blob: 7c2c2520d1c19c1871d1631c1b478c63565b99d2 [file] [log] [blame]
/*
* linux/arch/i386/traps.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* Pentium III FXSR, SSE support
* Gareth Hughes <gareth@valinux.com>, May 2000
*/
/*
* 'Traps.c' handles hardware traps and faults after we have saved some
* state in 'asm.s'.
*/
#include <linux/config.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/ptrace.h>
#include <linux/timer.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/highmem.h>
#ifdef CONFIG_MCA
#include <linux/mca.h>
#include <asm/processor.h>
#endif
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/atomic.h>
#include <asm/debugreg.h>
#include <asm/desc.h>
#include <asm/i387.h>
#include <asm/smp.h>
#include <asm/pgalloc.h>
#ifdef CONFIG_X86_VISWS_APIC
#include <asm/fixmap.h>
#include <asm/cobalt.h>
#include <asm/lithium.h>
#endif
#include <linux/irq.h>
#include <linux/module.h>
asmlinkage int system_call(void);
asmlinkage void lcall7(void);
asmlinkage void lcall27(void);
struct desc_struct default_ldt[] = { { 0, 0 }, { 0, 0 }, { 0, 0 },
{ 0, 0 }, { 0, 0 } };
/*
* The IDT has to be page-aligned to simplify the Pentium
* F0 0F bug workaround.. We have a special link segment
* for this.
*/
struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, };
asmlinkage void divide_error(void);
asmlinkage void debug(void);
asmlinkage void nmi(void);
asmlinkage void int3(void);
asmlinkage void overflow(void);
asmlinkage void bounds(void);
asmlinkage void invalid_op(void);
asmlinkage void device_not_available(void);
asmlinkage void double_fault(void);
asmlinkage void coprocessor_segment_overrun(void);
asmlinkage void invalid_TSS(void);
asmlinkage void segment_not_present(void);
asmlinkage void stack_segment(void);
asmlinkage void general_protection(void);
asmlinkage void page_fault(void);
asmlinkage void coprocessor_error(void);
asmlinkage void simd_coprocessor_error(void);
asmlinkage void alignment_check(void);
asmlinkage void spurious_interrupt_bug(void);
asmlinkage void machine_check(void);
int kstack_depth_to_print = 24;
/*
* If the address is either in the .text section of the
* kernel, or in the vmalloc'ed module regions, it *may*
* be the address of a calling routine
*/
#ifdef CONFIG_MODULES
extern struct module *module_list;
extern struct module kernel_module;
static inline int kernel_text_address(unsigned long addr)
{
int retval = 0;
struct module *mod;
if (addr >= (unsigned long) &_stext &&
addr <= (unsigned long) &_etext)
return 1;
for (mod = module_list; mod != &kernel_module; mod = mod->next) {
/* mod_bound tests for addr being inside the vmalloc'ed
* module area. Of course it'd be better to test only
* for the .text subset... */
if (mod_bound(addr, 0, mod)) {
retval = 1;
break;
}
}
return retval;
}
#else
static inline int kernel_text_address(unsigned long addr)
{
return (addr >= (unsigned long) &_stext &&
addr <= (unsigned long) &_etext);
}
#endif
void show_trace(unsigned long * stack)
{
int i;
unsigned long addr;
if (!stack)
stack = (unsigned long*)&stack;
printk("Call Trace: ");
i = 1;
while (((long) stack & (THREAD_SIZE-1)) != 0) {
addr = *stack++;
if (kernel_text_address(addr)) {
if (i && ((i % 6) == 0))
printk("\n ");
printk("[<%08lx>] ", addr);
i++;
}
}
printk("\n");
}
void show_trace_task(struct task_struct *tsk)
{
unsigned long esp = tsk->thread.esp;
/* User space on another CPU? */
if ((esp ^ (unsigned long)tsk->thread_info) & (PAGE_MASK<<1))
return;
show_trace((unsigned long *)esp);
}
void show_stack(unsigned long * esp)
{
unsigned long *stack;
int i;
// debugging aid: "show_stack(NULL);" prints the
// back trace for this cpu.
if(esp==NULL)
esp=(unsigned long*)&esp;
stack = esp;
for(i=0; i < kstack_depth_to_print; i++) {
if (((long) stack & (THREAD_SIZE-1)) == 0)
break;
if (i && ((i % 8) == 0))
printk("\n ");
printk("%08lx ", *stack++);
}
printk("\n");
show_trace(esp);
}
void show_registers(struct pt_regs *regs)
{
int i;
int in_kernel = 1;
unsigned long esp;
unsigned short ss;
esp = (unsigned long) (&regs->esp);
ss = __KERNEL_DS;
if (regs->xcs & 3) {
in_kernel = 0;
esp = regs->esp;
ss = regs->xss & 0xffff;
}
printk("CPU: %d\nEIP: %04x:[<%08lx>] %s\nEFLAGS: %08lx\n",
smp_processor_id(), 0xffff & regs->xcs, regs->eip, print_tainted(), regs->eflags);
printk("eax: %08lx ebx: %08lx ecx: %08lx edx: %08lx\n",
regs->eax, regs->ebx, regs->ecx, regs->edx);
printk("esi: %08lx edi: %08lx ebp: %08lx esp: %08lx\n",
regs->esi, regs->edi, regs->ebp, esp);
printk("ds: %04x es: %04x ss: %04x\n",
regs->xds & 0xffff, regs->xes & 0xffff, ss);
printk("Process %s (pid: %d, threadinfo=%p task=%p)",
current->comm, current->pid, current_thread_info(), current);
/*
* When in-kernel, we also print out the stack and code at the
* time of the fault..
*/
if (in_kernel) {
printk("\nStack: ");
show_stack((unsigned long*)esp);
printk("\nCode: ");
if(regs->eip < PAGE_OFFSET)
goto bad;
for(i=0;i<20;i++)
{
unsigned char c;
if(__get_user(c, &((unsigned char*)regs->eip)[i])) {
bad:
printk(" Bad EIP value.");
break;
}
printk("%02x ", c);
}
}
printk("\n");
}
spinlock_t die_lock = SPIN_LOCK_UNLOCKED;
void die(const char * str, struct pt_regs * regs, long err)
{
console_verbose();
spin_lock_irq(&die_lock);
bust_spinlocks(1);
printk("%s: %04lx\n", str, err & 0xffff);
show_registers(regs);
bust_spinlocks(0);
spin_unlock_irq(&die_lock);
do_exit(SIGSEGV);
}
static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err)
{
if (!(regs->eflags & VM_MASK) && !(3 & regs->xcs))
die(str, regs, err);
}
static inline unsigned long get_cr2(void)
{
unsigned long address;
/* get the address */
__asm__("movl %%cr2,%0":"=r" (address));
return address;
}
static void inline do_trap(int trapnr, int signr, char *str, int vm86,
struct pt_regs * regs, long error_code, siginfo_t *info)
{
if (vm86 && regs->eflags & VM_MASK)
goto vm86_trap;
#ifdef CONFIG_PNPBIOS
if (regs->xcs == 0x60 || regs->xcs == 0x68)
{
extern u32 pnp_bios_fault_eip, pnp_bios_fault_esp;
extern u32 pnp_bios_is_utter_crap;
pnp_bios_is_utter_crap = 1;
printk(KERN_CRIT "PNPBIOS fault.. attempting recovery.\n");
__asm__ volatile(
"movl %0, %%esp\n\t"
"jmp %1\n\t"
: "=a" (pnp_bios_fault_esp), "=b" (pnp_bios_fault_eip));
panic("do_trap: can't hit this");
}
#endif
if (!(regs->xcs & 3))
goto kernel_trap;
trap_signal: {
struct task_struct *tsk = current;
tsk->thread.error_code = error_code;
tsk->thread.trap_no = trapnr;
if (info)
force_sig_info(signr, info, tsk);
else
force_sig(signr, tsk);
return;
}
kernel_trap: {
unsigned long fixup = search_exception_table(regs->eip);
if (fixup)
regs->eip = fixup;
else
die(str, regs, error_code);
return;
}
vm86_trap: {
int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr);
if (ret) goto trap_signal;
return;
}
}
#define DO_ERROR(trapnr, signr, str, name) \
asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
{ \
do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
}
#define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
{ \
siginfo_t info; \
info.si_signo = signr; \
info.si_errno = 0; \
info.si_code = sicode; \
info.si_addr = (void *)siaddr; \
do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
}
#define DO_VM86_ERROR(trapnr, signr, str, name) \
asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
{ \
do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
}
#define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
{ \
siginfo_t info; \
info.si_signo = signr; \
info.si_errno = 0; \
info.si_code = sicode; \
info.si_addr = (void *)siaddr; \
do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
}
DO_VM86_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->eip)
DO_VM86_ERROR( 3, SIGTRAP, "int3", int3)
DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow)
DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds)
DO_ERROR_INFO( 6, SIGILL, "invalid operand", invalid_op, ILL_ILLOPN, regs->eip)
DO_VM86_ERROR( 7, SIGSEGV, "device not available", device_not_available)
DO_ERROR( 8, SIGSEGV, "double fault", double_fault)
DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, get_cr2())
asmlinkage void do_general_protection(struct pt_regs * regs, long error_code)
{
if (regs->eflags & VM_MASK)
goto gp_in_vm86;
if (!(regs->xcs & 3))
goto gp_in_kernel;
current->thread.error_code = error_code;
current->thread.trap_no = 13;
force_sig(SIGSEGV, current);
return;
gp_in_vm86:
handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
return;
gp_in_kernel:
{
unsigned long fixup;
fixup = search_exception_table(regs->eip);
if (fixup) {
regs->eip = fixup;
return;
}
die("general protection fault", regs, error_code);
}
}
static void mem_parity_error(unsigned char reason, struct pt_regs * regs)
{
printk("Uhhuh. NMI received. Dazed and confused, but trying to continue\n");
printk("You probably have a hardware problem with your RAM chips\n");
/* Clear and disable the memory parity error line. */
reason = (reason & 0xf) | 4;
outb(reason, 0x61);
}
static void io_check_error(unsigned char reason, struct pt_regs * regs)
{
unsigned long i;
printk("NMI: IOCK error (debug interrupt?)\n");
show_registers(regs);
/* Re-enable the IOCK line, wait for a few seconds */
reason = (reason & 0xf) | 8;
outb(reason, 0x61);
i = 2000;
while (--i) udelay(1000);
reason &= ~8;
outb(reason, 0x61);
}
static void unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
{
#ifdef CONFIG_MCA
/* Might actually be able to figure out what the guilty party
* is. */
if( MCA_bus ) {
mca_handle_nmi();
return;
}
#endif
printk("Uhhuh. NMI received for unknown reason %02x.\n", reason);
printk("Dazed and confused, but trying to continue\n");
printk("Do you have a strange power saving mode enabled?\n");
}
asmlinkage void do_nmi(struct pt_regs * regs, long error_code)
{
unsigned char reason = inb(0x61);
++nmi_count(smp_processor_id());
if (!(reason & 0xc0)) {
#if CONFIG_X86_LOCAL_APIC
/*
* Ok, so this is none of the documented NMI sources,
* so it must be the NMI watchdog.
*/
if (nmi_watchdog) {
nmi_watchdog_tick(regs);
return;
}
#endif
unknown_nmi_error(reason, regs);
return;
}
if (reason & 0x80)
mem_parity_error(reason, regs);
if (reason & 0x40)
io_check_error(reason, regs);
/*
* Reassert NMI in case it became active meanwhile
* as it's edge-triggered.
*/
outb(0x8f, 0x70);
inb(0x71); /* dummy */
outb(0x0f, 0x70);
inb(0x71); /* dummy */
}
/*
* Our handling of the processor debug registers is non-trivial.
* We do not clear them on entry and exit from the kernel. Therefore
* it is possible to get a watchpoint trap here from inside the kernel.
* However, the code in ./ptrace.c has ensured that the user can
* only set watchpoints on userspace addresses. Therefore the in-kernel
* watchpoint trap can only occur in code which is reading/writing
* from user space. Such code must not hold kernel locks (since it
* can equally take a page fault), therefore it is safe to call
* force_sig_info even though that claims and releases locks.
*
* Code in ./signal.c ensures that the debug control register
* is restored before we deliver any signal, and therefore that
* user code runs with the correct debug control register even though
* we clear it here.
*
* Being careful here means that we don't have to be as careful in a
* lot of more complicated places (task switching can be a bit lazy
* about restoring all the debug state, and ptrace doesn't have to
* find every occurrence of the TF bit that could be saved away even
* by user code)
*/
asmlinkage void do_debug(struct pt_regs * regs, long error_code)
{
unsigned int condition;
struct task_struct *tsk = current;
siginfo_t info;
__asm__ __volatile__("movl %%db6,%0" : "=r" (condition));
/* Mask out spurious debug traps due to lazy DR7 setting */
if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
if (!tsk->thread.debugreg[7])
goto clear_dr7;
}
if (regs->eflags & VM_MASK)
goto debug_vm86;
/* Save debug status register where ptrace can see it */
tsk->thread.debugreg[6] = condition;
/* Mask out spurious TF errors due to lazy TF clearing */
if (condition & DR_STEP) {
/*
* The TF error should be masked out only if the current
* process is not traced and if the TRAP flag has been set
* previously by a tracing process (condition detected by
* the PT_DTRACE flag); remember that the i386 TRAP flag
* can be modified by the process itself in user mode,
* allowing programs to debug themselves without the ptrace()
* interface.
*/
if ((tsk->ptrace & (PT_DTRACE|PT_PTRACED)) == PT_DTRACE)
goto clear_TF;
}
/* Ok, finally something we can handle */
tsk->thread.trap_no = 1;
tsk->thread.error_code = error_code;
info.si_signo = SIGTRAP;
info.si_errno = 0;
info.si_code = TRAP_BRKPT;
/* If this is a kernel mode trap, save the user PC on entry to
* the kernel, that's what the debugger can make sense of.
*/
info.si_addr = ((regs->xcs & 3) == 0) ? (void *)tsk->thread.eip :
(void *)regs->eip;
force_sig_info(SIGTRAP, &info, tsk);
/* Disable additional traps. They'll be re-enabled when
* the signal is delivered.
*/
clear_dr7:
__asm__("movl %0,%%db7"
: /* no output */
: "r" (0));
return;
debug_vm86:
handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
return;
clear_TF:
regs->eflags &= ~TF_MASK;
return;
}
/*
* Note that we play around with the 'TS' bit in an attempt to get
* the correct behaviour even in the presence of the asynchronous
* IRQ13 behaviour
*/
void math_error(void *eip)
{
struct task_struct * task;
siginfo_t info;
unsigned short cwd, swd;
/*
* Save the info for the exception handler and clear the error.
*/
task = current;
save_init_fpu(task);
task->thread.trap_no = 16;
task->thread.error_code = 0;
info.si_signo = SIGFPE;
info.si_errno = 0;
info.si_code = __SI_FAULT;
info.si_addr = eip;
/*
* (~cwd & swd) will mask out exceptions that are not set to unmasked
* status. 0x3f is the exception bits in these regs, 0x200 is the
* C1 reg you need in case of a stack fault, 0x040 is the stack
* fault bit. We should only be taking one exception at a time,
* so if this combination doesn't produce any single exception,
* then we have a bad program that isn't syncronizing its FPU usage
* and it will suffer the consequences since we won't be able to
* fully reproduce the context of the exception
*/
cwd = get_fpu_cwd(task);
swd = get_fpu_swd(task);
switch (((~cwd) & swd & 0x3f) | (swd & 0x240)) {
case 0x000:
default:
break;
case 0x001: /* Invalid Op */
case 0x040: /* Stack Fault */
case 0x240: /* Stack Fault | Direction */
info.si_code = FPE_FLTINV;
break;
case 0x002: /* Denormalize */
case 0x010: /* Underflow */
info.si_code = FPE_FLTUND;
break;
case 0x004: /* Zero Divide */
info.si_code = FPE_FLTDIV;
break;
case 0x008: /* Overflow */
info.si_code = FPE_FLTOVF;
break;
case 0x020: /* Precision */
info.si_code = FPE_FLTRES;
break;
}
force_sig_info(SIGFPE, &info, task);
}
asmlinkage void do_coprocessor_error(struct pt_regs * regs, long error_code)
{
ignore_irq13 = 1;
math_error((void *)regs->eip);
}
void simd_math_error(void *eip)
{
struct task_struct * task;
siginfo_t info;
unsigned short mxcsr;
/*
* Save the info for the exception handler and clear the error.
*/
task = current;
save_init_fpu(task);
task->thread.trap_no = 19;
task->thread.error_code = 0;
info.si_signo = SIGFPE;
info.si_errno = 0;
info.si_code = __SI_FAULT;
info.si_addr = eip;
/*
* The SIMD FPU exceptions are handled a little differently, as there
* is only a single status/control register. Thus, to determine which
* unmasked exception was caught we must mask the exception mask bits
* at 0x1f80, and then use these to mask the exception bits at 0x3f.
*/
mxcsr = get_fpu_mxcsr(task);
switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
case 0x000:
default:
break;
case 0x001: /* Invalid Op */
info.si_code = FPE_FLTINV;
break;
case 0x002: /* Denormalize */
case 0x010: /* Underflow */
info.si_code = FPE_FLTUND;
break;
case 0x004: /* Zero Divide */
info.si_code = FPE_FLTDIV;
break;
case 0x008: /* Overflow */
info.si_code = FPE_FLTOVF;
break;
case 0x020: /* Precision */
info.si_code = FPE_FLTRES;
break;
}
force_sig_info(SIGFPE, &info, task);
}
asmlinkage void do_simd_coprocessor_error(struct pt_regs * regs,
long error_code)
{
if (cpu_has_xmm) {
/* Handle SIMD FPU exceptions on PIII+ processors. */
ignore_irq13 = 1;
simd_math_error((void *)regs->eip);
} else {
/*
* Handle strange cache flush from user space exception
* in all other cases. This is undocumented behaviour.
*/
if (regs->eflags & VM_MASK) {
handle_vm86_fault((struct kernel_vm86_regs *)regs,
error_code);
return;
}
die_if_kernel("cache flush denied", regs, error_code);
current->thread.trap_no = 19;
current->thread.error_code = error_code;
force_sig(SIGSEGV, current);
}
}
asmlinkage void do_spurious_interrupt_bug(struct pt_regs * regs,
long error_code)
{
#if 0
/* No need to warn about this any longer. */
printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
#endif
}
/*
* 'math_state_restore()' saves the current math information in the
* old math state array, and gets the new ones from the current task
*
* Careful.. There are problems with IBM-designed IRQ13 behaviour.
* Don't touch unless you *really* know how it works.
*
* Must be called with kernel preemption disabled.
*/
asmlinkage void math_state_restore(struct pt_regs regs)
{
clts(); /* Allow maths ops (or we recurse) */
if (current->used_math) {
restore_fpu(current);
} else {
init_fpu();
}
set_thread_flag(TIF_USEDFPU); /* So we fnsave on switch_to() */
}
#ifndef CONFIG_MATH_EMULATION
asmlinkage void math_emulate(long arg)
{
printk("math-emulation not enabled and no coprocessor found.\n");
printk("killing %s.\n",current->comm);
force_sig(SIGFPE,current);
schedule();
}
#endif /* CONFIG_MATH_EMULATION */
#ifndef CONFIG_M686
void __init trap_init_f00f_bug(void)
{
unsigned long page;
pgd_t * pgd;
pmd_t * pmd;
pte_t * pte;
/*
* Allocate a new page in virtual address space,
* move the IDT into it and write protect this page.
*/
page = (unsigned long) vmalloc(PAGE_SIZE);
pgd = pgd_offset(&init_mm, page);
pmd = pmd_offset(pgd, page);
pte = pte_offset(pmd, page);
__free_page(pte_page(*pte));
*pte = mk_pte_phys(__pa(&idt_table), PAGE_KERNEL_RO);
/*
* Not that any PGE-capable kernel should have the f00f bug ...
*/
__flush_tlb_all();
/*
* "idt" is magic - it overlaps the idt_descr
* variable so that updating idt will automatically
* update the idt descriptor..
*/
idt = (struct desc_struct *)page;
__asm__ __volatile__("lidt %0": "=m" (idt_descr));
}
#endif
#define _set_gate(gate_addr,type,dpl,addr) \
do { \
int __d0, __d1; \
__asm__ __volatile__ ("movw %%dx,%%ax\n\t" \
"movw %4,%%dx\n\t" \
"movl %%eax,%0\n\t" \
"movl %%edx,%1" \
:"=m" (*((long *) (gate_addr))), \
"=m" (*(1+(long *) (gate_addr))), "=&a" (__d0), "=&d" (__d1) \
:"i" ((short) (0x8000+(dpl<<13)+(type<<8))), \
"3" ((char *) (addr)),"2" (__KERNEL_CS << 16)); \
} while (0)
/*
* This needs to use 'idt_table' rather than 'idt', and
* thus use the _nonmapped_ version of the IDT, as the
* Pentium F0 0F bugfix can have resulted in the mapped
* IDT being write-protected.
*/
void set_intr_gate(unsigned int n, void *addr)
{
_set_gate(idt_table+n,14,0,addr);
}
static void __init set_trap_gate(unsigned int n, void *addr)
{
_set_gate(idt_table+n,15,0,addr);
}
static void __init set_system_gate(unsigned int n, void *addr)
{
_set_gate(idt_table+n,15,3,addr);
}
static void __init set_call_gate(void *a, void *addr)
{
_set_gate(a,12,3,addr);
}
#define _set_seg_desc(gate_addr,type,dpl,base,limit) {\
*((gate_addr)+1) = ((base) & 0xff000000) | \
(((base) & 0x00ff0000)>>16) | \
((limit) & 0xf0000) | \
((dpl)<<13) | \
(0x00408000) | \
((type)<<8); \
*(gate_addr) = (((base) & 0x0000ffff)<<16) | \
((limit) & 0x0ffff); }
#define _set_tssldt_desc(n,addr,limit,type) \
__asm__ __volatile__ ("movw %w3,0(%2)\n\t" \
"movw %%ax,2(%2)\n\t" \
"rorl $16,%%eax\n\t" \
"movb %%al,4(%2)\n\t" \
"movb %4,5(%2)\n\t" \
"movb $0,6(%2)\n\t" \
"movb %%ah,7(%2)\n\t" \
"rorl $16,%%eax" \
: "=m"(*(n)) : "a" (addr), "r"(n), "ir"(limit), "i"(type))
void set_tss_desc(unsigned int n, void *addr)
{
_set_tssldt_desc(gdt_table+__TSS(n), (int)addr, 235, 0x89);
}
void set_ldt_desc(unsigned int n, void *addr, unsigned int size)
{
_set_tssldt_desc(gdt_table+__LDT(n), (int)addr, ((size << 3)-1), 0x82);
}
#ifdef CONFIG_X86_VISWS_APIC
/*
* On Rev 005 motherboards legacy device interrupt lines are wired directly
* to Lithium from the 307. But the PROM leaves the interrupt type of each
* 307 logical device set appropriate for the 8259. Later we'll actually use
* the 8259, but for now we have to flip the interrupt types to
* level triggered, active lo as required by Lithium.
*/
#define REG 0x2e /* The register to read/write */
#define DEV 0x07 /* Register: Logical device select */
#define VAL 0x2f /* The value to read/write */
static void
superio_outb(int dev, int reg, int val)
{
outb(DEV, REG);
outb(dev, VAL);
outb(reg, REG);
outb(val, VAL);
}
static int __attribute__ ((unused))
superio_inb(int dev, int reg)
{
outb(DEV, REG);
outb(dev, VAL);
outb(reg, REG);
return inb(VAL);
}
#define FLOP 3 /* floppy logical device */
#define PPORT 4 /* parallel logical device */
#define UART5 5 /* uart2 logical device (not wired up) */
#define UART6 6 /* uart1 logical device (THIS is the serial port!) */
#define IDEST 0x70 /* int. destination (which 307 IRQ line) reg. */
#define ITYPE 0x71 /* interrupt type register */
/* interrupt type bits */
#define LEVEL 0x01 /* bit 0, 0 == edge triggered */
#define ACTHI 0x02 /* bit 1, 0 == active lo */
static void
superio_init(void)
{
if (visws_board_type == VISWS_320 && visws_board_rev == 5) {
superio_outb(UART6, IDEST, 0); /* 0 means no intr propagated */
printk("SGI 320 rev 5: disabling 307 uart1 interrupt\n");
}
}
static void
lithium_init(void)
{
set_fixmap(FIX_LI_PCIA, LI_PCI_A_PHYS);
printk("Lithium PCI Bridge A, Bus Number: %d\n",
li_pcia_read16(LI_PCI_BUSNUM) & 0xff);
set_fixmap(FIX_LI_PCIB, LI_PCI_B_PHYS);
printk("Lithium PCI Bridge B (PIIX4), Bus Number: %d\n",
li_pcib_read16(LI_PCI_BUSNUM) & 0xff);
/* XXX blindly enables all interrupts */
li_pcia_write16(LI_PCI_INTEN, 0xffff);
li_pcib_write16(LI_PCI_INTEN, 0xffff);
}
static void
cobalt_init(void)
{
/*
* On normal SMP PC this is used only with SMP, but we have to
* use it and set it up here to start the Cobalt clock
*/
set_fixmap(FIX_APIC_BASE, APIC_DEFAULT_PHYS_BASE);
printk("Local APIC ID %lx\n", apic_read(APIC_ID));
printk("Local APIC Version %lx\n", apic_read(APIC_LVR));
set_fixmap(FIX_CO_CPU, CO_CPU_PHYS);
printk("Cobalt Revision %lx\n", co_cpu_read(CO_CPU_REV));
set_fixmap(FIX_CO_APIC, CO_APIC_PHYS);
printk("Cobalt APIC ID %lx\n", co_apic_read(CO_APIC_ID));
/* Enable Cobalt APIC being careful to NOT change the ID! */
co_apic_write(CO_APIC_ID, co_apic_read(CO_APIC_ID)|CO_APIC_ENABLE);
printk("Cobalt APIC enabled: ID reg %lx\n", co_apic_read(CO_APIC_ID));
}
#endif
void __init trap_init(void)
{
#ifdef CONFIG_EISA
if (isa_readl(0x0FFFD9) == 'E'+('I'<<8)+('S'<<16)+('A'<<24))
EISA_bus = 1;
#endif
set_trap_gate(0,&divide_error);
set_trap_gate(1,&debug);
set_intr_gate(2,&nmi);
set_system_gate(3,&int3); /* int3-5 can be called from all */
set_system_gate(4,&overflow);
set_system_gate(5,&bounds);
set_trap_gate(6,&invalid_op);
set_trap_gate(7,&device_not_available);
set_trap_gate(8,&double_fault);
set_trap_gate(9,&coprocessor_segment_overrun);
set_trap_gate(10,&invalid_TSS);
set_trap_gate(11,&segment_not_present);
set_trap_gate(12,&stack_segment);
set_trap_gate(13,&general_protection);
set_intr_gate(14,&page_fault);
set_trap_gate(15,&spurious_interrupt_bug);
set_trap_gate(16,&coprocessor_error);
set_trap_gate(17,&alignment_check);
set_trap_gate(18,&machine_check);
set_trap_gate(19,&simd_coprocessor_error);
set_system_gate(SYSCALL_VECTOR,&system_call);
/*
* default LDT is a single-entry callgate to lcall7 for iBCS
* and a callgate to lcall27 for Solaris/x86 binaries
*/
set_call_gate(&default_ldt[0],lcall7);
set_call_gate(&default_ldt[4],lcall27);
/*
* Should be a barrier for any external CPU state.
*/
cpu_init();
#ifdef CONFIG_X86_VISWS_APIC
superio_init();
lithium_init();
cobalt_init();
#endif
}