blob: 237c8af3ceb4ddd78661a5f5a34a636833075232 [file] [log] [blame]
CONFIG_SMP
This enables support for systems with more than one CPU. If you have
a system with only one CPU, like most personal computers, say N. If
you have a system with more than one CPU, say Y.
If you say N here, the kernel will run on single and multiprocessor
machines, but will use only one CPU of a multiprocessor machine. If
you say Y here, the kernel will run on many, but not all,
singleprocessor machines. On a singleprocessor machine, the kernel
will run faster if you say N here.
Note that if you say Y here and choose architecture "586" or
"Pentium" under "Processor family", the kernel will not work on 486
architectures. Similarly, multiprocessor kernels for the "PPro"
architecture may not work on all Pentium based boards.
People using multiprocessor machines who say Y here should also say
Y to "Enhanced Real Time Clock Support", below. The "Advanced Power
Management" code will be disabled if you say Y here.
See also the <file:Documentation/smp.tex>,
<file:Documentation/smp.txt>, <file:Documentation/i386/IO-APIC.txt>,
<file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at
<http://www.linuxdoc.org/docs.html#howto>.
If you don't know what to do here, say N.
CONFIG_PREEMPT
This option reduces the latency of the kernel when reacting to
real-time or interactive events by allowing a low priority process to
be preempted even if it is in kernel mode executing a system call.
This allows applications to run more reliably even when the system is
under load.
Say Y here if you are building a kernel for a desktop, embedded
or real-time system. Say N if you are unsure.
CONFIG_SPARC64
SPARC is a family of RISC microprocessors designed and marketed by
Sun Microsystems, incorporated. This port covers the newer 64-bit
UltraSPARC. The UltraLinux project maintains both the SPARC32 and
SPARC64 ports; its web page is available at
<http://www.ultralinux.org/>.
CONFIG_BLK_DEV_FD
If you want to use the floppy disk drive(s) of your PC under Linux,
say Y. Information about this driver, especially important for IBM
Thinkpad users, is contained in <file:Documentation/floppy.txt>.
That file also contains the location of the Floppy driver FAQ as
well as location of the fdutils package used to configure additional
parameters of the driver at run time.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called floppy.o. If you want to compile it as a
module, say M here and read <file:Documentation/modules.txt>.
CONFIG_BLK_DEV_RAM
Saying Y here will allow you to use a portion of your RAM memory as
a block device, so that you can make file systems on it, read and
write to it and do all the other things that you can do with normal
block devices (such as hard drives). It is usually used to load and
store a copy of a minimal root file system off of a floppy into RAM
during the initial install of Linux.
Note that the kernel command line option "ramdisk=XX" is now
obsolete. For details, read <file:Documentation/ramdisk.txt>.
If you want to compile this as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M and read <file:Documentation/modules.txt>. The module will be
called rd.o.
Most normal users won't need the RAM disk functionality, and can
thus say N here.
CONFIG_BLK_DEV_RAM_SIZE
The default value is 4096. Only change this if you know what are
you doing. If you are using IBM S/390, then set this to 8192.
CONFIG_BLK_DEV_INITRD
The initial RAM disk is a RAM disk that is loaded by the boot loader
(loadlin or lilo) and that is mounted as root before the normal boot
procedure. It is typically used to load modules needed to mount the
"real" root file system, etc. See <file:Documentation/initrd.txt>
for details.
CONFIG_BLK_DEV_LOOP
Saying Y here will allow you to use a regular file as a block
device; you can then create a file system on that block device and
mount it just as you would mount other block devices such as hard
drive partitions, CD-ROM drives or floppy drives. The loop devices
are block special device files with major number 7 and typically
called /dev/loop0, /dev/loop1 etc.
This is useful if you want to check an ISO 9660 file system before
burning the CD, or if you want to use floppy images without first
writing them to floppy. Furthermore, some Linux distributions avoid
the need for a dedicated Linux partition by keeping their complete
root file system inside a DOS FAT file using this loop device
driver.
The loop device driver can also be used to "hide" a file system in a
disk partition, floppy, or regular file, either using encryption
(scrambling the data) or steganography (hiding the data in the low
bits of, say, a sound file). This is also safe if the file resides
on a remote file server. If you want to do this, you will first have
to acquire and install a kernel patch from
<ftp://ftp.kerneli.org/pub/kerneli/>, and then you need to
say Y to this option.
Note that alternative ways to use encrypted file systems are
provided by the cfs package, which can be gotten from
<ftp://ftp.kerneli.org/pub/kerneli/net-source/>, and the newer tcfs
package, available at <http://tcfs.dia.unisa.it/>. You do not need
to say Y here if you want to use one of these. However, using cfs
requires saying Y to "NFS file system support" below while using
tcfs requires applying a kernel patch. An alternative steganography
solution is provided by StegFS, also available from
<ftp://ftp.kerneli.org/pub/kerneli/net-source/>.
To use the loop device, you need the losetup utility and a recent
version of the mount program, both contained in the util-linux
package. The location and current version number of util-linux is
contained in the file <file:Documentation/Changes>.
Note that this loop device has nothing to do with the loopback
device used for network connections from the machine to itself.
If you want to compile this driver as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called loop.o.
Most users will answer N here.
CONFIG_BLK_DEV_NBD
Saying Y here will allow your computer to be a client for network
block devices, i.e. it will be able to use block devices exported by
servers (mount file systems on them etc.). Communication between
client and server works over TCP/IP networking, but to the client
program this is hidden: it looks like a regular local file access to
a block device special file such as /dev/nd0.
Network block devices also allows you to run a block-device in
userland (making server and client physically the same computer,
communicating using the loopback network device).
Read <file:Documentation/nbd.txt> for more information, especially
about where to find the server code, which runs in user space and
does not need special kernel support.
Note that this has nothing to do with the network file systems NFS
or Coda; you can say N here even if you intend to use NFS or Coda.
If you want to compile this driver as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called nbd.o.
If unsure, say N.
CONFIG_IDE
If you say Y here, your kernel will be able to manage low cost mass
storage units such as ATA/(E)IDE and ATAPI units. The most common
cases are IDE hard drives and ATAPI CD-ROM drives.
If your system is pure SCSI and doesn't use these interfaces, you
can say N here.
Integrated Disk Electronics (IDE aka ATA-1) is a connecting standard
for mass storage units such as hard disks. It was designed by
Western Digital and Compaq Computer in 1984. It was then named
ST506. Quite a number of disks use the IDE interface.
AT Attachment (ATA) is the superset of the IDE specifications.
ST506 was also called ATA-1.
Fast-IDE is ATA-2 (also named Fast ATA), Enhanced IDE (EIDE) is
ATA-3. It provides support for larger disks (up to 8.4GB by means of
the LBA standard), more disks (4 instead of 2) and for other mass
storage units such as tapes and cdrom. UDMA/33 (aka UltraDMA/33) is
ATA-4 and provides faster (and more CPU friendly) transfer modes
than previous PIO (Programmed processor Input/Output) from previous
ATA/IDE standards by means of fast DMA controllers.
ATA Packet Interface (ATAPI) is a protocol used by EIDE tape and
CD-ROM drives, similar in many respects to the SCSI protocol.
SMART IDE (Self Monitoring, Analysis and Reporting Technology) was
designed in order to prevent data corruption and disk crash by
detecting pre hardware failure conditions (heat, access time, and
the like...). Disks built since June 1995 may follow this standard.
The kernel itself don't manage this; however there are quite a
number of user programs such as smart that can query the status of
SMART parameters disk.
If you want to compile this driver as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called ide.o.
For further information, please read <file:Documentation/ide.txt>.
If unsure, say Y.
CONFIG_ISA
Find out whether you have ISA slots on your motherboard. ISA is the
name of a bus system, i.e. the way the CPU talks to the other stuff
inside your box. Other bus systems are PCI, EISA, MicroChannel
(MCA) or VESA. ISA is an older system, now being displaced by PCI;
newer boards don't support it. If you have ISA, say Y, otherwise N.
CONFIG_PCI
Find out whether you have a PCI motherboard. PCI is the name of a
bus system, i.e. the way the CPU talks to the other stuff inside
your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
VESA. If you have PCI, say Y, otherwise N.
The PCI-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>, contains valuable
information about which PCI hardware does work under Linux and which
doesn't.
CONFIG_MCA
MicroChannel Architecture is found in some IBM PS/2 machines and
laptops. It is a bus system similar to PCI or ISA. See
<file:Documentation/mca.txt> (and especially the web page given
there) before attempting to build an MCA bus kernel.
CONFIG_EISA
The Extended Industry Standard Architecture (EISA) bus was
developed as an open alternative to the IBM MicroChannel bus.
The EISA bus provided some of the features of the IBM MicroChannel
bus while maintaining backward compatibility with cards made for
the older ISA bus. The EISA bus saw limited use between 1988 and
1995 when it was made obsolete by the PCI bus.
Say Y here if you are building a kernel for an EISA-based machine.
Otherwise, say N.
CONFIG_ISAPNP
Say Y here if you would like support for ISA Plug and Play devices.
Some information is in <file:Documentation/isapnp.txt>.
This support is also available as a module called isapnp.o ( =
code which can be inserted in and removed from the running kernel
whenever you want). If you want to compile it as a module, say M
here and read <file:Documentation/modules.txt>.
If unsure, say Y.
CONFIG_HOTPLUG
Say Y here if you want to plug devices into your computer while
the system is running, and be able to use them quickly. In many
cases, the devices can likewise be unplugged at any time too.
One well known example of this is PCMCIA- or PC-cards, credit-card
size devices such as network cards, modems or hard drives which are
plugged into slots found on all modern laptop computers. Another
example, used on modern desktops as well as laptops, is USB.
Enable HOTPLUG and KMOD, and build a modular kernel. Get agent
software (at <http://linux-hotplug.sourceforge.net/>) and install it.
Then your kernel will automatically call out to a user mode "policy
agent" (/sbin/hotplug) to load modules and set up software needed
to use devices as you hotplug them.
CONFIG_PCMCIA
Say Y here if you want to attach PCMCIA- or PC-cards to your Linux
computer. These are credit-card size devices such as network cards,
modems or hard drives often used with laptops computers. There are
actually two varieties of these cards: the older 16 bit PCMCIA cards
and the newer 32 bit CardBus cards. If you want to use CardBus
cards, you need to say Y here and also to "CardBus support" below.
To use your PC-cards, you will need supporting software from David
Hinds' pcmcia-cs package (see the file <file:Documentation/Changes>
for location). Please also read the PCMCIA-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
When compiled this way, there will be modules called pcmcia_core.o
and ds.o. If you want to compile it as a module, say M here and
read <file:Documentation/modules.txt>.
CONFIG_KCORE_ELF
If you enabled support for /proc file system then the file
/proc/kcore will contain the kernel core image. This can be used
in gdb:
$ cd /usr/src/linux ; gdb vmlinux /proc/kcore
You have two choices here: ELF and A.OUT. Selecting ELF will make
/proc/kcore appear in ELF core format as defined by the Executable
and Linking Format specification. Selecting A.OUT will choose the
old "a.out" format which may be necessary for some old versions
of binutils or on some architectures.
This is especially useful if you have compiled the kernel with the
"-g" option to preserve debugging information. It is mainly used
for examining kernel data structures on the live kernel so if you
don't understand what this means or are not a kernel hacker, just
leave it at its default value ELF.
CONFIG_BINFMT_ELF
ELF (Executable and Linkable Format) is a format for libraries and
executables used across different architectures and operating
systems. Saying Y here will enable your kernel to run ELF binaries
and enlarge it by about 13 KB. ELF support under Linux has now all
but replaced the traditional Linux a.out formats (QMAGIC and ZMAGIC)
because it is portable (this does *not* mean that you will be able
to run executables from different architectures or operating systems
however) and makes building run-time libraries very easy. Many new
executables are distributed solely in ELF format. You definitely
want to say Y here.
Information about ELF is contained in the ELF HOWTO available from
<http://www.linuxdoc.org/docs.html#howto>.
If you find that after upgrading from Linux kernel 1.2 and saying Y
here, you still can't run any ELF binaries (they just crash), then
you'll have to install the newest ELF runtime libraries, including
ld.so (check the file <file:Documentation/Changes> for location and
latest version).
If you want to compile this as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called binfmt_elf.o. Saying M or N here is dangerous because
some crucial programs on your system might be in ELF format.
CONFIG_BINFMT_MISC
If you say Y here, it will be possible to plug wrapper-driven binary
formats into the kernel. You will like this especially when you use
programs that need an interpreter to run like Java, Python or
Emacs-Lisp. It's also useful if you often run DOS executables under
the Linux DOS emulator DOSEMU (read the DOSEMU-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>). Once you have
registered such a binary class with the kernel, you can start one of
those programs simply by typing in its name at a shell prompt; Linux
will automatically feed it to the correct interpreter.
You can do other nice things, too. Read the file
<file:Documentation/binfmt_misc.txt> to learn how to use this
feature, and <file:Documentation/java.txt> for information about how
to include Java support.
You must say Y to "/proc file system support" (CONFIG_PROC_FS) to
use this part of the kernel.
You may say M here for module support and later load the module when
you have use for it; the module is called binfmt_misc.o. If you
don't know what to answer at this point, say Y.
CONFIG_SOLARIS_EMUL
This is experimental code which will enable you to run (many)
Solaris binaries on your SPARC Linux machine.
This code is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called solaris.o. If you want to compile it as a
module, say M here and read <file:Documentation/modules.txt>.
CONFIG_ENVCTRL
Kernel support for temperature and fan monitoring on Sun SME
machines.
This code is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called envctrl.o. If you want to compile it as a
module, say M here and read <file:Documentation/modules.txt>.
CONFIG_SCSI
If you want to use a SCSI hard disk, SCSI tape drive, SCSI CD-ROM or
any other SCSI device under Linux, say Y and make sure that you know
the name of your SCSI host adapter (the card inside your computer
that "speaks" the SCSI protocol, also called SCSI controller),
because you will be asked for it.
You also need to say Y here if you want support for the parallel
port version of the 100 MB IOMEGA ZIP drive.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called scsi_mod.o. If you want to compile it as
a module, say M here and read <file:Documentation/modules.txt> and
<file:Documentation/scsi.txt>. However, do not compile this as a
module if your root file system (the one containing the directory /)
is located on a SCSI device.
CONFIG_BLK_DEV_SD
If you want to use a SCSI hard disk or the SCSI or parallel port
version of the IOMEGA ZIP drive under Linux, say Y and read the
SCSI-HOWTO, the Disk-HOWTO and the Multi-Disk-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>. This is NOT for SCSI
CD-ROMs.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called sd_mod.o. If you want to compile it as a
module, say M here and read <file:Documentation/modules.txt> and
<file:Documentation/scsi.txt>. Do not compile this driver as a
module if your root file system (the one containing the directory /)
is located on a SCSI disk. In this case, do not compile the driver
for your SCSI host adapter (below) as a module either.
CONFIG_SD_EXTRA_DEVS
This controls the amount of additional space allocated in tables for
drivers that are loaded as modules after the kernel is booted. In
the event that the SCSI core itself was loaded as a module, this
value is the number of additional disks that can be loaded after the
first host driver is loaded.
Admittedly this isn't pretty, but there are tons of race conditions
involved with resizing the internal arrays on the fly. Someday this
flag will go away, and everything will work automatically.
If you don't understand what's going on, go with the default.
CONFIG_CHR_DEV_ST
If you want to use a SCSI tape drive under Linux, say Y and read the
SCSI-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>, and
<file:drivers/scsi/README.st> in the kernel source. This is NOT for
SCSI CD-ROMs.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called st.o. If you want to compile it as a
module, say M here and read <file:Documentation/modules.txt> and
<file:Documentation/scsi.txt>.
CONFIG_CHR_DEV_OSST
The OnStream SC-x0 SCSI tape drives can not be driven by the
standard st driver, but instead need this special osst driver and
use the /dev/osstX char device nodes (major 206). Via usb-storage
and ide-scsi, you may be able to drive the USB-x0 and DI-x0 drives
as well. Note that there is also a second generation of OnStream
tape drives (ADR-x0) that supports the standard SCSI-2 commands for
tapes (QIC-157) and can be driven by the standard driver st.
For more information, you may have a look at the SCSI-HOWTO
<http://www.linuxdoc.org/docs.html#howto> and
<file:drivers/scsi/README.osst> in the kernel source.
More info on the OnStream driver may be found on
<http://linux1.onstream.nl/test/>
Please also have a look at the standard st docu, as most of it
applies to osst as well.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called osst.o. If you want to compile it as a
module, say M here and read <file:Documentation/modules.txt> and
<file:Documentation/scsi.txt>.
CONFIG_BLK_DEV_SR
If you want to use a SCSI CD-ROM under Linux, say Y and read the
SCSI-HOWTO and the CD-ROM-HOWTO at
<http://www.linuxdoc.org/docs.html#howto>. Also make sure to say Y
or M to "ISO 9660 CD-ROM file system support" later.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called sr_mod.o. If you want to compile it as a
module, say M here and read <file:Documentation/modules.txt> and
<file:Documentation/scsi.txt>.
CONFIG_SR_EXTRA_DEVS
This controls the amount of additional space allocated in tables for
drivers that are loaded as modules after the kernel is booted. In
the event that the SCSI core itself was loaded as a module, this
value is the number of additional CD-ROMs that can be loaded after
the first host driver is loaded.
Admittedly this isn't pretty, but there are tons of race conditions
involved with resizing the internal arrays on the fly. Someday this
flag will go away, and everything will work automatically.
If you don't understand what's going on, go with the default.
CONFIG_BLK_DEV_SR_VENDOR
This enables the usage of vendor specific SCSI commands. This is
required to support multisession CDs with old NEC/TOSHIBA cdrom
drives (and HP Writers). If you have such a drive and get the first
session only, try saying Y here; everybody else says N.
CONFIG_CHR_DEV_SG
If you want to use SCSI scanners, synthesizers or CD-writers or just
about anything having "SCSI" in its name other than hard disks,
CD-ROMs or tapes, say Y here. These won't be supported by the kernel
directly, so you need some additional software which knows how to
talk to these devices using the SCSI protocol:
For scanners, look at SANE (<http://www.mostang.com/sane/>). For CD
writer software look at Cdrtools
(<http://www.fokus.gmd.de/research/cc/glone/employees/joerg.schilling/private/cdrecord.html>)
and for burning a "disk at once": CDRDAO
(<http://cdrdao.sourceforge.net/>). Cdparanoia is a high
quality digital reader of audio CDs (<http://www.xiph.org/paranoia/>).
For other devices, it's possible that you'll have to write the
driver software yourself. Please read the file
<file:Documentation/scsi-generic.txt> for more information.
If you want to compile this as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt> and
<file:Documentation/scsi.txt>. The module will be called sg.o. If unsure,
say N.
CONFIG_SCSI_MULTI_LUN
If you have a SCSI device that supports more than one LUN (Logical
Unit Number), e.g. a CD jukebox, and only one LUN is detected, you
can say Y here to force the SCSI driver to probe for multiple LUNs.
A SCSI device with multiple LUNs acts logically like multiple SCSI
devices. The vast majority of SCSI devices have only one LUN, and
so most people can say N here and should in fact do so, because it
is safer.
CONFIG_SCSI_CONSTANTS
The error messages regarding your SCSI hardware will be easier to
understand if you say Y here; it will enlarge your kernel by about
12 KB. If in doubt, say Y.
CONFIG_SCSI_LOGGING
This turns on a logging facility that can be used to debug a number
of SCSI related problems.
If you say Y here, no logging output will appear by default, but you
can enable logging by saying Y to "/proc file system support" and
"Sysctl support" below and executing the command
echo "scsi log token [level]" > /proc/scsi/scsi
at boot time after the /proc file system has been mounted.
There are a number of things that can be used for 'token' (you can
find them in the source: <file:drivers/scsi/scsi.c>), and this
allows you to select the types of information you want, and the
level allows you to select the level of verbosity.
If you say N here, it may be harder to track down some types of SCSI
problems. If you say Y here your kernel will be somewhat larger, but
there should be no noticeable performance impact as long as you have
logging turned off.
CONFIG_SCSI_AIC7XXX_OLD
WARNING This driver is an older aic7xxx driver and is no longer
under active development. Adaptec, Inc. is writing a new driver to
take the place of this one, and it is recommended that whenever
possible, people should use the new Adaptec written driver instead
of this one. This driver will eventually be phased out entirely.
This is support for the various aic7xxx based Adaptec SCSI
controllers. These include the 274x EISA cards; 284x VLB cards;
2902, 2910, 293x, 294x, 394x, 3985 and several other PCI and
motherboard based SCSI controllers from Adaptec. It does not support
the AAA-13x RAID controllers from Adaptec, nor will it likely ever
support them. It does not support the 2920 cards from Adaptec that
use the Future Domain SCSI controller chip. For those cards, you
need the "Future Domain 16xx SCSI support" driver.
In general, if the controller is based on an Adaptec SCSI controller
chip from the aic777x series or the aic78xx series, this driver
should work. The only exception is the 7810 which is specifically
not supported (that's the RAID controller chip on the AAA-13x
cards).
Note that the AHA2920 SCSI host adapter is *not* supported by this
driver; choose "Future Domain 16xx SCSI support" instead if you have
one of those.
Information on the configuration options for this controller can be
found by checking the help file for each of the available
configuration options. You should read
<file:drivers/scsi/aic7xxx_old/README.aic7xxx> at a minimum before
contacting the maintainer with any questions. The SCSI-HOWTO,
available from <http://www.linuxdoc.org/docs.html#howto>, can also
be of great help.
If you want to compile this driver as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called aic7xxx_old.o.
CONFIG_AIC7XXX_OLD_TCQ_ON_BY_DEFAULT
This option causes the aic7xxx driver to attempt to use Tagged
Command Queueing (TCQ) on all devices that claim to support it.
TCQ is a feature of SCSI-2 which improves performance: the host
adapter can send several SCSI commands to a device's queue even if
previous commands haven't finished yet. Because the device is
intelligent, it can optimize its operations (like head positioning)
based on its own request queue. Not all devices implement this
correctly.
If you say Y here, you can still turn off TCQ on troublesome devices
with the use of the tag_info boot parameter. See the file
<file:drivers/scsi/README.aic7xxx> for more information on that and
other aic7xxx setup commands. If this option is turned off, you may
still enable TCQ on known good devices by use of the tag_info boot
parameter.
If you are unsure about your devices then it is safest to say N
here.
However, TCQ can increase performance on some hard drives by as much
as 50% or more, so it is recommended that if you say N here, you
should at least read the <file:drivers/scsi/README.aic7xxx> file so
you will know how to enable this option manually should your drives
prove to be safe in regards to TCQ.
Conversely, certain drives are known to lock up or cause bus resets
when TCQ is enabled on them. If you have a Western Digital
Enterprise SCSI drive for instance, then don't even bother to enable
TCQ on it as the drive will become unreliable, and it will actually
reduce performance.
CONFIG_AIC7XXX_OLD_CMDS_PER_DEVICE
Specify the number of commands you would like to allocate per SCSI
device when Tagged Command Queueing (TCQ) is enabled on that device.
Reasonable figures are in the range of 8 to 24 commands per device,
but depending on hardware could be increased or decreased from that
figure. If the number is too high for any particular device, the
driver will automatically compensate usually after only 10 minutes
of uptime. It will not hinder performance if some of your devices
eventually have their command depth reduced, but is a waste of
memory if all of your devices end up reducing this number down to a
more reasonable figure.
NOTE: Certain very broken drives are known to lock up when given
more commands than they like to deal with. Quantum Fireball drives
are the most common in this category. For the Quantum Fireball
drives it is suggested to use no more than 8 commands per device.
Default: 8
CONFIG_AIC7XXX_OLD_PROC_STATS
This option tells the driver to keep track of how many commands have
been sent to each particular device and report that information to
the user via the /proc/scsi/aic7xxx/n file, where n is the number of
the aic7xxx controller you want the information on. This adds a
small amount of overhead to each and every SCSI command the aic7xxx
driver handles, so if you aren't really interested in this
information, it is best to leave it disabled. This will only work if
you also say Y to "/proc file system support", below.
If unsure, say N.
CONFIG_SCSI_SYM53C8XX_2
This driver supports the whole NCR53C8XX/SYM53C8XX family of
PCI-SCSI controllers. It also supports the subset of LSI53C10XX
Ultra-160 controllers that are based on the SYM53C8XX SCRIPTS
language. It does not support LSI53C10XX Ultra-320 PCI-X SCSI
controllers.
If your system has problems using this new major version of the
SYM53C8XX driver, you may switch back to driver version 1.
Please read <file:drivers/scsi/sym53c8xx_2/Documentation.txt> for more
information.
CONFIG_SCSI_SYM53C8XX_DMA_ADDRESSING_MODE
This option only applies to PCI-SCSI chip that are PCI DAC capable
(875A, 895A, 896, 1010-33, 1010-66, 1000).
When set to 0, only PCI 32 bit DMA addressing (SAC) will be performed.
When set to 1, 40 bit DMA addressing (with upper 24 bits of address
set to zero) is supported. The addressable range is here 1 TB.
When set to 2, full 64 bits of address for DMA are supported, but only
16 segments of 4 GB can be addressed. The addressable range is so
limited to 64 GB.
The safest value is 0 (32 bit DMA addressing) that is guessed to still
fit most of real machines.
The preferred value 1 (40 bit DMA addressing) should make happy
properly engineered PCI DAC capable host bridges. You may configure
this option for Intel platforms with more than 4 GB of memory.
The still experimental value 2 (64 bit DMA addressing with 16 x 4GB
segments limitation) can be used on systems that require PCI address
bits past bit 39 to be set for the addressing of memory using PCI
DAC cycles.
CONFIG_SCSI_SYM53C8XX_IOMAPPED
If you say Y here, the driver will preferently use normal IO rather than
memory mapped IO.
CONFIG_SCSI_SYM53C8XX_MAX_TAGS
This option allows you to specify the maximum number of commands
that can be queued to any device, when tagged command queuing is
possible. The driver supports up to 256 queued commands per device.
This value is used as a compiled-in hard limit.
CONFIG_SCSI_SYM53C8XX_DEFAULT_TAGS
This is the default value of the command queue depth the driver will
announce to the generic SCSI layer for devices that support tagged
command queueing. This value can be changed from the boot command line.
This is a soft limit that cannot exceed CONFIG_SCSI_SYM53C8XX_MAX_TAGS.
CONFIG_SCSI_NCR53C8XX
This is the BSD ncr driver adapted to Linux for the NCR53C8XX family
of PCI-SCSI controllers. This driver supports parity checking,
tagged command queuing and fast synchronous data transfers up to 80
MB/s with wide FAST-40 LVD devices and controllers.
Recent versions of the 53C8XX chips are better supported by the
option "SYM53C8XX SCSI support", below.
Note: there is yet another driver for the 53c8xx family of
controllers ("NCR53c7,8xx SCSI support" above). If you want to use
them both, you need to say M to both and build them as modules, but
only one may be active at a time. If you have a 53c8xx board, you
probably do not want to use the "NCR53c7,8xx SCSI support".
Please read <file:drivers/scsi/README.ncr53c8xx> for more
information.
CONFIG_SCSI_SYM53C8XX
This driver supports all the features of recent 53C8XX chips (used
in PCI SCSI controllers), notably the hardware phase mismatch
feature of the SYM53C896.
Older versions of the 53C8XX chips are not supported by this
driver. If your system uses either a 810 rev. < 16, a 815, or a 825
rev. < 16 PCI SCSI processor, you must use the generic NCR53C8XX
driver ("NCR53C8XX SCSI support" above) or configure both the
NCR53C8XX and this SYM53C8XX drivers either as module or linked to
the kernel image.
When both drivers are linked into the kernel, the SYM53C8XX driver
is called first at initialization and you can use the 'excl=ioaddr'
driver boot option to exclude attachment of adapters by the
SYM53C8XX driver. For example, entering
'sym53c8xx=excl:0xb400,excl=0xc000' at the lilo prompt prevents
adapters at io address 0xb400 and 0xc000 from being attached by the
SYM53C8XX driver, thus allowing the NCR53C8XX driver to attach them.
The 'excl' option is also supported by the NCR53C8XX driver.
Please read <file:drivers/scsi/README.ncr53c8xx> for more
information.
CONFIG_SCSI_NCR53C8XX_SYNC
The SCSI Parallel Interface-2 Standard defines 5 classes of transfer
rates: FAST-5, FAST-10, FAST-20, FAST-40 and FAST-80. The numbers
are respectively the maximum data transfer rates in mega-transfers
per second for each class. For example, a FAST-20 Wide 16 device is
able to transfer data at 20 million 16 bit packets per second for a
total rate of 40 MB/s.
You may specify 0 if you want to only use asynchronous data
transfers. This is the safest and slowest option. Otherwise, specify
a value between 5 and 80, depending on the capability of your SCSI
controller. The higher the number, the faster the data transfer.
Note that 80 should normally be ok since the driver decreases the
value automatically according to the controller's capabilities.
Your answer to this question is ignored for controllers with NVRAM,
since the driver will get this information from the user set-up. It
also can be overridden using a boot setup option, as follows
(example): 'ncr53c8xx=sync:12' will allow the driver to negotiate
for FAST-20 synchronous data transfer (20 mega-transfers per
second).
The normal answer therefore is not to go with the default but to
select the maximum value 80 allowing the driver to use the maximum
value supported by each controller. If this causes problems with
your SCSI devices, you should come back and decrease the value.
There is no safe option other than using good cabling, right
terminations and SCSI conformant devices.
CONFIG_SCSI_NCR53C8XX_NO_DISCONNECT
This option is only provided for safety if you suspect some SCSI
device of yours to not support properly the target-disconnect
feature. In that case, you would say Y here. In general however, to
not allow targets to disconnect is not reasonable if there is more
than 1 device on a SCSI bus. The normal answer therefore is N.
CONFIG_SCSI_NCR53C8XX_DEFAULT_TAGS
"Tagged command queuing" is a feature of SCSI-2 which improves
performance: the host adapter can send several SCSI commands to a
device's queue even if previous commands haven't finished yet.
Because the device is intelligent, it can optimize its operations
(like head positioning) based on its own request queue. Some SCSI
devices don't implement this properly; if you want to disable this
feature, enter 0 or 1 here (it doesn't matter which).
The default value is 8 and should be supported by most hard disks.
This value can be overridden from the boot command line using the
'tags' option as follows (example):
'ncr53c8xx=tags:4/t2t3q16/t0u2q10' will set default queue depth to
4, set queue depth to 16 for target 2 and target 3 on controller 0
and set queue depth to 10 for target 0 / lun 2 on controller 1.
The normal answer therefore is to go with the default 8 and to use
a boot command line option for devices that need to use a different
command queue depth.
There is no safe option other than using good SCSI devices.
CONFIG_SCSI_NCR53C8XX_MAX_TAGS
This option allows you to specify the maximum number of commands
that can be queued to any device, when tagged command queuing is
possible. The default value is 32. Minimum is 2, maximum is 64.
Modern hard disks are able to support 64 tags and even more, but
do not seem to be faster when more than 32 tags are being used.
So, the normal answer here is to go with the default value 32 unless
you are using very large hard disks with large cache (>= 1 MB) that
are able to take advantage of more than 32 tagged commands.
There is no safe option and the default answer is recommended.
CONFIG_SCSI_NCR53C8XX_SYMBIOS_COMPAT
This option allows you to enable some features depending on GPIO
wiring. These General Purpose Input/Output pins can be used for
vendor specific features or implementation of the standard SYMBIOS
features. Genuine SYMBIOS controllers use GPIO0 in output for
controller LED and GPIO3 bit as a flag indicating
singled-ended/differential interface. The Tekram DC-390U/F boards
uses a different GPIO wiring.
Your answer to this question is ignored if all your controllers have
NVRAM, since the driver is able to detect the board type from the
NVRAM format.
If all the controllers in your system are genuine SYMBIOS boards or
use BIOS and drivers from SYMBIOS, you would want to say Y here,
otherwise N. N is the safe answer.
CONFIG_SCSI_NCR53C8XX_PROFILE
This option allows you to enable profiling information gathering.
These statistics are not very accurate due to the low frequency
of the kernel clock (100 Hz on i386) and have performance impact
on systems that use very fast devices.
The normal answer therefore is N.
CONFIG_SCSI_NCR53C8XX_PQS_PDS
Say Y here if you have a special SCSI adapter produced by NCR
corporation called a PCI Quad SCSI or PCI Dual SCSI. You do not need
this if you do not have one of these adapters. However, since this
device is detected as a specific PCI device, this option is quite
safe.
The common answer here is N, but answering Y is safe.
CONFIG_SCSI_QLOGIC_ISP
This driver works for all QLogic PCI SCSI host adapters (IQ-PCI,
IQ-PCI-10, IQ_PCI-D) except for the PCI-basic card. (This latter
card is supported by the "AM53/79C974 PCI SCSI" driver.)
If you say Y here, make sure to choose "BIOS" at the question "PCI
access mode".
Please read the file <file:drivers/scsi/README.qlogicisp>. You
should also read the SCSI-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called qlogicisp.o. If you want to compile it as
a module, say M here and read <file:Documentation/modules.txt>.
CONFIG_SCSI_QLOGIC_FC
This is a driver for the QLogic ISP2100 SCSI-FCP host adapter.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called qlogicfc.o. If you want to compile it as
a module, say M here and read <file:Documentation/modules.txt>.
CONFIG_NETDEVICES
You can say N here if you don't intend to connect your Linux box to
any other computer at all or if all your connections will be over a
telephone line with a modem either via UUCP (UUCP is a protocol to
forward mail and news between unix hosts over telephone lines; read
the UUCP-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>) or dialing up a shell
account or a BBS, even using term (term is a program which gives you
almost full Internet connectivity if you have a regular dial up
shell account on some Internet connected Unix computer. Read
<http://www.bart.nl/~patrickr/term-howto/Term-HOWTO.html>).
You'll have to say Y if your computer contains a network card that
you want to use under Linux (make sure you know its name because you
will be asked for it and read the Ethernet-HOWTO (especially if you
plan to use more than one network card under Linux)) or if you want
to use SLIP (Serial Line Internet Protocol is the protocol used to
send Internet traffic over telephone lines or null modem cables) or
CSLIP (compressed SLIP) or PPP (Point to Point Protocol, a better
and newer replacement for SLIP) or PLIP (Parallel Line Internet
Protocol is mainly used to create a mini network by connecting the
parallel ports of two local machines) or AX.25/KISS (protocol for
sending Internet traffic over amateur radio links).
Make sure to read the NET-3-HOWTO. Eventually, you will have to read
Olaf Kirch's excellent and free book "Network Administrator's
Guide", to be found in <http://www.linuxdoc.org/docs.html#guide>. If
unsure, say Y.
CONFIG_VT
If you say Y here, you will get support for terminal devices with
display and keyboard devices. These are called "virtual" because you
can run several virtual terminals (also called virtual consoles) on
one physical terminal. This is rather useful, for example one
virtual terminal can collect system messages and warnings, another
one can be used for a text-mode user session, and a third could run
an X session, all in parallel. Switching between virtual terminals
is done with certain key combinations, usually Alt-<function key>.
The setterm command ("man setterm") can be used to change the
properties (such as colors or beeping) of a virtual terminal. The
man page console_codes(4) ("man console_codes") contains the special
character sequences that can be used to change those properties
directly. The fonts used on virtual terminals can be changed with
the setfont ("man setfont") command and the key bindings are defined
with the loadkeys ("man loadkeys") command.
You need at least one virtual terminal device in order to make use
of your keyboard and monitor. Therefore, only people configuring an
embedded system would want to say N here in order to save some
memory; the only way to log into such a system is then via a serial
or network connection.
If unsure, say Y, or else you won't be able to do much with your new
shiny Linux system :-)
CONFIG_VT_CONSOLE
The system console is the device which receives all kernel messages
and warnings and which allows logins in single user mode. If you
answer Y here, a virtual terminal (the device used to interact with
a physical terminal) can be used as system console. This is the most
common mode of operations, so you should say Y here unless you want
the kernel messages be output only to a serial port (in which case
you should say Y to "Console on serial port", below).
If you do say Y here, by default the currently visible virtual
terminal (/dev/tty0) will be used as system console. You can change
that with a kernel command line option such as "console=tty3" which
would use the third virtual terminal as system console. (Try "man
bootparam" or see the documentation of your boot loader (lilo or
loadlin) about how to pass options to the kernel at boot time.)
If unsure, say Y.
CONFIG_SERIAL
This selects whether you want to include the driver for the standard
serial ports. The standard answer is Y. People who might say N
here are those that are setting up dedicated Ethernet WWW/FTP
servers, or users that have one of the various bus mice instead of a
serial mouse and don't intend to use their machine's standard serial
port for anything. (Note that the Cyclades and Stallion multi
serial port drivers do not need this driver built in for them to
work.)
If you want to compile this driver as a module, say M here and read
<file:Documentation/modules.txt>. The module will be called
serial.o.
[WARNING: Do not compile this driver as a module if you are using
non-standard serial ports, since the configuration information will
be lost when the driver is unloaded. This limitation may be lifted
in the future.]
BTW1: If you have a mouseman serial mouse which is not recognized by
the X window system, try running gpm first.
BTW2: If you intend to use a software modem (also called Winmodem)
under Linux, forget it. These modems are crippled and require
proprietary drivers which are only available under Windows.
Most people will say Y or M here, so that they can use serial mice,
modems and similar devices connecting to the standard serial ports.
CONFIG_SERIAL_CONSOLE
If you say Y here, it will be possible to use a serial port as the
system console (the system console is the device which receives all
kernel messages and warnings and which allows logins in single user
mode). This could be useful if some terminal or printer is connected
to that serial port.
Even if you say Y here, the currently visible virtual console
(/dev/tty0) will still be used as the system console by default, but
you can alter that using a kernel command line option such as
"console=ttyS1". (Try "man bootparam" or see the documentation of
your boot loader (lilo or loadlin) about how to pass options to the
kernel at boot time.)
If you don't have a VGA card installed and you say Y here, the
kernel will automatically use the first serial line, /dev/ttyS0, as
system console.
If unsure, say N.
CONFIG_UNIX98_PTYS
A pseudo terminal (PTY) is a software device consisting of two
halves: a master and a slave. The slave device behaves identical to
a physical terminal; the master device is used by a process to
read data from and write data to the slave, thereby emulating a
terminal. Typical programs for the master side are telnet servers
and xterms.
Linux has traditionally used the BSD-like names /dev/ptyxx for
masters and /dev/ttyxx for slaves of pseudo terminals. This scheme
has a number of problems. The GNU C library glibc 2.1 and later,
however, supports the Unix98 naming standard: in order to acquire a
pseudo terminal, a process opens /dev/ptmx; the number of the pseudo
terminal is then made available to the process and the pseudo
terminal slave can be accessed as /dev/pts/<number>. What was
traditionally /dev/ttyp2 will then be /dev/pts/2, for example.
The entries in /dev/pts/ are created on the fly by a virtual
file system; therefore, if you say Y here you should say Y to
"/dev/pts file system for Unix98 PTYs" as well.
If you want to say Y here, you need to have the C library glibc 2.1
or later (equal to libc-6.1, check with "ls -l /lib/libc.so.*").
Read the instructions in <file:Documentation/Changes> pertaining to
pseudo terminals. It's safe to say N.
CONFIG_UNIX98_PTY_COUNT
The maximum number of Unix98 PTYs that can be used at any one time.
The default is 256, and should be enough for desktop systems. Server
machines which support incoming telnet/rlogin/ssh connections and/or
serve several X terminals may want to increase this: every incoming
connection and every xterm uses up one PTY.
When not in use, each additional set of 256 PTYs occupy
approximately 8 KB of kernel memory on 32-bit architectures.
CONFIG_PRINTER
If you intend to attach a printer to the parallel port of your Linux
box (as opposed to using a serial printer; if the connector at the
printer has 9 or 25 holes ["female"], then it's serial), say Y.
Also read the Printing-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
It is possible to share one parallel port among several devices
(e.g. printer and ZIP drive) and it is safe to compile the
corresponding drivers into the kernel. If you want to compile this
driver as a module however ( = code which can be inserted in and
removed from the running kernel whenever you want), say M here and
read <file:Documentation/modules.txt> and
<file:Documentation/parport.txt>. The module will be called lp.o.
If you have several parallel ports, you can specify which ports to
use with the "lp" kernel command line option. (Try "man bootparam"
or see the documentation of your boot loader (lilo or loadlin) about
how to pass options to the kernel at boot time.) The syntax of the
"lp" command line option can be found in <file:drivers/char/lp.c>.
If you have more than 8 printers, you need to increase the LP_NO
macro in lp.c and the PARPORT_MAX macro in parport.h.
CONFIG_BBC_I2C
The BBC devices on the UltraSPARC III have two I2C controllers. The
first I2C controller connects mainly to configuration PROMs (NVRAM,
CPU configuration, DIMM types, etc.). The second I2C controller
connects to environmental control devices such as fans and
temperature sensors. The second controller also connects to the
smartcard reader, if present. Say Y to enable support for these.
CONFIG_BUSMOUSE
Say Y here if your machine has a bus mouse as opposed to a serial
mouse. Most people have a regular serial MouseSystem or
Microsoft mouse (made by Logitech) that plugs into a COM port
(rectangular with 9 or 25 pins). These people say N here.
If you have a laptop, you either have to check the documentation or
experiment a bit to find out whether the trackball is a serial mouse
or not; it's best to say Y here for you.
This is the generic bus mouse driver code. If you have a bus mouse,
you will have to say Y here and also to the specific driver for your
mouse below.
This code is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called busmouse.o. If you want to compile it as a
module, say M here and read <file:Documentation/modules.txt>.
CONFIG_DRM
Kernel-level support for the Direct Rendering Infrastructure (DRI)
introduced in XFree86 4.0. If you say Y here, you need to select
the module that's right for your graphics card from the list below.
These modules provide support for synchronization, security, and
DMA transfers. Please see <http://dri.sourceforge.net/> for more
details. You should also select and configure AGP
(/dev/agpgart) support.
CONFIG_DRM_TDFX
Choose this option if you have a 3dfx Banshee or Voodoo3 (or later),
graphics card. If M is selected, the module will be called tdfx.o.
CONFIG_DRM_R128
Choose this option if you have an ATI Rage 128 graphics card. If M
is selected, the module will be called r128.o. AGP support for
this card is strongly suggested (unless you have a PCI version).
CONFIG_DRM_FFB
Choose this option if you have one of Sun's Creator3D-based graphics
and frame buffer cards. Product page at
<http://www.sun.com/desktop/products/Graphics/creator3d.html>.
CONFIG_SOFT_WATCHDOG
A software monitoring watchdog. This will fail to reboot your system
from some situations that the hardware watchdog will recover
from. Equally it's a lot cheaper to install.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. The module will be called
softdog.o.
CONFIG_RTC
If you say Y here and create a character special file /dev/rtc with
major number 10 and minor number 135 using mknod ("man mknod"), you
will get access to the real time clock (or hardware clock) built
into your computer.
Every PC has such a clock built in. It can be used to generate
signals from as low as 1Hz up to 8192Hz, and can also be used
as a 24 hour alarm. It reports status information via the file
/proc/driver/rtc and its behaviour is set by various ioctls on
/dev/rtc.
If you run Linux on a multiprocessor machine and said Y to
"Symmetric Multi Processing" above, you should say Y here to read
and set the RTC in an SMP compatible fashion.
If you think you have a use for such a device (such as periodic data
sampling), then say Y here, and read <file:Documentation/rtc.txt>
for details.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module is called rtc.o. If you want to compile it as a module,
say M here and read <file:Documentation/modules.txt>.
CONFIG_SOUND
If you have a sound card in your computer, i.e. if it can say more
than an occasional beep, say Y. Be sure to have all the information
about your sound card and its configuration down (I/O port,
interrupt and DMA channel), because you will be asked for it.
You want to read the Sound-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>. General information about
the modular sound system is contained in the files
<file:Documentation/sound/Introduction>. The file
<file:Documentation/sound/README.OSS> contains some slightly
outdated but still useful information as well.
If you have a PnP sound card and you want to configure it at boot
time using the ISA PnP tools (read
<http://www.roestock.demon.co.uk/isapnptools/>), then you need to
compile the sound card support as a module ( = code which can be
inserted in and removed from the running kernel whenever you want)
and load that module after the PnP configuration is finished. To do
this, say M here and read <file:Documentation/modules.txt> as well
as <file:Documentation/sound/README.modules>; the module will be
called soundcore.o.
I'm told that even without a sound card, you can make your computer
say more than an occasional beep, by programming the PC speaker.
Kernel patches and supporting utilities to do that are in the pcsp
package, available at <ftp://ftp.infradead.org/pub/pcsp/>.
CONFIG_MAGIC_SYSRQ
If you say Y here, you will have some control over the system even
if the system crashes for example during kernel debugging (e.g., you
will be able to flush the buffer cache to disk, reboot the system
immediately or dump some status information). This is accomplished
by pressing various keys while holding SysRq (Alt+PrintScreen). It
also works on a serial console (on PC hardware at least), if you
send a BREAK and then within 5 seconds a command keypress. The
keys are documented in <file:Documentation/sysrq.txt>. Don't say Y
unless you really know what this hack does.
CONFIG_SCSI_SUNESP
This is the driver for the Sun ESP SCSI host adapter. The ESP
chipset is present in most SPARC SBUS-based computers.
This support is also available as a module called esp.o ( = code
which can be inserted in and removed from the running kernel
whenever you want). If you want to compile it as a module, say M
here and read <file:Documentation/modules.txt>.
CONFIG_SCSI_QLOGICPTI
This driver supports SBUS SCSI controllers from PTI or QLogic. These
controllers are known under Solaris as qpti and in the openprom as
PTI,ptisp or QLGC,isp. Note that PCI QLogic SCSI controllers are
driven by a different driver.
This support is also available as a module called qlogicpti.o ( =
code which can be inserted in and removed from the running kernel
whenever you want). If you want to compile it as a module, say M
here and read <file:Documentation/modules.txt>.
CONFIG_PROM_CONSOLE
Say Y to build a console driver for Sun machines that uses the
terminal emulation built into their console PROMS.
CONFIG_SUN_OPENPROMFS
If you say Y, the OpenPROM device tree will be available as a
virtual file system, which you can mount to /proc/openprom by "mount
-t openpromfs none /proc/openprom".
If you want to compile the /proc/openprom support as a module ( =
code which can be inserted in and removed from the running kernel
whenever you want), say M here and read
<file:Documentation/modules.txt>.
The module will be called openpromfs.o. If unsure, say M.
CONFIG_SPARC32_COMPAT
This allows you to run 32-bit binaries on your Ultra.
Everybody wants this; say Y.
CONFIG_BINFMT_ELF32
This allows you to run 32-bit Linux/ELF binaries on your Ultra.
Everybody wants this; say Y.
CONFIG_BINFMT_AOUT32
This allows you to run 32-bit a.out format binaries on your Ultra.
If you want to run SunOS binaries (see SunOS binary emulation below)
or other a.out binaries, say Y. If unsure, say N.
CONFIG_SUNOS_EMUL
This allows you to run most SunOS binaries. If you want to do this,
say Y here and place appropriate files in /usr/gnemul/sunos. See
<http://www.ultralinux.org/faq.html> for more information. If you
want to run SunOS binaries on an Ultra you must also say Y to
"Kernel support for 32-bit a.out binaries" above.
CONFIG_SUN_KEYBOARD
Say Y here to support the keyboard found on Sun 3 and 3x
workstations. It can also be used support Sun Type-5 keyboards
through an adaptor. See
<http://www.suse.cz/development/input/adapters.html> and
<http://sourceforge.net/projects/linuxconsole/> for details on the
latter.
CONFIG_VIDEO_DEV
Support for audio/video capture and overlay devices and FM radio
cards. The exact capabilities of each device vary. User tools for
this are available from
<ftp://ftp.uk.linux.org/pub/linux/video4linux/>.
If you are interested in writing a driver for such an audio/video
device or user software interacting with such a driver, please read
the file <file:Documentation/video4linux/API.html>.
This driver is also available as a module called videodev.o ( = code
which can be inserted in and removed from the running kernel
whenever you want). If you want to compile it as a module, say M
here and read <file:Documentation/modules.txt>.
CONFIG_VIDEO_BT848
Support for BT848 based frame grabber/overlay boards. This includes
the Miro, Hauppauge and STB boards. Please read the material in
<file:Documentation/video4linux/bttv> for more information.
If you say Y or M here, you need to say Y or M to "I2C support" and
"I2C bit-banging interfaces" in the character device section.
This driver is available as a module called bttv.o ( = code
which can be inserted in and removed from the running kernel
whenever you want). If you want to compile it as a module, say M
here and read <file:Documentation/modules.txt>.
CONFIG_DISPLAY7SEG
This is the driver for the 7-segment display and LED present on
Sun Microsystems CompactPCI models CP1400 and CP1500.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called display7seg.o. If you want to compile it
as a module, say M here and read <file:Documentation/modules.txt>.
If you do not have a CompactPCI model CP1400 or CP1500, or
another UltraSPARC-IIi-cEngine boardset with a 7-segment display,
you should say N to this option.
CONFIG_WATCHDOG_RIO
Say Y here to support the hardware watchdog capability on Sun RIO
machines. The watchdog timeout period is normally one minute but
can be changed with a boot-time parameter.
CONFIG_WATCHDOG_CP1XXX
This is the driver for the hardware watchdog timers present on
Sun Microsystems CompactPCI models CP1400 and CP1500.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called cpwatchdog.o. If you want to compile it
as a module, say M here and read <file:Documentation/modules.txt>.
If you do not have a CompactPCI model CP1400 or CP1500, or
another UltraSPARC-IIi-cEngine boardset with hardware watchdog,
you should say N to this option.
CONFIG_DEBUG_KERNEL
Say Y here if you are developing drivers or trying to debug and
identify kernel problems.
CONFIG_DEBUG_SLAB
Say Y here to have the kernel do limited verification on memory
allocation as well as poisoning memory on free to catch use of freed
memory.
CONFIG_DEBUG_SPINLOCK
Say Y here and build SMP to catch missing spinlock initialization
and certain other kinds of spinlock errors commonly made. This is
best used in conjunction with the NMI watchdog so that spinlock
deadlocks are also debuggable.
CONFIG_DEBUG_BUGVERBOSE
Say Y here to make BUG() panics output the file name and line number
of the BUG call as well as the EIP and oops trace. This aids
debugging but costs about 70-100K of memory.