blob: b176467ff76599715b7edcc4bb9c2caa37da95e2 [file] [log] [blame]
/*
* linux/fs/proc/proc_misc.c
*
* linux/fs/proc/array.c
* Copyright (C) 1992 by Linus Torvalds
* based on ideas by Darren Senn
*
* This used to be the part of array.c. See the rest of history and credits
* there. I took this into a separate file and switched the thing to generic
* proc_file_inode_operations, leaving in array.c only per-process stuff.
* Inumbers allocation made dynamic (via create_proc_entry()). AV, May 1999.
*
* Changes:
* Fulton Green : Encapsulated position metric calculations.
* <kernel@FultonGreen.com>
*/
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/time.h>
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/tty.h>
#include <linux/string.h>
#include <linux/mman.h>
#include <linux/proc_fs.h>
#include <linux/ioport.h>
#include <linux/config.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/smp.h>
#include <linux/signal.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/smp_lock.h>
#include <linux/seq_file.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/io.h>
#define LOAD_INT(x) ((x) >> FSHIFT)
#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
/*
* Warning: stuff below (imported functions) assumes that its output will fit
* into one page. For some of those functions it may be wrong. Moreover, we
* have a way to deal with that gracefully. Right now I used straightforward
* wrappers, but this needs further analysis wrt potential overflows.
*/
extern int get_device_list(char *);
extern int get_partition_list(char *, char **, off_t, int);
extern int get_filesystem_list(char *);
extern int get_exec_domain_list(char *);
extern int get_dma_list(char *);
extern int get_locks_status (char *, char **, off_t, int);
extern int get_swaparea_info (char *);
#ifdef CONFIG_SGI_DS1286
extern int get_ds1286_status(char *);
#endif
static int proc_calc_metrics(char *page, char **start, off_t off,
int count, int *eof, int len)
{
if (len <= off+count) *eof = 1;
*start = page + off;
len -= off;
if (len>count) len = count;
if (len<0) len = 0;
return len;
}
static int loadavg_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int a, b, c;
int len;
a = avenrun[0] + (FIXED_1/200);
b = avenrun[1] + (FIXED_1/200);
c = avenrun[2] + (FIXED_1/200);
len = sprintf(page,"%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
LOAD_INT(a), LOAD_FRAC(a),
LOAD_INT(b), LOAD_FRAC(b),
LOAD_INT(c), LOAD_FRAC(c),
nr_running(), nr_threads, last_pid);
return proc_calc_metrics(page, start, off, count, eof, len);
}
static int uptime_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
unsigned long uptime;
unsigned long idle;
int len;
uptime = jiffies;
idle = init_task.times.tms_utime + init_task.times.tms_stime;
/* The formula for the fraction parts really is ((t * 100) / HZ) % 100, but
that would overflow about every five days at HZ == 100.
Therefore the identity a = (a / b) * b + a % b is used so that it is
calculated as (((t / HZ) * 100) + ((t % HZ) * 100) / HZ) % 100.
The part in front of the '+' always evaluates as 0 (mod 100). All divisions
in the above formulas are truncating. For HZ being a power of 10, the
calculations simplify to the version in the #else part (if the printf
format is adapted to the same number of digits as zeroes in HZ.
*/
#if HZ!=100
len = sprintf(page,"%lu.%02lu %lu.%02lu\n",
uptime / HZ,
(((uptime % HZ) * 100) / HZ) % 100,
idle / HZ,
(((idle % HZ) * 100) / HZ) % 100);
#else
len = sprintf(page,"%lu.%02lu %lu.%02lu\n",
uptime / HZ,
uptime % HZ,
idle / HZ,
idle % HZ);
#endif
return proc_calc_metrics(page, start, off, count, eof, len);
}
static int meminfo_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
struct sysinfo i;
int len;
int pg_size ;
/*
* display in kilobytes.
*/
#define K(x) ((x) << (PAGE_SHIFT - 10))
si_meminfo(&i);
si_swapinfo(&i);
pg_size = atomic_read(&page_cache_size) - i.bufferram ;
/*
* Tagged format, for easy grepping and expansion.
*/
len = sprintf(page,
"MemTotal: %8lu kB\n"
"MemFree: %8lu kB\n"
"MemShared: %8lu kB\n"
"Buffers: %8lu kB\n"
"Cached: %8lu kB\n"
"SwapCached: %8lu kB\n"
"Active: %8u kB\n"
"Inactive: %8u kB\n"
"HighTotal: %8lu kB\n"
"HighFree: %8lu kB\n"
"LowTotal: %8lu kB\n"
"LowFree: %8lu kB\n"
"SwapTotal: %8lu kB\n"
"SwapFree: %8lu kB\n",
K(i.totalram),
K(i.freeram),
K(i.sharedram),
K(i.bufferram),
K(pg_size - swapper_space.nrpages),
K(swapper_space.nrpages),
K(nr_active_pages),
K(nr_inactive_pages),
K(i.totalhigh),
K(i.freehigh),
K(i.totalram-i.totalhigh),
K(i.freeram-i.freehigh),
K(i.totalswap),
K(i.freeswap));
return proc_calc_metrics(page, start, off, count, eof, len);
#undef K
}
static int version_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
extern char *linux_banner;
int len;
strcpy(page, linux_banner);
len = strlen(page);
return proc_calc_metrics(page, start, off, count, eof, len);
}
extern struct seq_operations cpuinfo_op;
static int cpuinfo_open(struct inode *inode, struct file *file)
{
return seq_open(file, &cpuinfo_op);
}
static struct file_operations proc_cpuinfo_operations = {
open: cpuinfo_open,
read: seq_read,
llseek: seq_lseek,
release: seq_release,
};
#ifdef CONFIG_MODULES
extern struct seq_operations modules_op;
static int modules_open(struct inode *inode, struct file *file)
{
return seq_open(file, &modules_op);
}
static struct file_operations proc_modules_operations = {
open: modules_open,
read: seq_read,
llseek: seq_lseek,
release: seq_release,
};
extern struct seq_operations ksyms_op;
static int ksyms_open(struct inode *inode, struct file *file)
{
return seq_open(file, &ksyms_op);
}
static struct file_operations proc_ksyms_operations = {
open: ksyms_open,
read: seq_read,
llseek: seq_lseek,
release: seq_release,
};
#endif
extern struct seq_operations slabinfo_op;
extern ssize_t slabinfo_write(struct file *, const char *, size_t, loff_t *);
static int slabinfo_open(struct inode *inode, struct file *file)
{
return seq_open(file, &slabinfo_op);
}
static struct file_operations proc_slabinfo_operations = {
open: slabinfo_open,
read: seq_read,
write: slabinfo_write,
llseek: seq_lseek,
release: seq_release,
};
static int kstat_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int i, len;
extern unsigned long total_forks;
unsigned long jif = jiffies;
unsigned int sum = 0, user = 0, nice = 0, system = 0;
int major, disk;
for (i = 0 ; i < smp_num_cpus; i++) {
int cpu = cpu_logical_map(i), j;
user += kstat.per_cpu_user[cpu];
nice += kstat.per_cpu_nice[cpu];
system += kstat.per_cpu_system[cpu];
#if !defined(CONFIG_ARCH_S390)
for (j = 0 ; j < NR_IRQS ; j++)
sum += kstat.irqs[cpu][j];
#endif
}
len = sprintf(page, "cpu %u %u %u %lu\n", user, nice, system,
jif * smp_num_cpus - (user + nice + system));
for (i = 0 ; i < smp_num_cpus; i++)
len += sprintf(page + len, "cpu%d %u %u %u %lu\n",
i,
kstat.per_cpu_user[cpu_logical_map(i)],
kstat.per_cpu_nice[cpu_logical_map(i)],
kstat.per_cpu_system[cpu_logical_map(i)],
jif - ( kstat.per_cpu_user[cpu_logical_map(i)] \
+ kstat.per_cpu_nice[cpu_logical_map(i)] \
+ kstat.per_cpu_system[cpu_logical_map(i)]));
len += sprintf(page + len,
"page %u %u\n"
"swap %u %u\n"
"intr %u",
kstat.pgpgin >> 1,
kstat.pgpgout >> 1,
kstat.pswpin,
kstat.pswpout,
sum
);
#if !defined(CONFIG_ARCH_S390)
for (i = 0 ; i < NR_IRQS ; i++)
len += sprintf(page + len, " %u", kstat_irqs(i));
#endif
len += sprintf(page + len, "\ndisk_io: ");
for (major = 0; major < DK_MAX_MAJOR; major++) {
for (disk = 0; disk < DK_MAX_DISK; disk++) {
int active = kstat.dk_drive[major][disk] +
kstat.dk_drive_rblk[major][disk] +
kstat.dk_drive_wblk[major][disk];
if (active)
len += sprintf(page + len,
"(%u,%u):(%u,%u,%u,%u,%u) ",
major, disk,
kstat.dk_drive[major][disk],
kstat.dk_drive_rio[major][disk],
kstat.dk_drive_rblk[major][disk],
kstat.dk_drive_wio[major][disk],
kstat.dk_drive_wblk[major][disk]
);
}
}
len += sprintf(page + len,
"\nctxt %lu\n"
"btime %lu\n"
"processes %lu\n",
nr_context_switches(),
xtime.tv_sec - jif / HZ,
total_forks);
return proc_calc_metrics(page, start, off, count, eof, len);
}
static int devices_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int len = get_device_list(page);
return proc_calc_metrics(page, start, off, count, eof, len);
}
static int partitions_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int len = get_partition_list(page, start, off, count);
if (len < count) *eof = 1;
return len;
}
static void *single_start(struct seq_file *p, loff_t *pos)
{
return NULL + (*pos == 0);
}
static void *single_next(struct seq_file *p, void *v, loff_t *pos)
{
++*pos;
return NULL;
}
static void single_stop(struct seq_file *p, void *v)
{
}
extern int show_interrupts(struct seq_file *p, void *v);
static struct seq_operations proc_interrupts_op = {
start: single_start,
next: single_next,
stop: single_stop,
show: show_interrupts,
};
static int interrupts_open(struct inode *inode, struct file *file)
{
unsigned size = PAGE_SIZE;
/*
* probably should depend on NR_CPUS, but that's only rough estimate;
* if we'll need more it will be given,
*/
char *buf = kmalloc(size, GFP_KERNEL);
struct seq_file *m;
int res;
if (!buf)
return -ENOMEM;
res = seq_open(file, &proc_interrupts_op);
if (!res) {
m = file->private_data;
m->buf = buf;
m->size = size;
} else
kfree(buf);
return res;
}
static struct file_operations proc_interrupts_operations = {
open: interrupts_open,
read: seq_read,
llseek: seq_lseek,
release: seq_release,
};
static int filesystems_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int len = get_filesystem_list(page);
return proc_calc_metrics(page, start, off, count, eof, len);
}
static int dma_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int len = get_dma_list(page);
return proc_calc_metrics(page, start, off, count, eof, len);
}
static int ioports_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int len = get_ioport_list(page);
return proc_calc_metrics(page, start, off, count, eof, len);
}
static int cmdline_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
extern char saved_command_line[];
int len;
len = sprintf(page, "%s\n", saved_command_line);
len = strlen(page);
return proc_calc_metrics(page, start, off, count, eof, len);
}
#ifdef CONFIG_SGI_DS1286
static int ds1286_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int len = get_ds1286_status(page);
return proc_calc_metrics(page, start, off, count, eof, len);
}
#endif
static int locks_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int len;
lock_kernel();
len = get_locks_status(page, start, off, count);
unlock_kernel();
if (len < count) *eof = 1;
return len;
}
static int execdomains_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int len = get_exec_domain_list(page);
return proc_calc_metrics(page, start, off, count, eof, len);
}
static int swaps_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int len = get_swaparea_info(page);
return proc_calc_metrics(page, start, off, count, eof, len);
}
static int memory_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int len = get_mem_list(page);
return proc_calc_metrics(page, start, off, count, eof, len);
}
/*
* This function accesses profiling information. The returned data is
* binary: the sampling step and the actual contents of the profile
* buffer. Use of the program readprofile is recommended in order to
* get meaningful info out of these data.
*/
static ssize_t read_profile(struct file *file, char *buf,
size_t count, loff_t *ppos)
{
unsigned long p = *ppos;
ssize_t read;
char * pnt;
unsigned int sample_step = 1 << prof_shift;
if (p >= (prof_len+1)*sizeof(unsigned int))
return 0;
if (count > (prof_len+1)*sizeof(unsigned int) - p)
count = (prof_len+1)*sizeof(unsigned int) - p;
read = 0;
while (p < sizeof(unsigned int) && count > 0) {
put_user(*((char *)(&sample_step)+p),buf);
buf++; p++; count--; read++;
}
pnt = (char *)prof_buffer + p - sizeof(unsigned int);
copy_to_user(buf,(void *)pnt,count);
read += count;
*ppos += read;
return read;
}
/*
* Writing to /proc/profile resets the counters
*
* Writing a 'profiling multiplier' value into it also re-sets the profiling
* interrupt frequency, on architectures that support this.
*/
static ssize_t write_profile(struct file * file, const char * buf,
size_t count, loff_t *ppos)
{
#ifdef CONFIG_SMP
extern int setup_profiling_timer (unsigned int multiplier);
if (count==sizeof(int)) {
unsigned int multiplier;
if (copy_from_user(&multiplier, buf, sizeof(int)))
return -EFAULT;
if (setup_profiling_timer(multiplier))
return -EINVAL;
}
#endif
memset(prof_buffer, 0, prof_len * sizeof(*prof_buffer));
return count;
}
static struct file_operations proc_profile_operations = {
read: read_profile,
write: write_profile,
};
struct proc_dir_entry *proc_root_kcore;
static void create_seq_entry(char *name, mode_t mode, struct file_operations *f)
{
struct proc_dir_entry *entry;
entry = create_proc_entry(name, mode, NULL);
if (entry)
entry->proc_fops = f;
}
void __init proc_misc_init(void)
{
struct proc_dir_entry *entry;
static struct {
char *name;
int (*read_proc)(char*,char**,off_t,int,int*,void*);
} *p, simple_ones[] = {
{"loadavg", loadavg_read_proc},
{"uptime", uptime_read_proc},
{"meminfo", meminfo_read_proc},
{"version", version_read_proc},
{"stat", kstat_read_proc},
{"devices", devices_read_proc},
{"partitions", partitions_read_proc},
{"filesystems", filesystems_read_proc},
{"dma", dma_read_proc},
{"ioports", ioports_read_proc},
{"cmdline", cmdline_read_proc},
#ifdef CONFIG_SGI_DS1286
{"rtc", ds1286_read_proc},
#endif
{"locks", locks_read_proc},
{"swaps", swaps_read_proc},
{"iomem", memory_read_proc},
{"execdomains", execdomains_read_proc},
{NULL,}
};
for (p = simple_ones; p->name; p++)
create_proc_read_entry(p->name, 0, NULL, p->read_proc, NULL);
proc_symlink("mounts", NULL, "self/mounts");
/* And now for trickier ones */
entry = create_proc_entry("kmsg", S_IRUSR, &proc_root);
if (entry)
entry->proc_fops = &proc_kmsg_operations;
create_seq_entry("cpuinfo", 0, &proc_cpuinfo_operations);
create_seq_entry("interrupts", 0, &proc_interrupts_operations);
create_seq_entry("slabinfo",S_IWUSR|S_IRUGO,&proc_slabinfo_operations);
#ifdef CONFIG_MODULES
create_seq_entry("modules", 0, &proc_modules_operations);
create_seq_entry("ksyms", 0, &proc_ksyms_operations);
#endif
proc_root_kcore = create_proc_entry("kcore", S_IRUSR, NULL);
if (proc_root_kcore) {
proc_root_kcore->proc_fops = &proc_kcore_operations;
proc_root_kcore->size =
(size_t)high_memory - PAGE_OFFSET + PAGE_SIZE;
}
if (prof_shift) {
entry = create_proc_entry("profile", S_IWUSR | S_IRUGO, NULL);
if (entry) {
entry->proc_fops = &proc_profile_operations;
entry->size = (1+prof_len) * sizeof(unsigned int);
}
}
#ifdef CONFIG_PPC32
{
extern struct file_operations ppc_htab_operations;
entry = create_proc_entry("ppc_htab", S_IRUGO|S_IWUSR, NULL);
if (entry)
entry->proc_fops = &ppc_htab_operations;
}
#endif
}