blob: 85d2cd263e136d6dc579e64f252e6fca1592a584 [file] [log] [blame]
/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* IPv4 FIB: lookup engine and maintenance routines.
*
* Version: $Id: fib_hash.c,v 1.12 1999-08-31 07:03:27 davem Exp $
*
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/config.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/bitops.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
#define FTprint(a...)
/*
printk(KERN_DEBUG a)
*/
static kmem_cache_t * fn_hash_kmem;
/*
These bizarre types are just to force strict type checking.
When I reversed order of bytes and changed to natural mask lengths,
I forgot to make fixes in several places. Now I am lazy to return
it back.
*/
typedef struct {
u32 datum;
} fn_key_t;
typedef struct {
u32 datum;
} fn_hash_idx_t;
struct fib_node
{
struct fib_node *fn_next;
struct fib_info *fn_info;
#define FIB_INFO(f) ((f)->fn_info)
fn_key_t fn_key;
u8 fn_tos;
u8 fn_type;
u8 fn_scope;
u8 fn_state;
};
#define FN_S_ZOMBIE 1
#define FN_S_ACCESSED 2
static int fib_hash_zombies;
struct fn_zone
{
struct fn_zone *fz_next; /* Next not empty zone */
struct fib_node **fz_hash; /* Hash table pointer */
int fz_nent; /* Number of entries */
int fz_divisor; /* Hash divisor */
u32 fz_hashmask; /* (1<<fz_divisor) - 1 */
#define FZ_HASHMASK(fz) ((fz)->fz_hashmask)
int fz_order; /* Zone order */
u32 fz_mask;
#define FZ_MASK(fz) ((fz)->fz_mask)
};
/* NOTE. On fast computers evaluation of fz_hashmask and fz_mask
can be cheaper than memory lookup, so that FZ_* macros are used.
*/
struct fn_hash
{
struct fn_zone *fn_zones[33];
struct fn_zone *fn_zone_list;
};
static __inline__ fn_hash_idx_t fn_hash(fn_key_t key, struct fn_zone *fz)
{
u32 h = ntohl(key.datum)>>(32 - fz->fz_order);
h ^= (h>>20);
h ^= (h>>10);
h ^= (h>>5);
h &= FZ_HASHMASK(fz);
return *(fn_hash_idx_t*)&h;
}
#define fz_key_0(key) ((key).datum = 0)
#define fz_prefix(key,fz) ((key).datum)
static __inline__ fn_key_t fz_key(u32 dst, struct fn_zone *fz)
{
fn_key_t k;
k.datum = dst & FZ_MASK(fz);
return k;
}
static __inline__ struct fib_node ** fz_chain_p(fn_key_t key, struct fn_zone *fz)
{
return &fz->fz_hash[fn_hash(key, fz).datum];
}
static __inline__ struct fib_node * fz_chain(fn_key_t key, struct fn_zone *fz)
{
return fz->fz_hash[fn_hash(key, fz).datum];
}
extern __inline__ int fn_key_eq(fn_key_t a, fn_key_t b)
{
return a.datum == b.datum;
}
extern __inline__ int fn_key_leq(fn_key_t a, fn_key_t b)
{
return a.datum <= b.datum;
}
static rwlock_t fib_hash_lock = RW_LOCK_UNLOCKED;
#define FZ_MAX_DIVISOR 1024
#ifdef CONFIG_IP_ROUTE_LARGE_TABLES
/* The fib hash lock must be held when this is called. */
static __inline__ void fn_rebuild_zone(struct fn_zone *fz,
struct fib_node **old_ht,
int old_divisor)
{
int i;
struct fib_node *f, **fp, *next;
for (i=0; i<old_divisor; i++) {
for (f=old_ht[i]; f; f=next) {
next = f->fn_next;
for (fp = fz_chain_p(f->fn_key, fz);
*fp && fn_key_leq((*fp)->fn_key, f->fn_key);
fp = &(*fp)->fn_next)
/* NONE */;
f->fn_next = *fp;
*fp = f;
}
}
}
static void fn_rehash_zone(struct fn_zone *fz)
{
struct fib_node **ht, **old_ht;
int old_divisor, new_divisor;
u32 new_hashmask;
old_divisor = fz->fz_divisor;
switch (old_divisor) {
case 16:
new_divisor = 256;
new_hashmask = 0xFF;
break;
case 256:
new_divisor = 1024;
new_hashmask = 0x3FF;
break;
default:
printk(KERN_CRIT "route.c: bad divisor %d!\n", old_divisor);
return;
}
#if RT_CACHE_DEBUG >= 2
printk("fn_rehash_zone: hash for zone %d grows from %d\n", fz->fz_order, old_divisor);
#endif
ht = kmalloc(new_divisor*sizeof(struct fib_node*), GFP_KERNEL);
if (ht) {
memset(ht, 0, new_divisor*sizeof(struct fib_node*));
write_lock_bh(&fib_hash_lock);
old_ht = fz->fz_hash;
fz->fz_hash = ht;
fz->fz_hashmask = new_hashmask;
fz->fz_divisor = new_divisor;
fn_rebuild_zone(fz, old_ht, old_divisor);
write_unlock_bh(&fib_hash_lock);
kfree(old_ht);
}
}
#endif /* CONFIG_IP_ROUTE_LARGE_TABLES */
static void fn_free_node(struct fib_node * f)
{
fib_release_info(FIB_INFO(f));
kmem_cache_free(fn_hash_kmem, f);
}
static struct fn_zone *
fn_new_zone(struct fn_hash *table, int z)
{
int i;
struct fn_zone *fz = kmalloc(sizeof(struct fn_zone), GFP_KERNEL);
if (!fz)
return NULL;
memset(fz, 0, sizeof(struct fn_zone));
if (z) {
fz->fz_divisor = 16;
fz->fz_hashmask = 0xF;
} else {
fz->fz_divisor = 1;
fz->fz_hashmask = 0;
}
fz->fz_hash = kmalloc(fz->fz_divisor*sizeof(struct fib_node*), GFP_KERNEL);
if (!fz->fz_hash) {
kfree(fz);
return NULL;
}
memset(fz->fz_hash, 0, fz->fz_divisor*sizeof(struct fib_node*));
fz->fz_order = z;
fz->fz_mask = inet_make_mask(z);
/* Find the first not empty zone with more specific mask */
for (i=z+1; i<=32; i++)
if (table->fn_zones[i])
break;
write_lock_bh(&fib_hash_lock);
if (i>32) {
/* No more specific masks, we are the first. */
fz->fz_next = table->fn_zone_list;
table->fn_zone_list = fz;
} else {
fz->fz_next = table->fn_zones[i]->fz_next;
table->fn_zones[i]->fz_next = fz;
}
table->fn_zones[z] = fz;
write_unlock_bh(&fib_hash_lock);
return fz;
}
static int
fn_hash_lookup(struct fib_table *tb, const struct rt_key *key, struct fib_result *res)
{
int err;
struct fn_zone *fz;
struct fn_hash *t = (struct fn_hash*)tb->tb_data;
read_lock(&fib_hash_lock);
for (fz = t->fn_zone_list; fz; fz = fz->fz_next) {
struct fib_node *f;
fn_key_t k = fz_key(key->dst, fz);
for (f = fz_chain(k, fz); f; f = f->fn_next) {
if (!fn_key_eq(k, f->fn_key)) {
if (fn_key_leq(k, f->fn_key))
break;
else
continue;
}
#ifdef CONFIG_IP_ROUTE_TOS
if (f->fn_tos && f->fn_tos != key->tos)
continue;
#endif
f->fn_state |= FN_S_ACCESSED;
if (f->fn_state&FN_S_ZOMBIE)
continue;
if (f->fn_scope < key->scope)
continue;
err = fib_semantic_match(f->fn_type, FIB_INFO(f), key, res);
if (err == 0) {
res->type = f->fn_type;
res->scope = f->fn_scope;
res->prefixlen = fz->fz_order;
goto out;
}
if (err < 0)
goto out;
}
}
err = 1;
out:
read_unlock(&fib_hash_lock);
return err;
}
static int fn_hash_last_dflt=-1;
static int fib_detect_death(struct fib_info *fi, int order,
struct fib_info **last_resort, int *last_idx)
{
struct neighbour *n;
int state = NUD_NONE;
n = neigh_lookup(&arp_tbl, &fi->fib_nh[0].nh_gw, fi->fib_dev);
if (n) {
state = n->nud_state;
neigh_release(n);
}
if (state==NUD_REACHABLE)
return 0;
if ((state&NUD_VALID) && order != fn_hash_last_dflt)
return 0;
if ((state&NUD_VALID) ||
(*last_idx<0 && order > fn_hash_last_dflt)) {
*last_resort = fi;
*last_idx = order;
}
return 1;
}
static void
fn_hash_select_default(struct fib_table *tb, const struct rt_key *key, struct fib_result *res)
{
int order, last_idx;
struct fib_node *f;
struct fib_info *fi = NULL;
struct fib_info *last_resort;
struct fn_hash *t = (struct fn_hash*)tb->tb_data;
struct fn_zone *fz = t->fn_zones[0];
if (fz == NULL)
return;
last_idx = -1;
last_resort = NULL;
order = -1;
read_lock(&fib_hash_lock);
for (f = fz->fz_hash[0]; f; f = f->fn_next) {
struct fib_info *next_fi = FIB_INFO(f);
if ((f->fn_state&FN_S_ZOMBIE) ||
f->fn_scope != res->scope ||
f->fn_type != RTN_UNICAST)
continue;
if (next_fi->fib_priority > res->fi->fib_priority)
break;
if (!next_fi->fib_nh[0].nh_gw || next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
continue;
f->fn_state |= FN_S_ACCESSED;
if (fi == NULL) {
if (next_fi != res->fi)
break;
} else if (!fib_detect_death(fi, order, &last_resort, &last_idx)) {
if (res->fi)
fib_info_put(res->fi);
res->fi = fi;
atomic_inc(&fi->fib_clntref);
fn_hash_last_dflt = order;
goto out;
}
fi = next_fi;
order++;
}
if (order<=0 || fi==NULL) {
fn_hash_last_dflt = -1;
goto out;
}
if (!fib_detect_death(fi, order, &last_resort, &last_idx)) {
if (res->fi)
fib_info_put(res->fi);
res->fi = fi;
atomic_inc(&fi->fib_clntref);
fn_hash_last_dflt = order;
goto out;
}
if (last_idx >= 0) {
if (res->fi)
fib_info_put(res->fi);
res->fi = last_resort;
if (last_resort)
atomic_inc(&last_resort->fib_clntref);
}
fn_hash_last_dflt = last_idx;
out:
read_unlock(&fib_hash_lock);
}
#define FIB_SCAN(f, fp) \
for ( ; ((f) = *(fp)) != NULL; (fp) = &(f)->fn_next)
#define FIB_SCAN_KEY(f, fp, key) \
for ( ; ((f) = *(fp)) != NULL && fn_key_eq((f)->fn_key, (key)); (fp) = &(f)->fn_next)
#ifndef CONFIG_IP_ROUTE_TOS
#define FIB_SCAN_TOS(f, fp, key, tos) FIB_SCAN_KEY(f, fp, key)
#else
#define FIB_SCAN_TOS(f, fp, key, tos) \
for ( ; ((f) = *(fp)) != NULL && fn_key_eq((f)->fn_key, (key)) && \
(f)->fn_tos == (tos) ; (fp) = &(f)->fn_next)
#endif
#ifdef CONFIG_RTNETLINK
static void rtmsg_fib(int, struct fib_node*, int, int,
struct nlmsghdr *n,
struct netlink_skb_parms *);
#else
#define rtmsg_fib(a, b, c, d, e, f)
#endif
static int
fn_hash_insert(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
struct nlmsghdr *n, struct netlink_skb_parms *req)
{
struct fn_hash *table = (struct fn_hash*)tb->tb_data;
struct fib_node *new_f, *f, **fp, **del_fp;
struct fn_zone *fz;
struct fib_info *fi;
int z = r->rtm_dst_len;
int type = r->rtm_type;
#ifdef CONFIG_IP_ROUTE_TOS
u8 tos = r->rtm_tos;
#endif
fn_key_t key;
int err;
FTprint("tb(%d)_insert: %d %08x/%d %d %08x\n", tb->tb_id, r->rtm_type, rta->rta_dst ?
*(u32*)rta->rta_dst : 0, z, rta->rta_oif ? *rta->rta_oif : -1,
rta->rta_prefsrc ? *(u32*)rta->rta_prefsrc : 0);
if (z > 32)
return -EINVAL;
fz = table->fn_zones[z];
if (!fz && !(fz = fn_new_zone(table, z)))
return -ENOBUFS;
fz_key_0(key);
if (rta->rta_dst) {
u32 dst;
memcpy(&dst, rta->rta_dst, 4);
if (dst & ~FZ_MASK(fz))
return -EINVAL;
key = fz_key(dst, fz);
}
if ((fi = fib_create_info(r, rta, n, &err)) == NULL)
return err;
#ifdef CONFIG_IP_ROUTE_LARGE_TABLES
if (fz->fz_nent > (fz->fz_divisor<<2) &&
fz->fz_divisor < FZ_MAX_DIVISOR &&
(z==32 || (1<<z) > fz->fz_divisor))
fn_rehash_zone(fz);
#endif
fp = fz_chain_p(key, fz);
/*
* Scan list to find the first route with the same destination
*/
FIB_SCAN(f, fp) {
if (fn_key_leq(key,f->fn_key))
break;
}
#ifdef CONFIG_IP_ROUTE_TOS
/*
* Find route with the same destination and tos.
*/
FIB_SCAN_KEY(f, fp, key) {
if (f->fn_tos <= tos)
break;
}
#endif
del_fp = NULL;
if (f && (f->fn_state&FN_S_ZOMBIE) &&
#ifdef CONFIG_IP_ROUTE_TOS
f->fn_tos == tos &&
#endif
fn_key_eq(f->fn_key, key)) {
del_fp = fp;
fp = &f->fn_next;
f = *fp;
goto create;
}
FIB_SCAN_TOS(f, fp, key, tos) {
if (fi->fib_priority <= FIB_INFO(f)->fib_priority)
break;
}
/* Now f==*fp points to the first node with the same
keys [prefix,tos,priority], if such key already
exists or to the node, before which we will insert new one.
*/
if (f &&
#ifdef CONFIG_IP_ROUTE_TOS
f->fn_tos == tos &&
#endif
fn_key_eq(f->fn_key, key) &&
fi->fib_priority == FIB_INFO(f)->fib_priority) {
struct fib_node **ins_fp;
err = -EEXIST;
if (n->nlmsg_flags&NLM_F_EXCL)
goto out;
if (n->nlmsg_flags&NLM_F_REPLACE) {
del_fp = fp;
fp = &f->fn_next;
f = *fp;
goto replace;
}
ins_fp = fp;
err = -EEXIST;
FIB_SCAN_TOS(f, fp, key, tos) {
if (fi->fib_priority != FIB_INFO(f)->fib_priority)
break;
if (f->fn_type == type && f->fn_scope == r->rtm_scope
&& FIB_INFO(f) == fi)
goto out;
}
if (!(n->nlmsg_flags&NLM_F_APPEND)) {
fp = ins_fp;
f = *fp;
}
}
create:
err = -ENOENT;
if (!(n->nlmsg_flags&NLM_F_CREATE))
goto out;
replace:
err = -ENOBUFS;
new_f = kmem_cache_alloc(fn_hash_kmem, SLAB_KERNEL);
if (new_f == NULL)
goto out;
memset(new_f, 0, sizeof(struct fib_node));
new_f->fn_key = key;
#ifdef CONFIG_IP_ROUTE_TOS
new_f->fn_tos = tos;
#endif
new_f->fn_type = type;
new_f->fn_scope = r->rtm_scope;
FIB_INFO(new_f) = fi;
/*
* Insert new entry to the list.
*/
new_f->fn_next = f;
write_lock_bh(&fib_hash_lock);
*fp = new_f;
write_unlock_bh(&fib_hash_lock);
fz->fz_nent++;
if (del_fp) {
f = *del_fp;
/* Unlink replaced node */
write_lock_bh(&fib_hash_lock);
*del_fp = f->fn_next;
write_unlock_bh(&fib_hash_lock);
if (!(f->fn_state&FN_S_ZOMBIE))
rtmsg_fib(RTM_DELROUTE, f, z, tb->tb_id, n, req);
if (f->fn_state&FN_S_ACCESSED)
rt_cache_flush(-1);
fn_free_node(f);
fz->fz_nent--;
} else {
rt_cache_flush(-1);
}
rtmsg_fib(RTM_NEWROUTE, new_f, z, tb->tb_id, n, req);
return 0;
out:
fib_release_info(fi);
return err;
}
static int
fn_hash_delete(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
struct nlmsghdr *n, struct netlink_skb_parms *req)
{
struct fn_hash *table = (struct fn_hash*)tb->tb_data;
struct fib_node **fp, **del_fp, *f;
int z = r->rtm_dst_len;
struct fn_zone *fz;
fn_key_t key;
int matched;
#ifdef CONFIG_IP_ROUTE_TOS
u8 tos = r->rtm_tos;
#endif
FTprint("tb(%d)_delete: %d %08x/%d %d\n", tb->tb_id, r->rtm_type, rta->rta_dst ?
*(u32*)rta->rta_dst : 0, z, rta->rta_oif ? *rta->rta_oif : -1);
if (z > 32)
return -EINVAL;
if ((fz = table->fn_zones[z]) == NULL)
return -ESRCH;
fz_key_0(key);
if (rta->rta_dst) {
u32 dst;
memcpy(&dst, rta->rta_dst, 4);
if (dst & ~FZ_MASK(fz))
return -EINVAL;
key = fz_key(dst, fz);
}
fp = fz_chain_p(key, fz);
FIB_SCAN(f, fp) {
if (fn_key_eq(f->fn_key, key))
break;
if (fn_key_leq(key, f->fn_key)) {
return -ESRCH;
}
}
#ifdef CONFIG_IP_ROUTE_TOS
FIB_SCAN_KEY(f, fp, key) {
if (f->fn_tos == tos)
break;
}
#endif
matched = 0;
del_fp = NULL;
FIB_SCAN_TOS(f, fp, key, tos) {
struct fib_info * fi = FIB_INFO(f);
if (f->fn_state&FN_S_ZOMBIE) {
return -ESRCH;
}
matched++;
if (del_fp == NULL &&
(!r->rtm_type || f->fn_type == r->rtm_type) &&
(r->rtm_scope == RT_SCOPE_NOWHERE || f->fn_scope == r->rtm_scope) &&
(!r->rtm_protocol || fi->fib_protocol == r->rtm_protocol) &&
fib_nh_match(r, n, rta, fi) == 0)
del_fp = fp;
}
if (del_fp) {
f = *del_fp;
rtmsg_fib(RTM_DELROUTE, f, z, tb->tb_id, n, req);
if (matched != 1) {
write_lock_bh(&fib_hash_lock);
*del_fp = f->fn_next;
write_unlock_bh(&fib_hash_lock);
if (f->fn_state&FN_S_ACCESSED)
rt_cache_flush(-1);
fn_free_node(f);
fz->fz_nent--;
} else {
f->fn_state |= FN_S_ZOMBIE;
if (f->fn_state&FN_S_ACCESSED) {
f->fn_state &= ~FN_S_ACCESSED;
rt_cache_flush(-1);
}
if (++fib_hash_zombies > 128)
fib_flush();
}
return 0;
}
return -ESRCH;
}
extern __inline__ int
fn_flush_list(struct fib_node ** fp, int z, struct fn_hash *table)
{
int found = 0;
struct fib_node *f;
while ((f = *fp) != NULL) {
struct fib_info *fi = FIB_INFO(f);
if (fi && ((f->fn_state&FN_S_ZOMBIE) || (fi->fib_flags&RTNH_F_DEAD))) {
write_lock_bh(&fib_hash_lock);
*fp = f->fn_next;
write_unlock_bh(&fib_hash_lock);
fn_free_node(f);
found++;
continue;
}
fp = &f->fn_next;
}
return found;
}
static int fn_hash_flush(struct fib_table *tb)
{
struct fn_hash *table = (struct fn_hash*)tb->tb_data;
struct fn_zone *fz;
int found = 0;
fib_hash_zombies = 0;
for (fz = table->fn_zone_list; fz; fz = fz->fz_next) {
int i;
int tmp = 0;
for (i=fz->fz_divisor-1; i>=0; i--)
tmp += fn_flush_list(&fz->fz_hash[i], fz->fz_order, table);
fz->fz_nent -= tmp;
found += tmp;
}
return found;
}
#ifdef CONFIG_PROC_FS
static int fn_hash_get_info(struct fib_table *tb, char *buffer, int first, int count)
{
struct fn_hash *table = (struct fn_hash*)tb->tb_data;
struct fn_zone *fz;
int pos = 0;
int n = 0;
read_lock(&fib_hash_lock);
for (fz=table->fn_zone_list; fz; fz = fz->fz_next) {
int i;
struct fib_node *f;
int maxslot = fz->fz_divisor;
struct fib_node **fp = fz->fz_hash;
if (fz->fz_nent == 0)
continue;
if (pos + fz->fz_nent <= first) {
pos += fz->fz_nent;
continue;
}
for (i=0; i < maxslot; i++, fp++) {
for (f = *fp; f; f = f->fn_next) {
if (++pos <= first)
continue;
fib_node_get_info(f->fn_type,
f->fn_state&FN_S_ZOMBIE,
FIB_INFO(f),
fz_prefix(f->fn_key, fz),
FZ_MASK(fz), buffer);
buffer += 128;
if (++n >= count)
goto out;
}
}
}
out:
read_unlock(&fib_hash_lock);
return n;
}
#endif
#ifdef CONFIG_RTNETLINK
extern __inline__ int
fn_hash_dump_bucket(struct sk_buff *skb, struct netlink_callback *cb,
struct fib_table *tb,
struct fn_zone *fz,
struct fib_node *f)
{
int i, s_i;
s_i = cb->args[3];
for (i=0; f; i++, f=f->fn_next) {
if (i < s_i) continue;
if (f->fn_state&FN_S_ZOMBIE) continue;
if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid, cb->nlh->nlmsg_seq,
RTM_NEWROUTE,
tb->tb_id, (f->fn_state&FN_S_ZOMBIE) ? 0 : f->fn_type, f->fn_scope,
&f->fn_key, fz->fz_order, f->fn_tos,
f->fn_info) < 0) {
cb->args[3] = i;
return -1;
}
}
cb->args[3] = i;
return skb->len;
}
extern __inline__ int
fn_hash_dump_zone(struct sk_buff *skb, struct netlink_callback *cb,
struct fib_table *tb,
struct fn_zone *fz)
{
int h, s_h;
s_h = cb->args[2];
for (h=0; h < fz->fz_divisor; h++) {
if (h < s_h) continue;
if (h > s_h)
memset(&cb->args[3], 0, sizeof(cb->args) - 3*sizeof(cb->args[0]));
if (fz->fz_hash == NULL || fz->fz_hash[h] == NULL)
continue;
if (fn_hash_dump_bucket(skb, cb, tb, fz, fz->fz_hash[h]) < 0) {
cb->args[2] = h;
return -1;
}
}
cb->args[2] = h;
return skb->len;
}
static int fn_hash_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
{
int m, s_m;
struct fn_zone *fz;
struct fn_hash *table = (struct fn_hash*)tb->tb_data;
s_m = cb->args[1];
read_lock(&fib_hash_lock);
for (fz = table->fn_zone_list, m=0; fz; fz = fz->fz_next, m++) {
if (m < s_m) continue;
if (m > s_m)
memset(&cb->args[2], 0, sizeof(cb->args) - 2*sizeof(cb->args[0]));
if (fn_hash_dump_zone(skb, cb, tb, fz) < 0) {
cb->args[1] = m;
read_unlock(&fib_hash_lock);
return -1;
}
}
read_unlock(&fib_hash_lock);
cb->args[1] = m;
return skb->len;
}
static void rtmsg_fib(int event, struct fib_node* f, int z, int tb_id,
struct nlmsghdr *n, struct netlink_skb_parms *req)
{
struct sk_buff *skb;
u32 pid = req ? req->pid : 0;
int size = NLMSG_SPACE(sizeof(struct rtmsg)+256);
skb = alloc_skb(size, GFP_KERNEL);
if (!skb)
return;
if (fib_dump_info(skb, pid, n->nlmsg_seq, event, tb_id,
f->fn_type, f->fn_scope, &f->fn_key, z, f->fn_tos,
FIB_INFO(f)) < 0) {
kfree_skb(skb);
return;
}
NETLINK_CB(skb).dst_groups = RTMGRP_IPV4_ROUTE;
if (n->nlmsg_flags&NLM_F_ECHO)
atomic_inc(&skb->users);
netlink_broadcast(rtnl, skb, pid, RTMGRP_IPV4_ROUTE, GFP_KERNEL);
if (n->nlmsg_flags&NLM_F_ECHO)
netlink_unicast(rtnl, skb, pid, MSG_DONTWAIT);
}
#endif /* CONFIG_RTNETLINK */
#ifdef CONFIG_IP_MULTIPLE_TABLES
struct fib_table * fib_hash_init(int id)
#else
struct fib_table * __init fib_hash_init(int id)
#endif
{
struct fib_table *tb;
if (fn_hash_kmem == NULL)
fn_hash_kmem = kmem_cache_create("ip_fib_hash",
sizeof(struct fib_node),
0, SLAB_HWCACHE_ALIGN,
NULL, NULL);
tb = kmalloc(sizeof(struct fib_table) + sizeof(struct fn_hash), GFP_KERNEL);
if (tb == NULL)
return NULL;
tb->tb_id = id;
tb->tb_lookup = fn_hash_lookup;
tb->tb_insert = fn_hash_insert;
tb->tb_delete = fn_hash_delete;
tb->tb_flush = fn_hash_flush;
tb->tb_select_default = fn_hash_select_default;
#ifdef CONFIG_RTNETLINK
tb->tb_dump = fn_hash_dump;
#endif
#ifdef CONFIG_PROC_FS
tb->tb_get_info = fn_hash_get_info;
#endif
memset(tb->tb_data, 0, sizeof(struct fn_hash));
return tb;
}