphores? Linux doesn't have a |
| * 'delete_semaphore()' function -- may result in an invalid |
| * pointer dereference for non-synchronized consumers. Should |
| * we at least check for blocked threads and signal/cancel them? |
| */ |
| |
| acpi_status |
| acpi_os_delete_semaphore( |
| acpi_handle handle) |
| { |
| struct semaphore *sem = (struct semaphore*) handle; |
| |
| PROC_NAME("acpi_os_delete_semaphore"); |
| |
| if (!sem) |
| return AE_BAD_PARAMETER; |
| |
| ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Deleting semaphore[%p].\n", handle)); |
| |
| acpi_os_free(sem); sem = NULL; |
| |
| return AE_OK; |
| } |
| |
| |
| /* |
| * TODO: The kernel doesn't have a 'down_timeout' function -- had to |
| * improvise. The process is to sleep for one scheduler quantum |
| * until the semaphore becomes available. Downside is that this |
| * may result in starvation for timeout-based waits when there's |
| * lots of semaphore activity. |
| * |
| * TODO: Support for units > 1? |
| */ |
| acpi_status |
| acpi_os_wait_semaphore( |
| acpi_handle handle, |
| u32 units, |
| u32 timeout) |
| { |
| acpi_status status = AE_OK; |
| struct semaphore *sem = (struct semaphore*)handle; |
| int ret = 0; |
| |
| PROC_NAME("acpi_os_wait_semaphore"); |
| |
| if (!sem || (units < 1)) |
| return AE_BAD_PARAMETER; |
| |
| if (units > 1) |
| return AE_SUPPORT; |
| |
| ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Waiting for semaphore[%p|%d|%d]\n", handle, units, timeout)); |
| |
| switch (timeout) |
| { |
| /* |
| * No Wait: |
| * -------- |
| * A zero timeout value indicates that we shouldn't wait - just |
| * acquire the semaphore if available otherwise return AE_TIME |
| * (a.k.a. 'would block'). |
| */ |
| case 0: |
| if(down_trylock(sem)) |
| status = AE_TIME; |
| break; |
| |
| /* |
| * Wait Indefinitely: |
| * ------------------ |
| */ |
| case WAIT_FOREVER: |
| ret = down_interruptible(sem); |
| if (ret < 0) |
| status = AE_ERROR; |
| break; |
| |
| /* |
| * Wait w/ Timeout: |
| * ---------------- |
| */ |
| default: |
| // TODO: A better timeout algorithm? |
| { |
| int i = 0; |
| static const int quantum_ms = 1000/HZ; |
| |
| ret = down_trylock(sem); |
| for (i = timeout; (i > 0 && ret < 0); i -= quantum_ms) { |
| current->state = TASK_INTERRUPTIBLE; |
| schedule_timeout(1); |
| ret = down_trylock(sem); |
| } |
| |
| if (ret != 0) |
| status = AE_TIME; |
| } |
| break; |
| } |
| |
| if (ACPI_FAILURE(status)) { |
| ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Failed to acquire semaphore[%p|%d|%d]\n", handle, units, timeout)); |
| } |
| else { |
| ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Acquired semaphore[%p|%d|%d]\n", handle, units, timeout)); |
| } |
| |
| return status; |
| } |
| |
| |
| /* |
| * TODO: Support for units > 1? |
| */ |
| acpi_status |
| acpi_os_signal_semaphore( |
| acpi_handle handle, |
| u32 units) |
| { |
| struct semaphore *sem = (struct semaphore *) handle; |
| |
| PROC_NAME("acpi_os_signal_semaphore"); |
| |
| if (!sem || (units < 1)) |
| return AE_BAD_PARAMETER; |
| |
| if (units > 1) |
| return AE_SUPPORT; |
| |
| ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Signaling semaphore[%p|%d]\n", handle, units)); |
| |
| up(sem); |
| |
| return AE_OK; |
| } |
| |
| u32 |
| acpi_os_get_line(NATIVE_CHAR *buffer) |
| { |
| |
| #ifdef ENABLE_DEBUGGER |
| if (acpi_in_debugger) { |
| u32 chars; |
| |
| kdb_read(buffer, sizeof(line_buf)); |
| |
| /* remove the CR kdb includes */ |
| chars = strlen(buffer) - 1; |
| buffer[chars] = '\0'; |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| /* |
| * We just have to assume we're dealing with valid memory |
| */ |
| |
| BOOLEAN |
| acpi_os_readable(void *ptr, u32 len) |
| { |
| return 1; |
| } |
| |
| BOOLEAN |
| acpi_os_writable(void *ptr, u32 len) |
| { |
| return 1; |
| } |
| |
| u32 |
| acpi_os_get_thread_id (void) |
| { |
| if (!in_interrupt()) |
| return current->pid; |
| |
| return 0; |
| } |
| |
| acpi_status |
| acpi_os_signal ( |
| u32 function, |
| void *info) |
| { |
| switch (function) |
| { |
| case ACPI_SIGNAL_FATAL: |
| printk(KERN_ERR "ACPI: Fatal opcode executed\n"); |
| break; |
| case ACPI_SIGNAL_BREAKPOINT: |
| { |
| char *bp_info = (char*) info; |
| |
| printk(KERN_ERR "ACPI breakpoint: %s\n", bp_info); |
| } |
| default: |
| break; |
| } |
| |
| return AE_OK; |
| } |
| |
| acpi_status |
| acpi_os_breakpoint(NATIVE_CHAR *msg) |
| { |
| acpi_os_printf("breakpoint: %s", msg); |
| |
| return AE_OK; |
| } |
| |