blob: 34da9c73b4d9d8a1d613ff7810bdbb274d6865b5 [file] [log] [blame]
/*
* Generic HDLC support routines for Linux
*
* Copyright (C) 1999, 2000 Krzysztof Halasa <khc@pm.waw.pl>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Current status:
* - this is work in progress
* - not heavily tested on SMP
* - currently supported:
* * raw IP-in-HDLC
* * Cisco HDLC
* * Frame Relay with ANSI or CCITT LMI (both user and network side)
* * PPP (using syncppp.c)
* * X.25
*
* Use sethdlc utility to set line parameters, protocol and PVCs
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/if_arp.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/pkt_sched.h>
#include <linux/inetdevice.h>
#include <linux/lapb.h>
#include <linux/rtnetlink.h>
#include <linux/hdlc.h>
/* #define DEBUG_PKT */
/* #define DEBUG_HARD_HEADER */
/* #define DEBUG_FECN */
/* #define DEBUG_BECN */
static const char* version = "HDLC support module revision 1.02 for Linux 2.4";
#define CISCO_MULTICAST 0x8F /* Cisco multicast address */
#define CISCO_UNICAST 0x0F /* Cisco unicast address */
#define CISCO_KEEPALIVE 0x8035 /* Cisco keepalive protocol */
#define CISCO_SYS_INFO 0x2000 /* Cisco interface/system info */
#define CISCO_ADDR_REQ 0 /* Cisco address request */
#define CISCO_ADDR_REPLY 1 /* Cisco address reply */
#define CISCO_KEEPALIVE_REQ 2 /* Cisco keepalive request */
static int hdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
/********************************************************
*
* Cisco HDLC support
*
*******************************************************/
static int cisco_hard_header(struct sk_buff *skb, struct net_device *dev,
u16 type, void *daddr, void *saddr,
unsigned int len)
{
hdlc_header *data;
#ifdef DEBUG_HARD_HEADER
printk(KERN_DEBUG "%s: cisco_hard_header called\n", dev->name);
#endif
skb_push(skb, sizeof(hdlc_header));
data = (hdlc_header*)skb->data;
if (type == CISCO_KEEPALIVE)
data->address = CISCO_MULTICAST;
else
data->address = CISCO_UNICAST;
data->control = 0;
data->protocol = htons(type);
return sizeof(hdlc_header);
}
static void cisco_keepalive_send(hdlc_device *hdlc, u32 type,
u32 par1, u32 par2)
{
struct sk_buff *skb;
cisco_packet *data;
skb = dev_alloc_skb(sizeof(hdlc_header)+sizeof(cisco_packet));
if (!skb) {
printk(KERN_WARNING "%s: Memory squeeze on cisco_keepalive_send()\n",
hdlc_to_name(hdlc));
return;
}
skb_reserve(skb, 4);
cisco_hard_header(skb, hdlc_to_dev(hdlc), CISCO_KEEPALIVE,
NULL, NULL, 0);
data = (cisco_packet*)skb->tail;
data->type = htonl(type);
data->par1 = htonl(par1);
data->par2 = htonl(par2);
data->rel = 0xFFFF;
data->time = htonl(jiffies * 1000 / HZ);
skb_put(skb, sizeof(cisco_packet));
skb->priority = TC_PRIO_CONTROL;
skb->dev = hdlc_to_dev(hdlc);
dev_queue_xmit(skb);
}
static void cisco_netif(hdlc_device *hdlc, struct sk_buff *skb)
{
hdlc_header *data = (hdlc_header*)skb->data;
cisco_packet *cisco_data;
struct in_device *in_dev;
u32 addr, mask;
if (skb->len<sizeof(hdlc_header))
goto rx_error;
if (data->address != CISCO_MULTICAST &&
data->address != CISCO_UNICAST)
goto rx_error;
skb_pull(skb, sizeof(hdlc_header));
switch(ntohs(data->protocol)) {
case ETH_P_IP:
case ETH_P_IPX:
case ETH_P_IPV6:
skb->protocol = data->protocol;
skb->dev = hdlc_to_dev(hdlc);
netif_rx(skb);
return;
case CISCO_SYS_INFO:
/* Packet is not needed, drop it. */
dev_kfree_skb_any(skb);
return;
case CISCO_KEEPALIVE:
if (skb->len != CISCO_PACKET_LEN &&
skb->len != CISCO_BIG_PACKET_LEN) {
printk(KERN_INFO "%s: Invalid length of Cisco "
"control packet (%d bytes)\n",
hdlc_to_name(hdlc), skb->len);
goto rx_error;
}
cisco_data = (cisco_packet*)skb->data;
switch(ntohl (cisco_data->type)) {
case CISCO_ADDR_REQ: /* Stolen from syncppp.c :-) */
in_dev = hdlc_to_dev(hdlc)->ip_ptr;
addr = 0;
mask = ~0; /* is the mask correct? */
if (in_dev != NULL) {
struct in_ifaddr **ifap = &in_dev->ifa_list;
while (*ifap != NULL) {
if (strcmp(hdlc_to_name(hdlc),
(*ifap)->ifa_label) == 0) {
addr = (*ifap)->ifa_local;
mask = (*ifap)->ifa_mask;
break;
}
ifap = &(*ifap)->ifa_next;
}
cisco_keepalive_send(hdlc, CISCO_ADDR_REPLY,
addr, mask);
}
dev_kfree_skb_any(skb);
return;
case CISCO_ADDR_REPLY:
printk(KERN_INFO "%s: Unexpected Cisco IP address "
"reply\n", hdlc_to_name(hdlc));
goto rx_error;
case CISCO_KEEPALIVE_REQ:
hdlc->lmi.rxseq = ntohl(cisco_data->par1);
if (ntohl(cisco_data->par2) == hdlc->lmi.txseq) {
hdlc->lmi.last_poll = jiffies;
if (!(hdlc->lmi.state & LINK_STATE_RELIABLE)) {
u32 sec, min, hrs, days;
sec = ntohl(cisco_data->time) / 1000;
min = sec / 60; sec -= min * 60;
hrs = min / 60; min -= hrs * 60;
days = hrs / 24; hrs -= days * 24;
printk(KERN_INFO "%s: Link up (peer "
"uptime %ud%uh%um%us)\n",
hdlc_to_name(hdlc), days, hrs,
min, sec);
}
hdlc->lmi.state |= LINK_STATE_RELIABLE;
}
dev_kfree_skb_any(skb);
return;
} /* switch(keepalive type) */
} /* switch(protocol) */
printk(KERN_INFO "%s: Unsupported protocol %x\n", hdlc_to_name(hdlc),
data->protocol);
dev_kfree_skb_any(skb);
return;
rx_error:
hdlc->stats.rx_errors++; /* Mark error */
dev_kfree_skb_any(skb);
}
static void cisco_timer(unsigned long arg)
{
hdlc_device *hdlc = (hdlc_device*)arg;
if ((hdlc->lmi.state & LINK_STATE_RELIABLE) &&
(jiffies - hdlc->lmi.last_poll >= hdlc->lmi.T392 * HZ)) {
hdlc->lmi.state &= ~LINK_STATE_RELIABLE;
printk(KERN_INFO "%s: Link down\n", hdlc_to_name(hdlc));
}
cisco_keepalive_send(hdlc, CISCO_KEEPALIVE_REQ, ++hdlc->lmi.txseq,
hdlc->lmi.rxseq);
hdlc->timer.expires = jiffies + hdlc->lmi.T391*HZ;
hdlc->timer.function = cisco_timer;
hdlc->timer.data = arg;
add_timer(&hdlc->timer);
}
/******************************************************************
*
* generic Frame Relay routines
*
*****************************************************************/
static int fr_hard_header(struct sk_buff *skb, struct net_device *dev,
u16 type, void *daddr, void *saddr, unsigned int len)
{
u16 head_len;
if (!daddr)
daddr = dev->broadcast;
#ifdef DEBUG_HARD_HEADER
printk(KERN_DEBUG "%s: fr_hard_header called\n", dev->name);
#endif
switch(type) {
case ETH_P_IP:
head_len = 4;
skb_push(skb, head_len);
skb->data[3] = NLPID_IP;
break;
case ETH_P_IPV6:
head_len = 4;
skb_push(skb, head_len);
skb->data[3] = NLPID_IPV6;
break;
case LMI_PROTO:
head_len = 4;
skb_push(skb, head_len);
skb->data[3] = LMI_PROTO;
break;
default:
head_len = 10;
skb_push(skb, head_len);
skb->data[3] = FR_PAD;
skb->data[4] = NLPID_SNAP;
skb->data[5] = FR_PAD;
skb->data[6] = FR_PAD;
skb->data[7] = FR_PAD;
skb->data[8] = type>>8;
skb->data[9] = (u8)type;
}
memcpy(skb->data, daddr, 2);
skb->data[2] = FR_UI;
return head_len;
}
static inline void fr_log_dlci_active(pvc_device *pvc)
{
printk(KERN_INFO "%s: %sactive%s\n", pvc_to_name(pvc),
pvc->state & PVC_STATE_ACTIVE ? "" : "in",
pvc->state & PVC_STATE_NEW ? " new" : "");
}
static inline u8 fr_lmi_nextseq(u8 x)
{
x++;
return x ? x : 1;
}
static void fr_lmi_send(hdlc_device *hdlc, int fullrep)
{
struct sk_buff *skb;
pvc_device *pvc = hdlc->first_pvc;
int len = mode_is(hdlc, MODE_FR_ANSI) ? LMI_ANSI_LENGTH : LMI_LENGTH;
int stat_len = 3;
u8 *data;
int i = 0;
if (mode_is(hdlc, MODE_DCE) && fullrep) {
len += hdlc->pvc_count * (2 + stat_len);
if (len > HDLC_MAX_MTU) {
printk(KERN_WARNING "%s: Too many PVCs while sending "
"LMI full report\n", hdlc_to_name(hdlc));
return;
}
}
skb = dev_alloc_skb(len);
if (!skb) {
printk(KERN_WARNING "%s: Memory squeeze on fr_lmi_send()\n",
hdlc_to_name(hdlc));
return;
}
memset(skb->data, 0, len);
skb_reserve(skb, 4);
fr_hard_header(skb, hdlc_to_dev(hdlc), LMI_PROTO, NULL, NULL, 0);
data = skb->tail;
data[i++] = LMI_CALLREF;
data[i++] = mode_is(hdlc, MODE_DCE) ? LMI_STATUS : LMI_STATUS_ENQUIRY;
if (mode_is(hdlc, MODE_FR_ANSI))
data[i++] = LMI_ANSI_LOCKSHIFT;
data[i++] = mode_is(hdlc, MODE_FR_CCITT) ? LMI_CCITT_REPTYPE :
LMI_REPTYPE;
data[i++] = LMI_REPT_LEN;
data[i++] = fullrep ? LMI_FULLREP : LMI_INTEGRITY;
data[i++] = mode_is(hdlc, MODE_FR_CCITT) ? LMI_CCITT_ALIVE : LMI_ALIVE;
data[i++] = LMI_INTEG_LEN;
data[i++] = hdlc->lmi.txseq = fr_lmi_nextseq(hdlc->lmi.txseq);
data[i++] = hdlc->lmi.rxseq;
if (mode_is(hdlc, MODE_DCE) && fullrep) {
while (pvc) {
data[i++] = mode_is(hdlc, MODE_FR_CCITT) ?
LMI_CCITT_PVCSTAT:LMI_PVCSTAT;
data[i++] = stat_len;
if ((hdlc->lmi.state & LINK_STATE_RELIABLE) &&
(pvc->netdev.flags & IFF_UP) &&
!(pvc->state & (PVC_STATE_ACTIVE|PVC_STATE_NEW))) {
pvc->state |= PVC_STATE_NEW;
fr_log_dlci_active(pvc);
}
dlci_to_status(hdlc, netdev_dlci(&pvc->netdev),
data+i, pvc->state);
i += stat_len;
pvc = pvc->next;
}
}
skb_put(skb, i);
skb->priority = TC_PRIO_CONTROL;
skb->dev = hdlc_to_dev(hdlc);
dev_queue_xmit(skb);
}
static void fr_timer(unsigned long arg)
{
hdlc_device *hdlc = (hdlc_device*)arg;
int i, cnt = 0, reliable;
u32 list;
if (mode_is(hdlc, MODE_DCE))
reliable = (jiffies - hdlc->lmi.last_poll < hdlc->lmi.T392*HZ);
else {
hdlc->lmi.last_errors <<= 1; /* Shift the list */
if (hdlc->lmi.state & LINK_STATE_REQUEST) {
printk(KERN_INFO "%s: No LMI status reply received\n",
hdlc_to_name(hdlc));
hdlc->lmi.last_errors |= 1;
}
for (i = 0, list = hdlc->lmi.last_errors; i < hdlc->lmi.N393;
i++, list >>= 1)
cnt += (list & 1); /* errors count */
reliable = (cnt < hdlc->lmi.N392);
}
if ((hdlc->lmi.state & LINK_STATE_RELIABLE) !=
(reliable ? LINK_STATE_RELIABLE : 0)) {
pvc_device *pvc = hdlc->first_pvc;
while (pvc) {/* Deactivate all PVCs */
pvc->state &= ~(PVC_STATE_NEW | PVC_STATE_ACTIVE);
pvc = pvc->next;
}
hdlc->lmi.state ^= LINK_STATE_RELIABLE;
printk(KERN_INFO "%s: Link %sreliable\n", hdlc_to_name(hdlc),
reliable ? "" : "un");
if (reliable) {
hdlc->lmi.N391cnt = 0; /* Request full status */
hdlc->lmi.state |= LINK_STATE_CHANGED;
}
}
if (mode_is(hdlc, MODE_DCE))
hdlc->timer.expires = jiffies + hdlc->lmi.T392*HZ;
else {
if (hdlc->lmi.N391cnt)
hdlc->lmi.N391cnt--;
fr_lmi_send(hdlc, hdlc->lmi.N391cnt == 0);
hdlc->lmi.state |= LINK_STATE_REQUEST;
hdlc->timer.expires = jiffies + hdlc->lmi.T391*HZ;
}
hdlc->timer.function = fr_timer;
hdlc->timer.data = arg;
add_timer(&hdlc->timer);
}
static int fr_lmi_recv(hdlc_device *hdlc, struct sk_buff *skb)
{
int stat_len;
pvc_device *pvc;
int reptype = -1, error;
u8 rxseq, txseq;
int i;
if (skb->len < (mode_is(hdlc, MODE_FR_ANSI) ?
LMI_ANSI_LENGTH : LMI_LENGTH)) {
printk(KERN_INFO "%s: Short LMI frame\n", hdlc_to_name(hdlc));
return 1;
}
if (skb->data[5] != (!mode_is(hdlc, MODE_DCE) ?
LMI_STATUS : LMI_STATUS_ENQUIRY)) {
printk(KERN_INFO "%s: LMI msgtype=%x, Not LMI status %s\n",
hdlc_to_name(hdlc), skb->data[2],
mode_is(hdlc, MODE_DCE) ? "enquiry" : "reply");
return 1;
}
i = mode_is(hdlc, MODE_FR_ANSI) ? 7 : 6;
if (skb->data[i] !=
(mode_is(hdlc, MODE_FR_CCITT) ? LMI_CCITT_REPTYPE : LMI_REPTYPE)) {
printk(KERN_INFO "%s: Not a report type=%x\n",
hdlc_to_name(hdlc), skb->data[i]);
return 1;
}
i++;
i++; /* Skip length field */
reptype = skb->data[i++];
if (skb->data[i]!=
(mode_is(hdlc, MODE_FR_CCITT) ? LMI_CCITT_ALIVE : LMI_ALIVE)) {
printk(KERN_INFO "%s: Unsupported status element=%x\n",
hdlc_to_name(hdlc), skb->data[i]);
return 1;
}
i++;
i++; /* Skip length field */
hdlc->lmi.rxseq = skb->data[i++]; /* TX sequence from peer */
rxseq = skb->data[i++]; /* Should confirm our sequence */
txseq = hdlc->lmi.txseq;
if (mode_is(hdlc, MODE_DCE)) {
if (reptype != LMI_FULLREP && reptype != LMI_INTEGRITY) {
printk(KERN_INFO "%s: Unsupported report type=%x\n",
hdlc_to_name(hdlc), reptype);
return 1;
}
}
error = 0;
if (!(hdlc->lmi.state & LINK_STATE_RELIABLE))
error = 1;
if (rxseq == 0 || rxseq != txseq) {
hdlc->lmi.N391cnt = 0; /* Ask for full report next time */
error = 1;
}
if (mode_is(hdlc, MODE_DCE)) {
if ((hdlc->lmi.state & LINK_STATE_FULLREP_SENT) && !error) {
/* Stop sending full report - the last one has been confirmed by DTE */
hdlc->lmi.state &= ~LINK_STATE_FULLREP_SENT;
pvc = hdlc->first_pvc;
while (pvc) {
if (pvc->state & PVC_STATE_NEW) {
pvc->state &= ~PVC_STATE_NEW;
pvc->state |= PVC_STATE_ACTIVE;
fr_log_dlci_active(pvc);
/* Tell DTE that new PVC is now active */
hdlc->lmi.state |= LINK_STATE_CHANGED;
}
pvc = pvc->next;
}
}
if (hdlc->lmi.state & LINK_STATE_CHANGED) {
reptype = LMI_FULLREP;
hdlc->lmi.state |= LINK_STATE_FULLREP_SENT;
hdlc->lmi.state &= ~LINK_STATE_CHANGED;
}
fr_lmi_send(hdlc, reptype == LMI_FULLREP ? 1 : 0);
return 0;
}
/* DTE */
if (reptype != LMI_FULLREP || error)
return 0;
stat_len = 3;
pvc = hdlc->first_pvc;
while (pvc) {
pvc->newstate = 0;
pvc = pvc->next;
}
while (skb->len >= i + 2 + stat_len) {
u16 dlci;
u8 state = 0;
if (skb->data[i] != (mode_is(hdlc, MODE_FR_CCITT) ?
LMI_CCITT_PVCSTAT : LMI_PVCSTAT)) {
printk(KERN_WARNING "%s: Invalid PVCSTAT ID: %x\n",
hdlc_to_name(hdlc), skb->data[i]);
return 1;
}
i++;
if (skb->data[i] != stat_len) {
printk(KERN_WARNING "%s: Invalid PVCSTAT length: %x\n",
hdlc_to_name(hdlc), skb->data[i]);
return 1;
}
i++;
dlci = status_to_dlci(hdlc, skb->data+i, &state);
pvc = find_pvc(hdlc, dlci);
if (pvc)
pvc->newstate = state;
else if (state == PVC_STATE_NEW)
printk(KERN_INFO "%s: new PVC available, DLCI=%u\n",
hdlc_to_name(hdlc), dlci);
i += stat_len;
}
pvc = hdlc->first_pvc;
while (pvc) {
if (pvc->newstate == PVC_STATE_NEW)
pvc->newstate = PVC_STATE_ACTIVE;
pvc->newstate |= (pvc->state &
~(PVC_STATE_NEW|PVC_STATE_ACTIVE));
if (pvc->state != pvc->newstate) {
pvc->state = pvc->newstate;
fr_log_dlci_active(pvc);
}
pvc = pvc->next;
}
/* Next full report after N391 polls */
hdlc->lmi.N391cnt = hdlc->lmi.N391;
return 0;
}
static void fr_netif(hdlc_device *hdlc, struct sk_buff *skb)
{
fr_hdr *fh = (fr_hdr*)skb->data;
u8 *data = skb->data;
u16 dlci;
pvc_device *pvc;
if (skb->len<4 || fh->ea1 || data[2] != FR_UI)
goto rx_error;
dlci = q922_to_dlci(skb->data);
if (dlci == LMI_DLCI) {
if (data[3] == LMI_PROTO) {
if (fr_lmi_recv(hdlc, skb))
goto rx_error;
else {
/* No request pending */
hdlc->lmi.state &= ~LINK_STATE_REQUEST;
hdlc->lmi.last_poll = jiffies;
dev_kfree_skb_any(skb);
return;
}
}
printk(KERN_INFO "%s: Received non-LMI frame with LMI DLCI\n",
hdlc_to_name(hdlc));
goto rx_error;
}
pvc = find_pvc(hdlc, dlci);
if (!pvc) {
#ifdef DEBUG_PKT
printk(KERN_INFO "%s: No PVC for received frame's DLCI %d\n",
hdlc_to_name(hdlc), dlci);
#endif
goto rx_error;
}
if ((pvc->netdev.flags & IFF_UP) == 0) {
#ifdef DEBUG_PKT
printk(KERN_INFO "%s: PVC for received frame's DLCI %d is down\n",
hdlc_to_name(hdlc), dlci);
#endif
goto rx_error;
}
pvc->stats.rx_packets++; /* PVC traffic */
pvc->stats.rx_bytes += skb->len;
if ((pvc->state & PVC_STATE_FECN) != (fh->fecn ? PVC_STATE_FECN : 0)) {
#ifdef DEBUG_FECN
printk(KERN_DEBUG "%s: FECN O%s\n", pvc_to_name(pvc),
fh->fecn ? "N" : "FF");
#endif
pvc->state ^= PVC_STATE_FECN;
}
if ((pvc->state & PVC_STATE_BECN) != (fh->becn ? PVC_STATE_BECN : 0)) {
#ifdef DEBUG_FECN
printk(KERN_DEBUG "%s: BECN O%s\n", pvc_to_name(pvc),
fh->becn ? "N" : "FF");
#endif
pvc->state ^= PVC_STATE_BECN;
}
if (pvc->state & PVC_STATE_BECN)
pvc->stats.rx_compressed++;
if (data[3] == NLPID_IP) {
skb_pull(skb, 4); /* Remove 4-byte header (hdr, UI, NLPID) */
skb->protocol = htons(ETH_P_IP);
skb->dev = &pvc->netdev;
netif_rx(skb);
return;
}
if (data[3] == NLPID_IPV6) {
skb_pull(skb, 4); /* Remove 4-byte header (hdr, UI, NLPID) */
skb->protocol = htons(ETH_P_IPV6);
skb->dev = &pvc->netdev;
netif_rx(skb);
return;
}
if (data[3] == FR_PAD && data[4] == NLPID_SNAP && data[5] == FR_PAD &&
data[6] == FR_PAD && data[7] == FR_PAD &&
((data[8]<<8) | data[9]) == ETH_P_ARP) {
skb_pull(skb, 10);
skb->protocol = htons(ETH_P_ARP);
skb->dev = &pvc->netdev;
netif_rx(skb);
return;
}
printk(KERN_INFO "%s: Unusupported protocol %x\n",
hdlc_to_name(hdlc), data[3]);
dev_kfree_skb_any(skb);
return;
rx_error:
hdlc->stats.rx_errors++; /* Mark error */
dev_kfree_skb_any(skb);
}
static void fr_cisco_open(hdlc_device *hdlc)
{
hdlc->lmi.state = LINK_STATE_CHANGED;
hdlc->lmi.txseq = hdlc->lmi.rxseq = 0;
hdlc->lmi.last_errors = 0xFFFFFFFF;
hdlc->lmi.N391cnt = 0;
init_timer(&hdlc->timer);
hdlc->timer.expires = jiffies + HZ; /* First poll after 1 second */
hdlc->timer.function = mode_is(hdlc, MODE_FR) ? fr_timer : cisco_timer;
hdlc->timer.data = (unsigned long)hdlc;
add_timer(&hdlc->timer);
}
static void fr_cisco_close(hdlc_device *hdlc)
{
pvc_device *pvc = hdlc->first_pvc;
del_timer_sync(&hdlc->timer);
while(pvc) { /* NULL in Cisco mode */
dev_close(&pvc->netdev); /* Shutdown all PVCs for this FRAD */
pvc = pvc->next;
}
}
/******************************************************************
*
* generic HDLC routines
*
*****************************************************************/
static int hdlc_change_mtu(struct net_device *dev, int new_mtu)
{
if ((new_mtu < 68) || (new_mtu > HDLC_MAX_MTU))
return -EINVAL;
dev->mtu = new_mtu;
return 0;
}
/********************************************************
*
* PVC device routines
*
*******************************************************/
static int pvc_open(struct net_device *dev)
{
pvc_device *pvc = dev_to_pvc(dev);
int result = 0;
if ((hdlc_to_dev(pvc->master)->flags & IFF_UP) == 0)
return -EIO; /* Master must be UP in order to activate PVC */
memset(&(pvc->stats), 0, sizeof(struct net_device_stats));
pvc->state = 0;
if (!mode_is(pvc->master, MODE_SOFT) && pvc->master->open_pvc)
result = pvc->master->open_pvc(pvc);
if (result)
return result;
pvc->master->lmi.state |= LINK_STATE_CHANGED;
return 0;
}
static int pvc_close(struct net_device *dev)
{
pvc_device *pvc = dev_to_pvc(dev);
pvc->state = 0;
if (!mode_is(pvc->master, MODE_SOFT) && pvc->master->close_pvc)
pvc->master->close_pvc(pvc);
pvc->master->lmi.state |= LINK_STATE_CHANGED;
return 0;
}
static int pvc_xmit(struct sk_buff *skb, struct net_device *dev)
{
pvc_device *pvc = dev_to_pvc(dev);
if (pvc->state & PVC_STATE_ACTIVE) {
skb->dev = hdlc_to_dev(pvc->master);
pvc->stats.tx_bytes += skb->len;
pvc->stats.tx_packets++;
if (pvc->state & PVC_STATE_FECN)
pvc->stats.tx_compressed++; /* TX Congestion counter */
dev_queue_xmit(skb);
} else {
pvc->stats.tx_dropped++;
dev_kfree_skb(skb);
}
return 0;
}
static struct net_device_stats *pvc_get_stats(struct net_device *dev)
{
pvc_device *pvc = dev_to_pvc(dev);
return &pvc->stats;
}
static int pvc_change_mtu(struct net_device *dev, int new_mtu)
{
if ((new_mtu < 68) || (new_mtu > HDLC_MAX_MTU))
return -EINVAL;
dev->mtu = new_mtu;
return 0;
}
static void destroy_pvc_list(hdlc_device *hdlc)
{
pvc_device *pvc = hdlc->first_pvc;
while(pvc) {
pvc_device *next = pvc->next;
unregister_netdevice(&pvc->netdev);
kfree(pvc);
pvc = next;
}
hdlc->first_pvc = NULL; /* All PVCs destroyed */
hdlc->pvc_count = 0;
hdlc->lmi.state |= LINK_STATE_CHANGED;
}
/********************************************************
*
* X.25 protocol support routines
*
*******************************************************/
#ifdef CONFIG_HDLC_X25
/* These functions are callbacks called by LAPB layer */
void x25_connect_disconnect(void *token, int reason, int code)
{
hdlc_device *hdlc = token;
struct sk_buff *skb;
unsigned char *ptr;
if ((skb = dev_alloc_skb(1)) == NULL) {
printk(KERN_ERR "%s: out of memory\n", hdlc_to_name(hdlc));
return;
}
ptr = skb_put(skb, 1);
*ptr = code;
skb->dev = hdlc_to_dev(hdlc);
skb->protocol = htons(ETH_P_X25);
skb->mac.raw = skb->data;
skb->pkt_type = PACKET_HOST;
netif_rx(skb);
}
void x25_connected(void *token, int reason)
{
x25_connect_disconnect(token, reason, 1);
}
void x25_disconnected(void *token, int reason)
{
x25_connect_disconnect(token, reason, 2);
}
int x25_data_indication(void *token, struct sk_buff *skb)
{
hdlc_device *hdlc = token;
unsigned char *ptr;
ptr = skb_push(skb, 1);
*ptr = 0;
skb->dev = hdlc_to_dev(hdlc);
skb->protocol = htons(ETH_P_X25);
skb->mac.raw = skb->data;
skb->pkt_type = PACKET_HOST;
return netif_rx(skb);
}
void x25_data_transmit(void *token, struct sk_buff *skb)
{
hdlc_device *hdlc = token;
hdlc->xmit(hdlc, skb); /* Ignore return value :-( */
}
#endif /* CONFIG_HDLC_X25 */
/********************************************************
*
* HDLC device routines
*
*******************************************************/
static int hdlc_open(struct net_device *dev)
{
hdlc_device *hdlc = dev_to_hdlc(dev);
int result;
if (hdlc->mode == MODE_NONE)
return -ENOSYS;
memset(&(hdlc->stats), 0, sizeof(struct net_device_stats));
if (mode_is(hdlc, MODE_FR | MODE_SOFT) ||
mode_is(hdlc, MODE_CISCO | MODE_SOFT))
fr_cisco_open(hdlc);
#ifdef CONFIG_HDLC_PPP
else if (mode_is(hdlc, MODE_PPP | MODE_SOFT)) {
sppp_attach(&hdlc->pppdev);
/* sppp_attach nukes them. We don't need syncppp's ioctl */
dev->do_ioctl = hdlc_ioctl;
hdlc->pppdev.sppp.pp_flags &= ~PP_CISCO;
dev->type = ARPHRD_PPP;
result = sppp_open(dev);
if (result) {
sppp_detach(dev);
return result;
}
}
#endif
#ifdef CONFIG_HDLC_X25
else if (mode_is(hdlc, MODE_X25)) {
struct lapb_register_struct cb;
cb.connect_confirmation = x25_connected;
cb.connect_indication = x25_connected;
cb.disconnect_confirmation = x25_disconnected;
cb.disconnect_indication = x25_disconnected;
cb.data_indication = x25_data_indication;
cb.data_transmit = x25_data_transmit;
result = lapb_register(hdlc, &cb);
if (result != LAPB_OK)
return result;
}
#endif
result = hdlc->open(hdlc);
if (result) {
if (mode_is(hdlc, MODE_FR | MODE_SOFT) ||
mode_is(hdlc, MODE_CISCO | MODE_SOFT))
fr_cisco_close(hdlc);
#ifdef CONFIG_HDLC_PPP
else if (mode_is(hdlc, MODE_PPP | MODE_SOFT)) {
sppp_close(dev);
sppp_detach(dev);
dev->rebuild_header = NULL;
dev->change_mtu = hdlc_change_mtu;
dev->mtu = HDLC_MAX_MTU;
dev->hard_header_len = 16;
}
#endif
#ifdef CONFIG_HDLC_X25
else if (mode_is(hdlc, MODE_X25))
lapb_unregister(hdlc);
#endif
}
return result;
}
static int hdlc_close(struct net_device *dev)
{
hdlc_device *hdlc = dev_to_hdlc(dev);
hdlc->close(hdlc);
if (mode_is(hdlc, MODE_FR | MODE_SOFT) ||
mode_is(hdlc, MODE_CISCO | MODE_SOFT))
fr_cisco_close(hdlc);
#ifdef CONFIG_HDLC_PPP
else if (mode_is(hdlc, MODE_PPP | MODE_SOFT)) {
sppp_close(dev);
sppp_detach(dev);
dev->rebuild_header = NULL;
dev->change_mtu = hdlc_change_mtu;
dev->mtu = HDLC_MAX_MTU;
dev->hard_header_len = 16;
}
#endif
#ifdef CONFIG_HDLC_X25
else if (mode_is(hdlc, MODE_X25))
lapb_unregister(hdlc);
#endif
return 0;
}
static int hdlc_xmit(struct sk_buff *skb, struct net_device *dev)
{
hdlc_device *hdlc = dev_to_hdlc(dev);
#ifdef CONFIG_HDLC_X25
if (mode_is(hdlc, MODE_X25 | MODE_SOFT)) {
int result;
/* X.25 to LAPB */
switch (skb->data[0]) {
case 0: /* Data to be transmitted */
skb_pull(skb, 1);
if ((result = lapb_data_request(hdlc, skb)) != LAPB_OK)
dev_kfree_skb(skb);
return 0;
case 1:
if ((result = lapb_connect_request(hdlc))!= LAPB_OK) {
if (result == LAPB_CONNECTED) {
/* Send connect confirm. msg to level 3 */
x25_connected(hdlc, 0);
} else {
printk(KERN_ERR "%s: LAPB connect "
"request failed, error code = "
"%i\n", hdlc_to_name(hdlc),
result);
}
}
break;
case 2:
if ((result=lapb_disconnect_request(hdlc))!=LAPB_OK) {
if (result == LAPB_NOTCONNECTED) {
/* Send disconnect confirm. msg to level 3 */
x25_disconnected(hdlc, 0);
} else {
printk(KERN_ERR "%s: LAPB disconnect "
"request failed, error code = "
"%i\n", hdlc_to_name(hdlc),
result);
}
}
break;
default:
/* to be defined */
break;
}
dev_kfree_skb(skb);
return 0;
} /* MODE_X25 */
#endif /* CONFIG_HDLC_X25 */
return hdlc->xmit(hdlc, skb);
}
void hdlc_netif_rx(hdlc_device *hdlc, struct sk_buff *skb)
{
/* skb contains raw HDLC frame, in both hard- and software modes */
skb->mac.raw = skb->data;
switch(hdlc->mode & MODE_MASK) {
case MODE_HDLC:
skb->protocol = htons(ETH_P_IP);
skb->dev = hdlc_to_dev(hdlc);
netif_rx(skb);
return;
case MODE_FR:
fr_netif(hdlc, skb);
return;
case MODE_CISCO:
cisco_netif(hdlc, skb);
return;
#ifdef CONFIG_HDLC_PPP
case MODE_PPP:
#if 0
sppp_input(hdlc_to_dev(hdlc), skb);
#else
skb->protocol = htons(ETH_P_WAN_PPP);
skb->dev = hdlc_to_dev(hdlc);
netif_rx(skb);
#endif
return;
#endif
#ifdef CONFIG_HDLC_X25
case MODE_X25:
skb->dev = hdlc_to_dev(hdlc);
if (lapb_data_received(hdlc, skb) == LAPB_OK)
return;
break;
#endif
}
hdlc->stats.rx_errors++;
dev_kfree_skb_any(skb);
}
static struct net_device_stats *hdlc_get_stats(struct net_device *dev)
{
return &dev_to_hdlc(dev)->stats;
}
static int hdlc_set_mode(hdlc_device *hdlc, int mode)
{
int result = -1; /* Default to soft modes */
struct net_device *dev = hdlc_to_dev(hdlc);
if(!capable(CAP_NET_ADMIN))
return -EPERM;
if(dev->flags & IFF_UP)
return -EBUSY;
dev->addr_len = 0;
dev->hard_header = NULL;
hdlc->mode = MODE_NONE;
if (!(mode & MODE_SOFT))
switch(mode & MODE_MASK) {
case MODE_HDLC:
result = hdlc->set_mode ?
hdlc->set_mode(hdlc, MODE_HDLC) : 0;
break;
case MODE_CISCO: /* By card */
#ifdef CONFIG_HDLC_PPP
case MODE_PPP:
#endif
#ifdef CONFIG_HDLC_X25
case MODE_X25:
#endif
case MODE_FR:
result = hdlc->set_mode ?
hdlc->set_mode(hdlc, mode) : -ENOSYS;
break;
default:
return -EINVAL;
}
if (result) {
mode |= MODE_SOFT; /* Try "host software" protocol */
switch(mode & MODE_MASK) {
case MODE_CISCO:
dev->hard_header = cisco_hard_header;
break;
#ifdef CONFIG_HDLC_PPP
case MODE_PPP:
break;
#endif
#ifdef CONFIG_HDLC_X25
case MODE_X25:
break;
#endif
case MODE_FR:
dev->hard_header = fr_hard_header;
dev->addr_len = 2;
*(u16*)dev->dev_addr = htons(LMI_DLCI);
dlci_to_q922(dev->broadcast, LMI_DLCI);
break;
default:
return -EINVAL;
}
result = hdlc->set_mode ?
hdlc->set_mode(hdlc, MODE_HDLC) : 0;
}
if (result)
return result;
hdlc->mode = mode;
switch(mode & MODE_MASK) {
#ifdef CONFIG_HDLC_PPP
case MODE_PPP: dev->type = ARPHRD_PPP; break;
#endif
#ifdef CONFIG_HDLC_X25
case MODE_X25: dev->type = ARPHRD_X25; break;
#endif
case MODE_FR: dev->type = ARPHRD_FRAD; break;
case MODE_CISCO: dev->type = ARPHRD_CISCO; break;
default: dev->type = ARPHRD_RAWHDLC;
}
memset(&(hdlc->stats), 0, sizeof(struct net_device_stats));
destroy_pvc_list(hdlc);
return 0;
}
static int hdlc_fr_pvc(hdlc_device *hdlc, int dlci)
{
pvc_device **pvc_p = &hdlc->first_pvc;
pvc_device *pvc;
int result, create = 1; /* Create or delete PVC */
if(!capable(CAP_NET_ADMIN))
return -EPERM;
if(dlci<0) {
dlci = -dlci;
create = 0;
}
if(dlci <= 0 || dlci >= 1024)
return -EINVAL; /* Only 10 bits for DLCI, DLCI=0 is reserved */
if(!mode_is(hdlc, MODE_FR))
return -EINVAL; /* Only meaningfull on FR */
while(*pvc_p) {
if (netdev_dlci(&(*pvc_p)->netdev) == dlci)
break;
pvc_p = &(*pvc_p)->next;
}
if (create) { /* Create PVC */
if (*pvc_p != NULL)
return -EEXIST;
pvc = *pvc_p = kmalloc(sizeof(pvc_device), GFP_KERNEL);
if (!pvc) {
printk(KERN_WARNING "%s: Memory squeeze on "
"hdlc_fr_pvc()\n", hdlc_to_name(hdlc));
return -ENOBUFS;
}
memset(pvc, 0, sizeof(pvc_device));
pvc->netdev.hard_start_xmit = pvc_xmit;
pvc->netdev.get_stats = pvc_get_stats;
pvc->netdev.open = pvc_open;
pvc->netdev.stop = pvc_close;
pvc->netdev.change_mtu = pvc_change_mtu;
pvc->netdev.mtu = HDLC_MAX_MTU;
pvc->netdev.type = ARPHRD_DLCI;
pvc->netdev.hard_header_len = 16;
pvc->netdev.hard_header = fr_hard_header;
pvc->netdev.tx_queue_len = 0;
pvc->netdev.flags = IFF_POINTOPOINT;
pvc->master = hdlc;
*(u16*)pvc->netdev.dev_addr = htons(dlci);
dlci_to_q922(pvc->netdev.broadcast, dlci);
pvc->netdev.addr_len = 2;
pvc->netdev.irq = hdlc_to_dev(hdlc)->irq;
result = dev_alloc_name(&pvc->netdev, "pvc%d");
if (result < 0) {
kfree(pvc);
*pvc_p = NULL;
return result;
}
if (register_netdevice(&pvc->netdev) != 0) {
kfree(pvc);
*pvc_p = NULL;
return -EIO;
}
if (!mode_is(hdlc, MODE_SOFT) && hdlc->create_pvc) {
result = hdlc->create_pvc(pvc);
if (result) {
unregister_netdevice(&pvc->netdev);
kfree(pvc);
*pvc_p = NULL;
return result;
}
}
hdlc->lmi.state |= LINK_STATE_CHANGED;
hdlc->pvc_count++;
return 0;
}
if (*pvc_p == NULL) /* Delete PVC */
return -ENOENT;
pvc = *pvc_p;
if (pvc->netdev.flags & IFF_UP)
return -EBUSY; /* PVC in use */
if (!mode_is(hdlc, MODE_SOFT) && hdlc->destroy_pvc)
hdlc->destroy_pvc(pvc);
hdlc->lmi.state |= LINK_STATE_CHANGED;
hdlc->pvc_count--;
*pvc_p = pvc->next;
unregister_netdevice(&pvc->netdev);
kfree(pvc);
return 0;
}
static int hdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
hdlc_device *hdlc = dev_to_hdlc(dev);
switch(cmd) {
case HDLCGMODE:
ifr->ifr_ifru.ifru_ivalue = hdlc->mode;
return 0;
case HDLCSMODE:
return hdlc_set_mode(hdlc, ifr->ifr_ifru.ifru_ivalue);
case HDLCPVC:
return hdlc_fr_pvc(hdlc, ifr->ifr_ifru.ifru_ivalue);
default:
if (hdlc->ioctl != NULL)
return hdlc->ioctl(hdlc, ifr, cmd);
}
return -EINVAL;
}
static int hdlc_init(struct net_device *dev)
{
hdlc_device *hdlc = dev_to_hdlc(dev);
memset(&(hdlc->stats), 0, sizeof(struct net_device_stats));
dev->get_stats = hdlc_get_stats;
dev->open = hdlc_open;
dev->stop = hdlc_close;
dev->hard_start_xmit = hdlc_xmit;
dev->do_ioctl = hdlc_ioctl;
dev->change_mtu = hdlc_change_mtu;
dev->mtu = HDLC_MAX_MTU;
dev->type = ARPHRD_RAWHDLC;
dev->hard_header_len = 16;
dev->flags = IFF_POINTOPOINT | IFF_NOARP;
return 0;
}
int register_hdlc_device(hdlc_device *hdlc)
{
int result;
struct net_device *dev = hdlc_to_dev(hdlc);
dev->init = hdlc_init;
dev->priv = &hdlc->syncppp_ptr;
hdlc->syncppp_ptr = &hdlc->pppdev;
hdlc->pppdev.dev = dev;
hdlc->mode = MODE_NONE;
hdlc->lmi.T391 = 10; /* polling verification timer */
hdlc->lmi.T392 = 15; /* link integrity verification polling timer */
hdlc->lmi.N391 = 6; /* full status polling counter */
hdlc->lmi.N392 = 3; /* error threshold */
hdlc->lmi.N393 = 4; /* monitored events count */
result = dev_alloc_name(dev, "hdlc%d");
if (result<0)
return result;
result = register_netdev(dev);
if (result != 0)
return -EIO;
MOD_INC_USE_COUNT;
return 0;
}
void unregister_hdlc_device(hdlc_device *hdlc)
{
destroy_pvc_list(hdlc);
unregister_netdev(hdlc_to_dev(hdlc));
MOD_DEC_USE_COUNT;
}
MODULE_AUTHOR("Krzysztof Halasa <khc@pm.waw.pl>");
MODULE_DESCRIPTION("HDLC support module");
MODULE_LICENSE("GPL");
EXPORT_SYMBOL(hdlc_netif_rx);
EXPORT_SYMBOL(register_hdlc_device);
EXPORT_SYMBOL(unregister_hdlc_device);
static int __init hdlc_module_init(void)
{
printk(KERN_INFO "%s\n", version);
return 0;
}
module_init(hdlc_module_init);