blob: 9f792a43f0d7932ebbd0078775eca13ccd06952c [file] [log] [blame]
/*
* Driver for the Macintosh 68K onboard MACE controller with PSC
* driven DMA. The MACE driver code is derived from mace.c. The
* Mac68k theory of operation is courtesy of the MacBSD wizards.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Copyright (C) 1996 Paul Mackerras.
* Copyright (C) 1998 Alan Cox <alan@redhat.com>
*/
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/crc32.h>
#include <asm/io.h>
#include <asm/pgtable.h>
#include <asm/irq.h>
#include <asm/macintosh.h>
#include <asm/macints.h>
#include <asm/mac_psc.h>
#include "mace.h"
#define N_RX_RING 8
#define N_TX_RING 2
#define MAX_TX_ACTIVE 1
#define NCMDS_TX 1 /* dma commands per element in tx ring */
#define RX_BUFLEN (ETH_FRAME_LEN + 8)
#define TX_TIMEOUT HZ /* 1 second */
/* Bits in transmit DMA status */
#define TX_DMA_ERR 0x80
/* The MACE is simply wired down on a Mac68K box */
#define MACE_BASE (void *)(0x50F1C000)
#define MACE_PROM (void *)(0x50F08001)
struct mace68k_data
{
volatile struct mace *mace;
volatile unsigned char *tx_ring;
volatile unsigned char *rx_ring;
int dma_intr;
unsigned char maccc;
struct net_device_stats stats;
struct timer_list tx_timeout;
int timeout_active;
int rx_slot, rx_done;
int tx_slot, tx_count;
};
struct mace_frame
{
u16 len;
u16 status;
u16 rntpc;
u16 rcvcc;
u32 pad1;
u32 pad2;
u8 data[1];
/* And frame continues.. */
};
#define PRIV_BYTES sizeof(struct mace68k_data)
extern void psc_debug_dump(void);
static int mace68k_open(struct net_device *dev);
static int mace68k_close(struct net_device *dev);
static int mace68k_xmit_start(struct sk_buff *skb, struct net_device *dev);
static struct net_device_stats *mace68k_stats(struct net_device *dev);
static void mace68k_set_multicast(struct net_device *dev);
static void mace68k_reset(struct net_device *dev);
static int mace68k_set_address(struct net_device *dev, void *addr);
static void mace68k_interrupt(int irq, void *dev_id, struct pt_regs *regs);
static void mace68k_dma_intr(int irq, void *dev_id, struct pt_regs *regs);
static void mace68k_set_timeout(struct net_device *dev);
static void mace68k_tx_timeout(unsigned long data);
/*
* PSC DMA engine control. As you'd expect on a macintosh its
* more like a lawnmower engine supplied without instructions
*
* The basic theory of operation appears to be as follows.
*
* There are two sets of receive DMA registers and two sets
* of transmit DMA registers. Instead of the more traditional
* "ring buffer" approach the Mac68K DMA engine expects you
* to be loading one chain while the other runs, and then
* to flip register set. Each entry in the chain is a fixed
* length.
*/
/*
* Load a receive DMA channel with a base address and ring length
*/
static void psc_load_rxdma_base(int set, void *base)
{
psc_write_word(PSC_ENETRD_CMD + set, 0x0100);
psc_write_long(PSC_ENETRD_ADDR + set, (u32)base);
psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING);
psc_write_word(PSC_ENETRD_CMD + set, 0x9800);
}
/*
* Reset the receive DMA subsystem
*/
static void mace68k_rxdma_reset(struct net_device *dev)
{
struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
volatile struct mace *mace = mp->mace;
u8 mcc = mace->maccc;
/*
* Turn off receive
*/
mcc&=~ENRCV;
mace->maccc=mcc;
/*
* Program the DMA
*/
psc_write_word(PSC_ENETRD_CTL, 0x8800);
psc_load_rxdma_base(0x0, (void *)virt_to_bus(mp->rx_ring));
psc_write_word(PSC_ENETRD_CTL, 0x0400);
psc_write_word(PSC_ENETRD_CTL, 0x8800);
psc_load_rxdma_base(0x10, (void *)virt_to_bus(mp->rx_ring));
psc_write_word(PSC_ENETRD_CTL, 0x0400);
mace->maccc=mcc|ENRCV;
#if 0
psc_write_word(PSC_ENETRD_CTL, 0x9800);
psc_write_word(PSC_ENETRD_CTL+0x10, 0x9800);
#endif
}
/*
* Reset the transmit DMA subsystem
*/
static void mace68k_txdma_reset(struct net_device *dev)
{
struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
volatile struct mace *mace = mp->mace;
u8 mcc = mace->maccc;
psc_write_word(PSC_ENETWR_CTL,0x8800);
mace->maccc = mcc&~ENXMT;
psc_write_word(PSC_ENETWR_CTL,0x0400);
mace->maccc = mcc;
}
/*
* Disable DMA
*/
static void mace68k_dma_off(struct net_device *dev)
{
psc_write_word(PSC_ENETRD_CTL, 0x8800);
psc_write_word(PSC_ENETRD_CTL, 0x1000);
psc_write_word(PSC_ENETRD_CMD, 0x1100);
psc_write_word(PSC_ENETRD_CMD+0x10, 0x1100);
psc_write_word(PSC_ENETWR_CTL, 0x8800);
psc_write_word(PSC_ENETWR_CTL, 0x1000);
psc_write_word(PSC_ENETWR_CMD, 0x1100);
psc_write_word(PSC_ENETWR_CMD+0x10, 0x1100);
}
/* Bit-reverse one byte of an ethernet hardware address. */
static int bitrev(int b)
{
int d = 0, i;
for (i = 0; i < 8; ++i, b >>= 1)
d = (d << 1) | (b & 1);
return d;
}
/*
* Not really much of a probe. The hardware table tells us if this
* model of Macintrash has a MACE (AV macintoshes)
*/
int mace68k_probe(struct net_device *unused)
{
int j;
static int once;
struct mace68k_data *mp;
unsigned char *addr;
struct net_device *dev;
unsigned char checksum = 0;
/*
* There can be only one...
*/
if (once) return -ENODEV;
once = 1;
if (macintosh_config->ether_type != MAC_ETHER_MACE) return -ENODEV;
printk("MACE ethernet should be present ");
dev = init_etherdev(0, PRIV_BYTES);
if(dev==NULL)
{
printk("no free memory.\n");
return -ENOMEM;
}
mp = (struct mace68k_data *) dev->priv;
dev->base_addr = (u32)MACE_BASE;
mp->mace = (volatile struct mace *) MACE_BASE;
printk("at 0x%p", mp->mace);
/*
* 16K RX ring and 4K TX ring should do nicely
*/
mp->rx_ring=(void *)__get_free_pages(GFP_KERNEL, 2);
mp->tx_ring=(void *)__get_free_page(GFP_KERNEL);
printk(".");
if(mp->tx_ring==NULL || mp->rx_ring==NULL)
{
if(mp->tx_ring)
free_page((u32)mp->tx_ring);
// if(mp->rx_ring)
// __free_pages(mp->rx_ring,2);
printk("\nNo memory for ring buffers.\n");
return -ENOMEM;
}
/* We want the receive data to be uncached. We dont care about the
byte reading order */
printk(".");
kernel_set_cachemode((void *)mp->rx_ring, 16384, IOMAP_NOCACHE_NONSER);
printk(".");
/* The transmit buffer needs to be write through */
kernel_set_cachemode((void *)mp->tx_ring, 4096, IOMAP_WRITETHROUGH);
printk(" Ok\n");
dev->irq = IRQ_MAC_MACE;
printk(KERN_INFO "%s: MACE at", dev->name);
/*
* The PROM contains 8 bytes which total 0xFF when XOR'd
* together. Due to the usual peculiar apple brain damage
* the bytes are spaced out in a strange boundary and the
* bits are reversed.
*/
addr = (void *)MACE_PROM;
for (j = 0; j < 6; ++j)
{
u8 v=bitrev(addr[j<<4]);
checksum^=v;
dev->dev_addr[j] = v;
printk("%c%.2x", (j ? ':' : ' '), dev->dev_addr[j]);
}
for (; j < 8; ++j)
{
checksum^=bitrev(addr[j<<4]);
}
if(checksum!=0xFF)
{
printk(" (invalid checksum)\n");
return -ENODEV;
}
printk("\n");
memset(&mp->stats, 0, sizeof(mp->stats));
init_timer(&mp->tx_timeout);
mp->timeout_active = 0;
dev->open = mace68k_open;
dev->stop = mace68k_close;
dev->hard_start_xmit = mace68k_xmit_start;
dev->get_stats = mace68k_stats;
dev->set_multicast_list = mace68k_set_multicast;
dev->set_mac_address = mace68k_set_address;
ether_setup(dev);
mp = (struct mace68k_data *) dev->priv;
mp->maccc = ENXMT | ENRCV;
mp->dma_intr = IRQ_MAC_MACE_DMA;
psc_write_word(PSC_ENETWR_CTL, 0x9000);
psc_write_word(PSC_ENETRD_CTL, 0x9000);
psc_write_word(PSC_ENETWR_CTL, 0x0400);
psc_write_word(PSC_ENETRD_CTL, 0x0400);
/* apple's driver doesn't seem to do this */
/* except at driver shutdown time... */
#if 0
mace68k_dma_off(dev);
#endif
return 0;
}
/*
* Reset a MACE controller
*/
static void mace68k_reset(struct net_device *dev)
{
struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
volatile struct mace *mb = mp->mace;
int i;
/* soft-reset the chip */
i = 200;
while (--i) {
mb->biucc = SWRST;
if (mb->biucc & SWRST) {
udelay(10);
continue;
}
break;
}
if (!i) {
printk(KERN_ERR "mace: cannot reset chip!\n");
return;
}
mb->biucc = XMTSP_64;
mb->imr = 0xff; /* disable all intrs for now */
i = mb->ir;
mb->maccc = 0; /* turn off tx, rx */
mb->utr = RTRD;
mb->fifocc = RCVFW_64;
mb->xmtfc = AUTO_PAD_XMIT; /* auto-pad short frames */
/* load up the hardware address */
mb->iac = ADDRCHG | PHYADDR;
while ((mb->iac & ADDRCHG) != 0);
for (i = 0; i < 6; ++i)
mb->padr = dev->dev_addr[i];
/* clear the multicast filter */
mb->iac = ADDRCHG | LOGADDR;
while ((mb->iac & ADDRCHG) != 0);
for (i = 0; i < 8; ++i)
mb->ladrf = 0;
mb->plscc = PORTSEL_GPSI + ENPLSIO;
}
/*
* Load the address on a mace controller.
*/
static int mace68k_set_address(struct net_device *dev, void *addr)
{
unsigned char *p = addr;
struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
volatile struct mace *mb = mp->mace;
int i;
unsigned long flags;
save_flags(flags);
cli();
/* load up the hardware address */
mb->iac = ADDRCHG | PHYADDR;
while ((mb->iac & ADDRCHG) != 0);
for (i = 0; i < 6; ++i)
mb->padr = dev->dev_addr[i] = p[i];
/* note: setting ADDRCHG clears ENRCV */
mb->maccc = mp->maccc;
restore_flags(flags);
return 0;
}
/*
* Open the Macintosh MACE. Most of this is playing with the DMA
* engine. The ethernet chip is quite friendly.
*/
static int mace68k_open(struct net_device *dev)
{
struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
volatile struct mace *mb = mp->mace;
/* reset the chip */
mace68k_reset(dev);
mp->rx_done = 0;
mace68k_rxdma_reset(dev);
/*
* The interrupt is fixed and comes off the PSC.
*/
if (request_irq(dev->irq, mace68k_interrupt, 0, "68K MACE", dev))
{
printk(KERN_ERR "MACE: can't get irq %d\n", dev->irq);
return -EAGAIN;
}
/*
* Ditto the DMA interrupt.
*/
if (request_irq(IRQ_MAC_MACE_DMA, mace68k_dma_intr, 0, "68K MACE DMA",
dev))
{
printk(KERN_ERR "MACE: can't get irq %d\n", IRQ_MAC_MACE_DMA);
return -EAGAIN;
}
/* Activate the Mac DMA engine */
mp->tx_slot = 0; /* Using register set 0 */
mp->tx_count = 1; /* 1 Buffer ready for use */
mace68k_txdma_reset(dev);
/* turn it on! */
mb->maccc = mp->maccc;
/* enable all interrupts except receive interrupts */
mb->imr = RCVINT;
return 0;
}
/*
* Shut down the mace and its interrupt channel
*/
static int mace68k_close(struct net_device *dev)
{
struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
volatile struct mace *mb = mp->mace;
/* disable rx and tx */
mb->maccc = 0;
mb->imr = 0xff; /* disable all intrs */
/* disable rx and tx dma */
mace68k_dma_off(dev);
free_irq(dev->irq, dev);
free_irq(IRQ_MAC_MACE_DMA, dev);
return 0;
}
static inline void mace68k_set_timeout(struct net_device *dev)
{
struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
unsigned long flags;
save_flags(flags);
cli();
if (mp->timeout_active)
del_timer(&mp->tx_timeout);
mp->tx_timeout.expires = jiffies + TX_TIMEOUT;
mp->tx_timeout.function = mace68k_tx_timeout;
mp->tx_timeout.data = (unsigned long) dev;
add_timer(&mp->tx_timeout);
mp->timeout_active = 1;
restore_flags(flags);
}
/*
* Transmit a frame
*/
static int mace68k_xmit_start(struct sk_buff *skb, struct net_device *dev)
{
struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
/*
* This may need atomic types ???
*/
printk("mace68k_xmit_start: mp->tx_count = %d, dev->tbusy = %d, mp->tx_ring = %p (%p)\n",
mp->tx_count, dev->tbusy,
mp->tx_ring, virt_to_bus(mp->tx_ring));
psc_debug_dump();
if(mp->tx_count == 0)
{
dev->tbusy=1;
mace68k_dma_intr(IRQ_MAC_MACE_DMA, dev, NULL);
return 1;
}
mp->tx_count--;
/*
* FIXME:
* This is hackish. The memcpy probably isnt needed but
* the rules for alignment are not known. Ideally we'd like
* to just blast the skb directly to ethernet. We also don't
* use the ring properly - just a one frame buffer. That
* also requires cache pushes ;).
*/
memcpy((void *)mp->tx_ring, skb, skb->len);
psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, virt_to_bus(mp->tx_ring));
psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len);
psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800);
mp->stats.tx_packets++;
mp->stats.tx_bytes+=skb->len;
dev_kfree_skb(skb);
return 0;
}
static struct net_device_stats *mace68k_stats(struct net_device *dev)
{
struct mace68k_data *p = (struct mace68k_data *) dev->priv;
return &p->stats;
}
static void mace68k_set_multicast(struct net_device *dev)
{
struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
volatile struct mace *mb = mp->mace;
int i, j, k, b;
u32 crc;
mp->maccc &= ~PROM;
if (dev->flags & IFF_PROMISC)
{
mp->maccc |= PROM;
} else
{
unsigned char multicast_filter[8];
struct dev_mc_list *dmi = dev->mc_list;
if (dev->flags & IFF_ALLMULTI)
{
for (i = 0; i < 8; i++)
multicast_filter[i] = 0xff;
} else
{
for (i = 0; i < 8; i++)
multicast_filter[i] = 0;
for (i = 0; i < dev->mc_count; i++)
{
crc = ether_crc_le(6, dmi->dmi_addr);
j = crc >> 26; /* bit number in multicast_filter */
multicast_filter[j >> 3] |= 1 << (j & 7);
dmi = dmi->next;
}
}
#if 0
printk("Multicast filter :");
for (i = 0; i < 8; i++)
printk("%02x ", multicast_filter[i]);
printk("\n");
#endif
mb->iac = ADDRCHG | LOGADDR;
while ((mb->iac & ADDRCHG) != 0);
for (i = 0; i < 8; ++i)
mb->ladrf = multicast_filter[i];
}
/* reset maccc */
mb->maccc = mp->maccc;
}
/*
* Miscellaneous interrupts are handled here. We may end up
* having to bash the chip on the head for bad errors
*/
static void mace68k_handle_misc_intrs(struct mace68k_data *mp, int intr)
{
volatile struct mace *mb = mp->mace;
static int mace68k_babbles, mace68k_jabbers;
if (intr & MPCO)
mp->stats.rx_missed_errors += 256;
mp->stats.rx_missed_errors += mb->mpc; /* reading clears it */
if (intr & RNTPCO)
mp->stats.rx_length_errors += 256;
mp->stats.rx_length_errors += mb->rntpc; /* reading clears it */
if (intr & CERR)
++mp->stats.tx_heartbeat_errors;
if (intr & BABBLE)
if (mace68k_babbles++ < 4)
printk(KERN_DEBUG "mace: babbling transmitter\n");
if (intr & JABBER)
if (mace68k_jabbers++ < 4)
printk(KERN_DEBUG "mace: jabbering transceiver\n");
}
/*
* A transmit error has occurred. (We kick the transmit side from
* the DMA completion)
*/
static void mace68k_xmit_error(struct net_device *dev)
{
struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
volatile struct mace *mb = mp->mace;
u8 xmtfs, xmtrc;
xmtfs = mb->xmtfs;
xmtrc = mb->xmtrc;
if(xmtfs & XMTSV)
{
if(xmtfs & UFLO)
{
printk("%s: DMA underrun.\n", dev->name);
mp->stats.tx_errors++;
mp->stats.tx_fifo_errors++;
mace68k_reset(dev);
}
if(xmtfs & RTRY)
mp->stats.collisions++;
}
mark_bh(NET_BH);
}
/*
* A receive interrupt occurred.
*/
static void mace68k_recv_interrupt(struct net_device *dev)
{
// struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
// volatile struct mace *mb = mp->mace;
}
/*
* Process the chip interrupt
*/
static void mace68k_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *) dev_id;
struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
volatile struct mace *mb = mp->mace;
u8 ir;
ir = mb->ir;
mace68k_handle_misc_intrs(mp, ir);
if(ir&XMTINT)
mace68k_xmit_error(dev);
if(ir&RCVINT)
mace68k_recv_interrupt(dev);
}
static void mace68k_tx_timeout(unsigned long data)
{
// struct net_device *dev = (struct net_device *) data;
// struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
// volatile struct mace *mb = mp->mace;
}
/*
* Handle a newly arrived frame
*/
static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf)
{
struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
struct sk_buff *skb;
if(mf->status&RS_OFLO)
{
printk("%s: fifo overflow.\n", dev->name);
mp->stats.rx_errors++;
mp->stats.rx_fifo_errors++;
}
if(mf->status&(RS_CLSN|RS_FRAMERR|RS_FCSERR))
mp->stats.rx_errors++;
if(mf->status&RS_CLSN)
mp->stats.collisions++;
if(mf->status&RS_FRAMERR)
mp->stats.rx_frame_errors++;
if(mf->status&RS_FCSERR)
mp->stats.rx_crc_errors++;
skb = dev_alloc_skb(mf->len+2);
if(skb==NULL)
{
mp->stats.rx_dropped++;
return;
}
skb_reserve(skb,2);
memcpy(skb_put(skb, mf->len), mf->data, mf->len);
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
dev->last_rx = jiffies;
mp->stats.rx_packets++;
mp->stats.rx_bytes+=mf->len;
}
/*
* The PSC has passed us a DMA interrupt event.
*/
static void mace68k_dma_intr(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *) dev_id;
struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
#if 0
u32 psc_status;
/* It seems this must be allowed to stabilise ?? */
while((psc_status=psc_read_long(0x0804))!=psc_read_long(0x0804));
/*
* Was this an ethernet event ?
*/
if(psc_status&0x60000000)
{
#endif
/*
* Process the read queue
*/
u16 psc_status = psc_read_word(PSC_ENETRD_CTL);
printk("mace68k_dma_intr: PSC_ENETRD_CTL = %04X\n", (uint) psc_status);
if (psc_status & 0x2000) {
mace68k_rxdma_reset(dev);
mp->rx_done = 0;
} else if (psc_status & 0x100) {
int left;
psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100);
left=psc_read_long(PSC_ENETRD_LEN + mp->rx_slot);
/* read packets */
while(mp->rx_done < left)
{
struct mace_frame *mf=((struct mace_frame *)
mp->rx_ring)+mp->rx_done++;
mace_dma_rx_frame(dev, mf);
}
if(left == 0) /* Out of DMA room */
{
psc_load_rxdma_base(mp->rx_slot,
(void *)virt_to_phys(mp->rx_ring));
mp->rx_slot^=16;
mp->rx_done = 0;
}
else
{
psc_write_word(PSC_ENETRD_CMD+mp->rx_slot,
0x9800);
}
}
/*
* Process the write queue
*/
psc_status = psc_read_word(PSC_ENETWR_CTL);
printk("mace68k_dma_intr: PSC_ENETWR_CTL = %04X\n", (uint) psc_status);
/* apple's driver seems to loop over this until neither */
/* condition is true. - jmt */
if (psc_status & 0x2000) {
mace68k_txdma_reset(dev);
} else if (psc_status & 0x0100) {
psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x0100);
mp->tx_slot ^=16;
mp->tx_count++;
dev->tbusy = 0;
mark_bh(NET_BH);
}
#if 0
}
#endif
}