blob: ba4e5dc12dd882075c94bd0c22d70403f01bb87a [file] [log] [blame]
/*
* Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
* Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved.
*
* This program is free software; you can distribute it and/or modify it
* under the terms of the GNU General Public License (Version 2) as
* published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
*
* MIPS32 CPU variant specific MMU/Cache routines.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <asm/bootinfo.h>
#include <asm/cpu.h>
#include <asm/bcache.h>
#include <asm/io.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/system.h>
#include <asm/mmu_context.h>
/* CP0 hazard avoidance. */
#define BARRIER __asm__ __volatile__(".set noreorder\n\t" \
"nop; nop; nop; nop; nop; nop;\n\t" \
".set reorder\n\t")
/* Primary cache parameters. */
static int icache_size, dcache_size; /* Size in bytes */
static int ic_lsize, dc_lsize; /* LineSize in bytes */
/* Secondary cache (if present) parameters. */
static unsigned int scache_size, sc_lsize; /* Again, in bytes */
#include <asm/cacheops.h>
#include <asm/mips32_cache.h>
#undef DEBUG_CACHE
/*
* Dummy cache handling routines for machines without boardcaches
*/
static void no_sc_noop(void) {}
static struct bcache_ops no_sc_ops = {
(void *)no_sc_noop, (void *)no_sc_noop,
(void *)no_sc_noop, (void *)no_sc_noop
};
struct bcache_ops *bcops = &no_sc_ops;
/*
* Zero an entire page.
*/
static void mips32_clear_page_dc(unsigned long page)
{
unsigned long i;
if (mips_cpu.options & MIPS_CPU_CACHE_CDEX) {
for (i=page; i<page+PAGE_SIZE; i+=dc_lsize) {
__asm__ __volatile__(
".set\tnoreorder\n\t"
".set\tnoat\n\t"
".set\tmips3\n\t"
"cache\t%2,(%0)\n\t"
".set\tmips0\n\t"
".set\tat\n\t"
".set\treorder"
:"=r" (i)
:"0" (i),
"I" (Create_Dirty_Excl_D));
}
}
for (i=page; i<page+PAGE_SIZE; i+=4)
*(unsigned long *)(i) = 0;
}
static void mips32_clear_page_sc(unsigned long page)
{
unsigned long i;
if (mips_cpu.options & MIPS_CPU_CACHE_CDEX) {
for (i=page; i<page+PAGE_SIZE; i+=sc_lsize) {
__asm__ __volatile__(
".set\tnoreorder\n\t"
".set\tnoat\n\t"
".set\tmips3\n\t"
"cache\t%2,(%0)\n\t"
".set\tmips0\n\t"
".set\tat\n\t"
".set\treorder"
:"=r" (i)
:"0" (i),
"I" (Create_Dirty_Excl_SD));
}
}
for (i=page; i<page+PAGE_SIZE; i+=4)
*(unsigned long *)(i) = 0;
}
static void mips32_copy_page_dc(unsigned long to, unsigned long from)
{
unsigned long i;
if (mips_cpu.options & MIPS_CPU_CACHE_CDEX) {
for (i=to; i<to+PAGE_SIZE; i+=dc_lsize) {
__asm__ __volatile__(
".set\tnoreorder\n\t"
".set\tnoat\n\t"
".set\tmips3\n\t"
"cache\t%2,(%0)\n\t"
".set\tmips0\n\t"
".set\tat\n\t"
".set\treorder"
:"=r" (i)
:"0" (i),
"I" (Create_Dirty_Excl_D));
}
}
for (i=0; i<PAGE_SIZE; i+=4)
*(unsigned long *)(to+i) = *(unsigned long *)(from+i);
}
static void mips32_copy_page_sc(unsigned long to, unsigned long from)
{
unsigned long i;
if (mips_cpu.options & MIPS_CPU_CACHE_CDEX) {
for (i=to; i<to+PAGE_SIZE; i+=sc_lsize) {
__asm__ __volatile__(
".set\tnoreorder\n\t"
".set\tnoat\n\t"
".set\tmips3\n\t"
"cache\t%2,(%0)\n\t"
".set\tmips0\n\t"
".set\tat\n\t"
".set\treorder"
:"=r" (i)
:"0" (i),
"I" (Create_Dirty_Excl_SD));
}
}
for (i=0; i<PAGE_SIZE; i+=4)
*(unsigned long *)(to+i) = *(unsigned long *)(from+i);
}
static inline void mips32_flush_cache_all_sc(void)
{
unsigned long flags;
__save_and_cli(flags);
blast_dcache(); blast_icache(); blast_scache();
__restore_flags(flags);
}
static inline void mips32_flush_cache_all_pc(void)
{
unsigned long flags;
__save_and_cli(flags);
blast_dcache(); blast_icache();
__restore_flags(flags);
}
static void
mips32_flush_cache_range_sc(struct vm_area_struct *vma,
unsigned long start,
unsigned long end)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long flags;
if(mm->context == 0)
return;
start &= PAGE_MASK;
#ifdef DEBUG_CACHE
printk("crange[%d,%08lx,%08lx]", (int)mm->context, start, end);
#endif
if (vma) {
if(mm->context != current->mm->context) {
mips32_flush_cache_all_sc();
} else {
pgd_t *pgd;
pmd_t *pmd;
pte_t *pte;
__save_and_cli(flags);
while(start < end) {
pgd = pgd_offset(mm, start);
pmd = pmd_offset(pgd, start);
pte = pte_offset(pmd, start);
if(pte_val(*pte) & _PAGE_VALID)
blast_scache_page(start);
start += PAGE_SIZE;
}
__restore_flags(flags);
}
}
}
static void mips32_flush_cache_range_pc(struct vm_area_struct *vma,
unsigned long start,
unsigned long end)
{
struct mm_struct *mm = vma->vm_mm;
if(mm->context != 0) {
unsigned long flags;
#ifdef DEBUG_CACHE
printk("crange[%d,%08lx,%08lx]", (int)mm->context, start, end);
#endif
__save_and_cli(flags);
blast_dcache(); blast_icache();
__restore_flags(flags);
}
}
/*
* On architectures like the Sparc, we could get rid of lines in
* the cache created only by a certain context, but on the MIPS
* (and actually certain Sparc's) we cannot.
*/
static void mips32_flush_cache_mm_sc(struct mm_struct *mm)
{
if(mm->context != 0) {
#ifdef DEBUG_CACHE
printk("cmm[%d]", (int)mm->context);
#endif
mips32_flush_cache_all_sc();
}
}
static void mips32_flush_cache_mm_pc(struct mm_struct *mm)
{
if(mm->context != 0) {
#ifdef DEBUG_CACHE
printk("cmm[%d]", (int)mm->context);
#endif
mips32_flush_cache_all_pc();
}
}
static void mips32_flush_cache_page_sc(struct vm_area_struct *vma,
unsigned long page)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long flags;
pgd_t *pgdp;
pmd_t *pmdp;
pte_t *ptep;
/*
* If ownes no valid ASID yet, cannot possibly have gotten
* this page into the cache.
*/
if (mm->context == 0)
return;
#ifdef DEBUG_CACHE
printk("cpage[%d,%08lx]", (int)mm->context, page);
#endif
__save_and_cli(flags);
page &= PAGE_MASK;
pgdp = pgd_offset(mm, page);
pmdp = pmd_offset(pgdp, page);
ptep = pte_offset(pmdp, page);
/*
* If the page isn't marked valid, the page cannot possibly be
* in the cache.
*/
if (!(pte_val(*ptep) & _PAGE_VALID))
goto out;
/*
* Doing flushes for another ASID than the current one is
* too difficult since R4k caches do a TLB translation
* for every cache flush operation. So we do indexed flushes
* in that case, which doesn't overly flush the cache too much.
*/
if (mm->context != current->active_mm->context) {
/*
* Do indexed flush, too much work to get the (possible)
* tlb refills to work correctly.
*/
page = (KSEG0 + (page & (scache_size - 1)));
blast_dcache_page_indexed(page);
blast_scache_page_indexed(page);
} else
blast_scache_page(page);
out:
__restore_flags(flags);
}
static void mips32_flush_cache_page_pc(struct vm_area_struct *vma,
unsigned long page)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long flags;
pgd_t *pgdp;
pmd_t *pmdp;
pte_t *ptep;
/*
* If ownes no valid ASID yet, cannot possibly have gotten
* this page into the cache.
*/
if (mm->context == 0)
return;
#ifdef DEBUG_CACHE
printk("cpage[%d,%08lx]", (int)mm->context, page);
#endif
__save_and_cli(flags);
page &= PAGE_MASK;
pgdp = pgd_offset(mm, page);
pmdp = pmd_offset(pgdp, page);
ptep = pte_offset(pmdp, page);
/*
* If the page isn't marked valid, the page cannot possibly be
* in the cache.
*/
if (!(pte_val(*ptep) & _PAGE_VALID))
goto out;
/*
* Doing flushes for another ASID than the current one is
* too difficult since Mips32 caches do a TLB translation
* for every cache flush operation. So we do indexed flushes
* in that case, which doesn't overly flush the cache too much.
*/
if (mm == current->active_mm) {
blast_dcache_page(page);
} else {
/* Do indexed flush, too much work to get the (possible)
* tlb refills to work correctly.
*/
page = (KSEG0 + (page & (dcache_size - 1)));
blast_dcache_page_indexed(page);
}
out:
__restore_flags(flags);
}
/* If the addresses passed to these routines are valid, they are
* either:
*
* 1) In KSEG0, so we can do a direct flush of the page.
* 2) In KSEG2, and since every process can translate those
* addresses all the time in kernel mode we can do a direct
* flush.
* 3) In KSEG1, no flush necessary.
*/
static void mips32_flush_page_to_ram_sc(struct page *page)
{
blast_scache_page((unsigned long)page_address(page));
}
static void mips32_flush_page_to_ram_pc(struct page *page)
{
blast_dcache_page((unsigned long)page_address(page));
}
static void
mips32_flush_icache_page_s(struct vm_area_struct *vma, struct page *page)
{
/*
* We did an scache flush therefore PI is already clean.
*/
}
static void
mips32_flush_icache_range(unsigned long start, unsigned long end)
{
flush_cache_all();
}
static void
mips32_flush_icache_page(struct vm_area_struct *vma, struct page *page)
{
int address;
if (!(vma->vm_flags & VM_EXEC))
return;
address = KSEG0 + ((unsigned long)page_address(page) & PAGE_MASK & (dcache_size - 1));
blast_icache_page_indexed(address);
}
/*
* Writeback and invalidate the primary cache dcache before DMA.
*/
static void
mips32_dma_cache_wback_inv_pc(unsigned long addr, unsigned long size)
{
unsigned long end, a;
unsigned int flags;
if (size >= dcache_size) {
flush_cache_all();
} else {
__save_and_cli(flags);
a = addr & ~(dc_lsize - 1);
end = (addr + size) & ~(dc_lsize - 1);
while (1) {
flush_dcache_line(a); /* Hit_Writeback_Inv_D */
if (a == end) break;
a += dc_lsize;
}
__restore_flags(flags);
}
bc_wback_inv(addr, size);
}
static void
mips32_dma_cache_wback_inv_sc(unsigned long addr, unsigned long size)
{
unsigned long end, a;
if (size >= scache_size) {
flush_cache_all();
return;
}
a = addr & ~(sc_lsize - 1);
end = (addr + size) & ~(sc_lsize - 1);
while (1) {
flush_scache_line(a); /* Hit_Writeback_Inv_SD */
if (a == end) break;
a += sc_lsize;
}
}
static void
mips32_dma_cache_inv_pc(unsigned long addr, unsigned long size)
{
unsigned long end, a;
unsigned int flags;
if (size >= dcache_size) {
flush_cache_all();
} else {
__save_and_cli(flags);
a = addr & ~(dc_lsize - 1);
end = (addr + size) & ~(dc_lsize - 1);
while (1) {
flush_dcache_line(a); /* Hit_Writeback_Inv_D */
if (a == end) break;
a += dc_lsize;
}
__restore_flags(flags);
}
bc_inv(addr, size);
}
static void
mips32_dma_cache_inv_sc(unsigned long addr, unsigned long size)
{
unsigned long end, a;
if (size >= scache_size) {
flush_cache_all();
return;
}
a = addr & ~(sc_lsize - 1);
end = (addr + size) & ~(sc_lsize - 1);
while (1) {
flush_scache_line(a); /* Hit_Writeback_Inv_SD */
if (a == end) break;
a += sc_lsize;
}
}
static void
mips32_dma_cache_wback(unsigned long addr, unsigned long size)
{
panic("mips32_dma_cache called - should not happen.\n");
}
/*
* While we're protected against bad userland addresses we don't care
* very much about what happens in that case. Usually a segmentation
* fault will dump the process later on anyway ...
*/
static void mips32_flush_cache_sigtramp(unsigned long addr)
{
protected_writeback_dcache_line(addr & ~(dc_lsize - 1));
protected_flush_icache_line(addr & ~(ic_lsize - 1));
}
#undef DEBUG_TLB
#undef DEBUG_TLBUPDATE
void flush_tlb_all(void)
{
unsigned long flags;
unsigned long old_ctx;
int entry;
#ifdef DEBUG_TLB
printk("[tlball]");
#endif
__save_and_cli(flags);
/* Save old context and create impossible VPN2 value */
old_ctx = (get_entryhi() & 0xff);
set_entryhi(KSEG0);
set_entrylo0(0);
set_entrylo1(0);
BARRIER;
entry = get_wired();
/* Blast 'em all away. */
while(entry < mips_cpu.tlbsize) {
/* Make sure all entries differ. */
set_entryhi(KSEG0+entry*0x2000);
set_index(entry);
BARRIER;
tlb_write_indexed();
BARRIER;
entry++;
}
BARRIER;
set_entryhi(old_ctx);
__restore_flags(flags);
}
void flush_tlb_mm(struct mm_struct *mm)
{
if (mm->context != 0) {
unsigned long flags;
#ifdef DEBUG_TLB
printk("[tlbmm<%d>]", mm->context);
#endif
__save_and_cli(flags);
get_new_mmu_context(mm, asid_cache);
if (mm == current->active_mm)
set_entryhi(mm->context & 0xff);
__restore_flags(flags);
}
}
void flush_tlb_range(struct mm_struct *mm, unsigned long start,
unsigned long end)
{
if(mm->context != 0) {
unsigned long flags;
int size;
#ifdef DEBUG_TLB
printk("[tlbrange<%02x,%08lx,%08lx>]", (mm->context & 0xff),
start, end);
#endif
__save_and_cli(flags);
size = (end - start + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
size = (size + 1) >> 1;
if(size <= mips_cpu.tlbsize/2) {
int oldpid = (get_entryhi() & 0xff);
int newpid = (mm->context & 0xff);
start &= (PAGE_MASK << 1);
end += ((PAGE_SIZE << 1) - 1);
end &= (PAGE_MASK << 1);
while(start < end) {
int idx;
set_entryhi(start | newpid);
start += (PAGE_SIZE << 1);
BARRIER;
tlb_probe();
BARRIER;
idx = get_index();
set_entrylo0(0);
set_entrylo1(0);
if(idx < 0)
continue;
/* Make sure all entries differ. */
set_entryhi(KSEG0+idx*0x2000);
BARRIER;
tlb_write_indexed();
BARRIER;
}
set_entryhi(oldpid);
} else {
get_new_mmu_context(mm, asid_cache);
if (mm == current->active_mm)
set_entryhi(mm->context & 0xff);
}
__restore_flags(flags);
}
}
void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
if (vma->vm_mm->context != 0) {
unsigned long flags;
int oldpid, newpid, idx;
#ifdef DEBUG_TLB
printk("[tlbpage<%d,%08lx>]", vma->vm_mm->context, page);
#endif
newpid = (vma->vm_mm->context & 0xff);
page &= (PAGE_MASK << 1);
__save_and_cli(flags);
oldpid = (get_entryhi() & 0xff);
set_entryhi(page | newpid);
BARRIER;
tlb_probe();
BARRIER;
idx = get_index();
set_entrylo0(0);
set_entrylo1(0);
if(idx < 0)
goto finish;
/* Make sure all entries differ. */
set_entryhi(KSEG0+idx*0x2000);
BARRIER;
tlb_write_indexed();
finish:
BARRIER;
set_entryhi(oldpid);
__restore_flags(flags);
}
}
void pgd_init(unsigned long page)
{
unsigned long *p = (unsigned long *) page;
int i;
for(i = 0; i < USER_PTRS_PER_PGD; i+=8) {
p[i + 0] = (unsigned long) invalid_pte_table;
p[i + 1] = (unsigned long) invalid_pte_table;
p[i + 2] = (unsigned long) invalid_pte_table;
p[i + 3] = (unsigned long) invalid_pte_table;
p[i + 4] = (unsigned long) invalid_pte_table;
p[i + 5] = (unsigned long) invalid_pte_table;
p[i + 6] = (unsigned long) invalid_pte_table;
p[i + 7] = (unsigned long) invalid_pte_table;
}
}
/*
* Updates the TLB with the new pte(s).
*/
void update_mmu_cache(struct vm_area_struct * vma,
unsigned long address, pte_t pte)
{
unsigned long flags;
pgd_t *pgdp;
pmd_t *pmdp;
pte_t *ptep;
int idx, pid;
/*
* Handle debugger faulting in for debugee.
*/
if (current->active_mm != vma->vm_mm)
return;
pid = get_entryhi() & 0xff;
#ifdef DEBUG_TLB
if((pid != (vma->vm_mm->context & 0xff)) || (vma->vm_mm->context == 0)) {
printk("update_mmu_cache: Wheee, bogus tlbpid mmpid=%d tlbpid=%d\n",
(int) (vma->vm_mm->context & 0xff), pid);
}
#endif
__save_and_cli(flags);
address &= (PAGE_MASK << 1);
set_entryhi(address | (pid));
pgdp = pgd_offset(vma->vm_mm, address);
BARRIER;
tlb_probe();
BARRIER;
pmdp = pmd_offset(pgdp, address);
idx = get_index();
ptep = pte_offset(pmdp, address);
BARRIER;
set_entrylo0(pte_val(*ptep++) >> 6);
set_entrylo1(pte_val(*ptep) >> 6);
set_entryhi(address | (pid));
BARRIER;
if(idx < 0) {
tlb_write_random();
} else {
tlb_write_indexed();
}
BARRIER;
set_entryhi(pid);
BARRIER;
__restore_flags(flags);
}
void show_regs(struct pt_regs * regs)
{
/* Saved main processor registers. */
printk("$0 : %08lx %08lx %08lx %08lx\n",
0UL, regs->regs[1], regs->regs[2], regs->regs[3]);
printk("$4 : %08lx %08lx %08lx %08lx\n",
regs->regs[4], regs->regs[5], regs->regs[6], regs->regs[7]);
printk("$8 : %08lx %08lx %08lx %08lx\n",
regs->regs[8], regs->regs[9], regs->regs[10], regs->regs[11]);
printk("$12: %08lx %08lx %08lx %08lx\n",
regs->regs[12], regs->regs[13], regs->regs[14], regs->regs[15]);
printk("$16: %08lx %08lx %08lx %08lx\n",
regs->regs[16], regs->regs[17], regs->regs[18], regs->regs[19]);
printk("$20: %08lx %08lx %08lx %08lx\n",
regs->regs[20], regs->regs[21], regs->regs[22], regs->regs[23]);
printk("$24: %08lx %08lx\n",
regs->regs[24], regs->regs[25]);
printk("$28: %08lx %08lx %08lx %08lx\n",
regs->regs[28], regs->regs[29], regs->regs[30], regs->regs[31]);
/* Saved cp0 registers. */
printk("epc : %08lx %s\nStatus: %08lx\nCause : %08lx\n",
regs->cp0_epc, print_tainted(), regs->cp0_status, regs->cp0_cause);
}
void add_wired_entry(unsigned long entrylo0, unsigned long entrylo1,
unsigned long entryhi, unsigned long pagemask)
{
unsigned long flags;
unsigned long wired;
unsigned long old_pagemask;
unsigned long old_ctx;
__save_and_cli(flags);
/* Save old context and create impossible VPN2 value */
old_ctx = (get_entryhi() & 0xff);
old_pagemask = get_pagemask();
wired = get_wired();
set_wired (wired + 1);
set_index (wired);
BARRIER;
set_pagemask (pagemask);
set_entryhi(entryhi);
set_entrylo0(entrylo0);
set_entrylo1(entrylo1);
BARRIER;
tlb_write_indexed();
BARRIER;
set_entryhi(old_ctx);
BARRIER;
set_pagemask (old_pagemask);
flush_tlb_all();
__restore_flags(flags);
}
/* Detect and size the various caches. */
static void __init probe_icache(unsigned long config)
{
unsigned long config1;
unsigned int lsize;
if (!(config & (1 << 31))) {
/*
* Not a MIPS32 complainant CPU.
* Config 1 register not supported, we assume R4k style.
*/
icache_size = 1 << (12 + ((config >> 9) & 7));
ic_lsize = 16 << ((config >> 5) & 1);
mips_cpu.icache.linesz = ic_lsize;
/*
* We cannot infer associativity - assume direct map
* unless probe template indicates otherwise
*/
if(!mips_cpu.icache.ways) mips_cpu.icache.ways = 1;
mips_cpu.icache.sets =
(icache_size / ic_lsize) / mips_cpu.icache.ways;
} else {
config1 = read_mips32_cp0_config1();
if ((lsize = ((config1 >> 19) & 7)))
mips_cpu.icache.linesz = 2 << lsize;
else
mips_cpu.icache.linesz = lsize;
mips_cpu.icache.sets = 64 << ((config1 >> 22) & 7);
mips_cpu.icache.ways = 1 + ((config1 >> 16) & 7);
ic_lsize = mips_cpu.icache.linesz;
icache_size = mips_cpu.icache.sets * mips_cpu.icache.ways *
ic_lsize;
}
printk("Primary instruction cache %dkb, linesize %d bytes (%d ways)\n",
icache_size >> 10, ic_lsize, mips_cpu.icache.ways);
}
static void __init probe_dcache(unsigned long config)
{
unsigned long config1;
unsigned int lsize;
if (!(config & (1 << 31))) {
/*
* Not a MIPS32 complainant CPU.
* Config 1 register not supported, we assume R4k style.
*/
dcache_size = 1 << (12 + ((config >> 6) & 7));
dc_lsize = 16 << ((config >> 4) & 1);
mips_cpu.dcache.linesz = dc_lsize;
/*
* We cannot infer associativity - assume direct map
* unless probe template indicates otherwise
*/
if(!mips_cpu.dcache.ways) mips_cpu.dcache.ways = 1;
mips_cpu.dcache.sets =
(dcache_size / dc_lsize) / mips_cpu.dcache.ways;
} else {
config1 = read_mips32_cp0_config1();
if ((lsize = ((config1 >> 10) & 7)))
mips_cpu.dcache.linesz = 2 << lsize;
else
mips_cpu.dcache.linesz= lsize;
mips_cpu.dcache.sets = 64 << ((config1 >> 13) & 7);
mips_cpu.dcache.ways = 1 + ((config1 >> 7) & 7);
dc_lsize = mips_cpu.dcache.linesz;
dcache_size =
mips_cpu.dcache.sets * mips_cpu.dcache.ways
* dc_lsize;
}
printk("Primary data cache %dkb, linesize %d bytes (%d ways)\n",
dcache_size >> 10, dc_lsize, mips_cpu.dcache.ways);
}
/* If you even _breathe_ on this function, look at the gcc output
* and make sure it does not pop things on and off the stack for
* the cache sizing loop that executes in KSEG1 space or else
* you will crash and burn badly. You have been warned.
*/
static int __init probe_scache(unsigned long config)
{
extern unsigned long stext;
unsigned long flags, addr, begin, end, pow2;
int tmp;
if (mips_cpu.scache.flags == MIPS_CACHE_NOT_PRESENT)
return 0;
tmp = ((config >> 17) & 1);
if(tmp)
return 0;
tmp = ((config >> 22) & 3);
switch(tmp) {
case 0:
sc_lsize = 16;
break;
case 1:
sc_lsize = 32;
break;
case 2:
sc_lsize = 64;
break;
case 3:
sc_lsize = 128;
break;
}
begin = (unsigned long) &stext;
begin &= ~((4 * 1024 * 1024) - 1);
end = begin + (4 * 1024 * 1024);
/* This is such a bitch, you'd think they would make it
* easy to do this. Away you daemons of stupidity!
*/
__save_and_cli(flags);
/* Fill each size-multiple cache line with a valid tag. */
pow2 = (64 * 1024);
for(addr = begin; addr < end; addr = (begin + pow2)) {
unsigned long *p = (unsigned long *) addr;
__asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
pow2 <<= 1;
}
/* Load first line with zero (therefore invalid) tag. */
set_taglo(0);
set_taghi(0);
__asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
__asm__ __volatile__("\n\t.set noreorder\n\t"
".set mips3\n\t"
"cache 8, (%0)\n\t"
".set mips0\n\t"
".set reorder\n\t" : : "r" (begin));
__asm__ __volatile__("\n\t.set noreorder\n\t"
".set mips3\n\t"
"cache 9, (%0)\n\t"
".set mips0\n\t"
".set reorder\n\t" : : "r" (begin));
__asm__ __volatile__("\n\t.set noreorder\n\t"
".set mips3\n\t"
"cache 11, (%0)\n\t"
".set mips0\n\t"
".set reorder\n\t" : : "r" (begin));
/* Now search for the wrap around point. */
pow2 = (128 * 1024);
tmp = 0;
for(addr = (begin + (128 * 1024)); addr < (end); addr = (begin + pow2)) {
__asm__ __volatile__("\n\t.set noreorder\n\t"
".set mips3\n\t"
"cache 7, (%0)\n\t"
".set mips0\n\t"
".set reorder\n\t" : : "r" (addr));
__asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
if(!get_taglo())
break;
pow2 <<= 1;
}
__restore_flags(flags);
addr -= begin;
printk("Secondary cache sized at %dK linesize %d bytes.\n",
(int) (addr >> 10), sc_lsize);
scache_size = addr;
return 1;
}
static void __init setup_noscache_funcs(void)
{
_clear_page = (void *)mips32_clear_page_dc;
_copy_page = (void *)mips32_copy_page_dc;
_flush_cache_all = mips32_flush_cache_all_pc;
___flush_cache_all = mips32_flush_cache_all_pc;
_flush_cache_mm = mips32_flush_cache_mm_pc;
_flush_cache_range = mips32_flush_cache_range_pc;
_flush_cache_page = mips32_flush_cache_page_pc;
_flush_page_to_ram = mips32_flush_page_to_ram_pc;
_flush_icache_page = mips32_flush_icache_page;
_dma_cache_wback_inv = mips32_dma_cache_wback_inv_pc;
_dma_cache_wback = mips32_dma_cache_wback;
_dma_cache_inv = mips32_dma_cache_inv_pc;
}
static void __init setup_scache_funcs(void)
{
_flush_cache_all = mips32_flush_cache_all_sc;
___flush_cache_all = mips32_flush_cache_all_sc;
_flush_cache_mm = mips32_flush_cache_mm_sc;
_flush_cache_range = mips32_flush_cache_range_sc;
_flush_cache_page = mips32_flush_cache_page_sc;
_flush_page_to_ram = mips32_flush_page_to_ram_sc;
_clear_page = (void *)mips32_clear_page_sc;
_copy_page = (void *)mips32_copy_page_sc;
_flush_icache_page = mips32_flush_icache_page_s;
_dma_cache_wback_inv = mips32_dma_cache_wback_inv_sc;
_dma_cache_wback = mips32_dma_cache_wback;
_dma_cache_inv = mips32_dma_cache_inv_sc;
}
typedef int (*probe_func_t)(unsigned long);
static inline void __init setup_scache(unsigned int config)
{
probe_func_t probe_scache_kseg1;
int sc_present = 0;
/* Maybe the cpu knows about a l2 cache? */
probe_scache_kseg1 = (probe_func_t) (KSEG1ADDR(&probe_scache));
sc_present = probe_scache_kseg1(config);
if (sc_present) {
mips_cpu.scache.linesz = sc_lsize;
/*
* We cannot infer associativity - assume direct map
* unless probe template indicates otherwise
*/
if(!mips_cpu.scache.ways) mips_cpu.scache.ways = 1;
mips_cpu.scache.sets =
(scache_size / sc_lsize) / mips_cpu.scache.ways;
setup_scache_funcs();
return;
}
setup_noscache_funcs();
}
static void __init probe_tlb(unsigned long config)
{
unsigned long config1;
if (!(config & (1 << 31))) {
/*
* Not a MIPS32 complainant CPU.
* Config 1 register not supported, we assume R4k style.
*/
mips_cpu.tlbsize = 48;
} else {
config1 = read_mips32_cp0_config1();
if (!((config >> 7) & 3))
panic("No MMU present");
else
mips_cpu.tlbsize = ((config1 >> 25) & 0x3f) + 1;
}
printk("Number of TLB entries %d.\n", mips_cpu.tlbsize);
}
void __init ld_mmu_mips32(void)
{
unsigned long config = read_32bit_cp0_register(CP0_CONFIG);
printk("CPU revision is: %08x\n", read_32bit_cp0_register(CP0_PRID));
#ifdef CONFIG_MIPS_UNCACHED
change_cp0_config(CONF_CM_CMASK, CONF_CM_UNCACHED);
#else
change_cp0_config(CONF_CM_CMASK, CONF_CM_CACHABLE_NONCOHERENT);
#endif
probe_icache(config);
probe_dcache(config);
setup_scache(config);
probe_tlb(config);
_flush_cache_sigtramp = mips32_flush_cache_sigtramp;
_flush_icache_range = mips32_flush_icache_range; /* Ouch */
__flush_cache_all();
write_32bit_cp0_register(CP0_WIRED, 0);
/*
* You should never change this register:
* - The entire mm handling assumes the c0_pagemask register to
* be set for 4kb pages.
*/
write_32bit_cp0_register(CP0_PAGEMASK, PM_4K);
flush_tlb_all();
}