blob: 898193d61fc3d699b14d2a97c185a9f80ec18e24 [file] [log] [blame]
/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* Definitions for the AF_INET socket handler.
*
* Version: @(#)sock.h 1.0.4 05/13/93
*
* Authors: Ross Biro, <bir7@leland.Stanford.Edu>
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
* Corey Minyard <wf-rch!minyard@relay.EU.net>
* Florian La Roche <flla@stud.uni-sb.de>
*
* Fixes:
* Alan Cox : Volatiles in skbuff pointers. See
* skbuff comments. May be overdone,
* better to prove they can be removed
* than the reverse.
* Alan Cox : Added a zapped field for tcp to note
* a socket is reset and must stay shut up
* Alan Cox : New fields for options
* Pauline Middelink : identd support
* Alan Cox : Eliminate low level recv/recvfrom
* David S. Miller : New socket lookup architecture.
* Steve Whitehouse: Default routines for sock_ops
* Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
* protinfo be just a void pointer, as the
* protocol specific parts were moved to
* respective headers and ipv4/v6, etc now
* use private slabcaches for its socks
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#ifndef _SOCK_H
#define _SOCK_H
#include <linux/config.h>
#include <linux/timer.h>
#include <linux/cache.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h> /* struct sk_buff */
#ifdef CONFIG_FILTER
#include <linux/filter.h>
#endif
#include <asm/atomic.h>
#include <net/dst.h>
/*
* This structure really needs to be cleaned up.
* Most of it is for TCP, and not used by any of
* the other protocols.
*/
/* Define this to get the sk->debug debugging facility. */
#define SOCK_DEBUGGING
#ifdef SOCK_DEBUGGING
#define SOCK_DEBUG(sk, msg...) do { if((sk) && ((sk)->debug)) printk(KERN_DEBUG msg); } while (0)
#else
#define SOCK_DEBUG(sk, msg...) do { } while (0)
#endif
/* This is the per-socket lock. The spinlock provides a synchronization
* between user contexts and software interrupt processing, whereas the
* mini-semaphore synchronizes multiple users amongst themselves.
*/
typedef struct {
spinlock_t slock;
unsigned int users;
wait_queue_head_t wq;
} socket_lock_t;
#define sock_lock_init(__sk) \
do { spin_lock_init(&((__sk)->lock.slock)); \
(__sk)->lock.users = 0; \
init_waitqueue_head(&((__sk)->lock.wq)); \
} while(0);
struct sock {
/* Socket demultiplex comparisons on incoming packets. */
__u32 daddr; /* Foreign IPv4 addr */
__u32 rcv_saddr; /* Bound local IPv4 addr */
__u16 dport; /* Destination port */
unsigned short num; /* Local port */
int bound_dev_if; /* Bound device index if != 0 */
/* Main hash linkage for various protocol lookup tables. */
struct sock *next;
struct sock **pprev;
struct sock *bind_next;
struct sock **bind_pprev;
volatile unsigned char state, /* Connection state */
zapped; /* In ax25 & ipx means not linked */
__u16 sport; /* Source port */
unsigned short family; /* Address family */
unsigned char reuse; /* SO_REUSEADDR setting */
unsigned char shutdown;
atomic_t refcnt; /* Reference count */
socket_lock_t lock; /* Synchronizer... */
int rcvbuf; /* Size of receive buffer in bytes */
wait_queue_head_t *sleep; /* Sock wait queue */
struct dst_entry *dst_cache; /* Destination cache */
rwlock_t dst_lock;
atomic_t rmem_alloc; /* Receive queue bytes committed */
struct sk_buff_head receive_queue; /* Incoming packets */
atomic_t wmem_alloc; /* Transmit queue bytes committed */
struct sk_buff_head write_queue; /* Packet sending queue */
atomic_t omem_alloc; /* "o" is "option" or "other" */
int wmem_queued; /* Persistent queue size */
int forward_alloc; /* Space allocated forward. */
__u32 saddr; /* Sending source */
unsigned int allocation; /* Allocation mode */
int sndbuf; /* Size of send buffer in bytes */
struct sock *prev;
/* Not all are volatile, but some are, so we might as well say they all are.
* XXX Make this a flag word -DaveM
*/
volatile char dead,
done,
urginline,
keepopen,
linger,
destroy,
no_check,
broadcast,
bsdism;
unsigned char debug;
unsigned char rcvtstamp;
unsigned char use_write_queue;
unsigned char userlocks;
/* Hole of 3 bytes. Try to pack. */
int route_caps;
int proc;
unsigned long lingertime;
int hashent;
struct sock *pair;
/* The backlog queue is special, it is always used with
* the per-socket spinlock held and requires low latency
* access. Therefore we special case it's implementation.
*/
struct {
struct sk_buff *head;
struct sk_buff *tail;
} backlog;
rwlock_t callback_lock;
/* Error queue, rarely used. */
struct sk_buff_head error_queue;
struct proto *prot;
int err, err_soft; /* Soft holds errors that don't
cause failure but are the cause
of a persistent failure not just
'timed out' */
unsigned short ack_backlog;
unsigned short max_ack_backlog;
__u32 priority;
unsigned short type;
unsigned char localroute; /* Route locally only */
unsigned char protocol;
struct ucred peercred;
int rcvlowat;
long rcvtimeo;
long sndtimeo;
#ifdef CONFIG_FILTER
/* Socket Filtering Instructions */
struct sk_filter *filter;
#endif /* CONFIG_FILTER */
/* This is where all the private (optional) areas that don't
* overlap will eventually live.
*/
void *protinfo;
/* The slabcache this instance was allocated from, it is sk_cachep for most
* protocols, but a private slab for protocols such as IPv4, IPv6, SPX
* and Unix.
*/
kmem_cache_t *slab;
/* This part is used for the timeout functions. */
struct timer_list timer; /* This is the sock cleanup timer. */
struct timeval stamp;
/* Identd and reporting IO signals */
struct socket *socket;
/* RPC layer private data */
void *user_data;
/* Callbacks */
void (*state_change)(struct sock *sk);
void (*data_ready)(struct sock *sk,int bytes);
void (*write_space)(struct sock *sk);
void (*error_report)(struct sock *sk);
int (*backlog_rcv) (struct sock *sk,
struct sk_buff *skb);
void (*destruct)(struct sock *sk);
};
/* The per-socket spinlock must be held here. */
#define sk_add_backlog(__sk, __skb) \
do { if((__sk)->backlog.tail == NULL) { \
(__sk)->backlog.head = \
(__sk)->backlog.tail = (__skb); \
} else { \
((__sk)->backlog.tail)->next = (__skb); \
(__sk)->backlog.tail = (__skb); \
} \
(__skb)->next = NULL; \
} while(0)
/* IP protocol blocks we attach to sockets.
* socket layer -> transport layer interface
* transport -> network interface is defined by struct inet_proto
*/
struct proto {
void (*close)(struct sock *sk,
long timeout);
int (*connect)(struct sock *sk,
struct sockaddr *uaddr,
int addr_len);
int (*disconnect)(struct sock *sk, int flags);
struct sock * (*accept) (struct sock *sk, int flags, int *err);
int (*ioctl)(struct sock *sk, int cmd,
unsigned long arg);
int (*init)(struct sock *sk);
int (*destroy)(struct sock *sk);
void (*shutdown)(struct sock *sk, int how);
int (*setsockopt)(struct sock *sk, int level,
int optname, char *optval, int optlen);
int (*getsockopt)(struct sock *sk, int level,
int optname, char *optval,
int *option);
int (*sendmsg)(struct sock *sk, struct msghdr *msg,
int len);
int (*recvmsg)(struct sock *sk, struct msghdr *msg,
int len, int noblock, int flags,
int *addr_len);
int (*bind)(struct sock *sk,
struct sockaddr *uaddr, int addr_len);
int (*backlog_rcv) (struct sock *sk,
struct sk_buff *skb);
/* Keeping track of sk's, looking them up, and port selection methods. */
void (*hash)(struct sock *sk);
void (*unhash)(struct sock *sk);
int (*get_port)(struct sock *sk, unsigned short snum);
char name[32];
struct {
int inuse;
u8 __pad[SMP_CACHE_BYTES - sizeof(int)];
} stats[NR_CPUS];
};
/* Called with local bh disabled */
static __inline__ void sock_prot_inc_use(struct proto *prot)
{
prot->stats[smp_processor_id()].inuse++;
}
static __inline__ void sock_prot_dec_use(struct proto *prot)
{
prot->stats[smp_processor_id()].inuse--;
}
/* About 10 seconds */
#define SOCK_DESTROY_TIME (10*HZ)
/* Sockets 0-1023 can't be bound to unless you are superuser */
#define PROT_SOCK 1024
#define SHUTDOWN_MASK 3
#define RCV_SHUTDOWN 1
#define SEND_SHUTDOWN 2
#define SOCK_SNDBUF_LOCK 1
#define SOCK_RCVBUF_LOCK 2
#define SOCK_BINDADDR_LOCK 4
#define SOCK_BINDPORT_LOCK 8
#include <linux/fs.h> /* just for inode - yeuch.*/
/* Used by processes to "lock" a socket state, so that
* interrupts and bottom half handlers won't change it
* from under us. It essentially blocks any incoming
* packets, so that we won't get any new data or any
* packets that change the state of the socket.
*
* While locked, BH processing will add new packets to
* the backlog queue. This queue is processed by the
* owner of the socket lock right before it is released.
*
* Since ~2.3.5 it is also exclusive sleep lock serializing
* accesses from user process context.
*/
extern void __lock_sock(struct sock *sk);
extern void __release_sock(struct sock *sk);
#define lock_sock(__sk) \
do { spin_lock_bh(&((__sk)->lock.slock)); \
if ((__sk)->lock.users != 0) \
__lock_sock(__sk); \
(__sk)->lock.users = 1; \
spin_unlock_bh(&((__sk)->lock.slock)); \
} while(0)
#define release_sock(__sk) \
do { spin_lock_bh(&((__sk)->lock.slock)); \
if ((__sk)->backlog.tail != NULL) \
__release_sock(__sk); \
(__sk)->lock.users = 0; \
if (waitqueue_active(&((__sk)->lock.wq))) wake_up(&((__sk)->lock.wq)); \
spin_unlock_bh(&((__sk)->lock.slock)); \
} while(0)
/* BH context may only use the following locking interface. */
#define bh_lock_sock(__sk) spin_lock(&((__sk)->lock.slock))
#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->lock.slock))
extern struct sock * sk_alloc(int family, int priority, int zero_it,
kmem_cache_t *slab);
extern void sk_free(struct sock *sk);
extern struct sk_buff *sock_wmalloc(struct sock *sk,
unsigned long size, int force,
int priority);
extern struct sk_buff *sock_rmalloc(struct sock *sk,
unsigned long size, int force,
int priority);
extern void sock_wfree(struct sk_buff *skb);
extern void sock_rfree(struct sk_buff *skb);
extern int sock_setsockopt(struct socket *sock, int level,
int op, char *optval,
int optlen);
extern int sock_getsockopt(struct socket *sock, int level,
int op, char *optval,
int *optlen);
extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
unsigned long size,
int noblock,
int *errcode);
extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
unsigned long header_len,
unsigned long data_len,
int noblock,
int *errcode);
extern void *sock_kmalloc(struct sock *sk, int size, int priority);
extern void sock_kfree_s(struct sock *sk, void *mem, int size);
/*
* Functions to fill in entries in struct proto_ops when a protocol
* does not implement a particular function.
*/
extern int sock_no_release(struct socket *);
extern int sock_no_bind(struct socket *,
struct sockaddr *, int);
extern int sock_no_connect(struct socket *,
struct sockaddr *, int, int);
extern int sock_no_socketpair(struct socket *,
struct socket *);
extern int sock_no_accept(struct socket *,
struct socket *, int);
extern int sock_no_getname(struct socket *,
struct sockaddr *, int *, int);
extern unsigned int sock_no_poll(struct file *, struct socket *,
struct poll_table_struct *);
extern int sock_no_ioctl(struct socket *, unsigned int,
unsigned long);
extern int sock_no_listen(struct socket *, int);
extern int sock_no_shutdown(struct socket *, int);
extern int sock_no_getsockopt(struct socket *, int , int,
char *, int *);
extern int sock_no_setsockopt(struct socket *, int, int,
char *, int);
extern int sock_no_fcntl(struct socket *,
unsigned int, unsigned long);
extern int sock_no_sendmsg(struct socket *,
struct msghdr *, int,
struct scm_cookie *);
extern int sock_no_recvmsg(struct socket *,
struct msghdr *, int, int,
struct scm_cookie *);
extern int sock_no_mmap(struct file *file,
struct socket *sock,
struct vm_area_struct *vma);
extern ssize_t sock_no_sendpage(struct socket *sock,
struct page *page,
int offset, size_t size,
int flags);
/*
* Default socket callbacks and setup code
*/
extern void sock_def_destruct(struct sock *);
/* Initialise core socket variables */
extern void sock_init_data(struct socket *sock, struct sock *sk);
extern void sklist_remove_socket(struct sock **list, struct sock *sk);
extern void sklist_insert_socket(struct sock **list, struct sock *sk);
extern void sklist_destroy_socket(struct sock **list, struct sock *sk);
#ifdef CONFIG_FILTER
/**
* sk_filter - run a packet through a socket filter
* @skb: buffer to filter
* @filter: filter to apply
*
* Run the filter code and then cut skb->data to correct size returned by
* sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
* than pkt_len we keep whole skb->data. This is the socket level
* wrapper to sk_run_filter. It returns 0 if the packet should
* be accepted or 1 if the packet should be tossed.
*/
static inline int sk_filter(struct sk_buff *skb, struct sk_filter *filter)
{
int pkt_len;
pkt_len = sk_run_filter(skb, filter->insns, filter->len);
if(!pkt_len)
return 1; /* Toss Packet */
else
skb_trim(skb, pkt_len);
return 0;
}
/**
* sk_filter_release: Release a socket filter
* @sk: socket
* @fp: filter to remove
*
* Remove a filter from a socket and release its resources.
*/
static inline void sk_filter_release(struct sock *sk, struct sk_filter *fp)
{
unsigned int size = sk_filter_len(fp);
atomic_sub(size, &sk->omem_alloc);
if (atomic_dec_and_test(&fp->refcnt))
kfree(fp);
}
static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
{
atomic_inc(&fp->refcnt);
atomic_add(sk_filter_len(fp), &sk->omem_alloc);
}
#endif /* CONFIG_FILTER */
/*
* Socket reference counting postulates.
*
* * Each user of socket SHOULD hold a reference count.
* * Each access point to socket (an hash table bucket, reference from a list,
* running timer, skb in flight MUST hold a reference count.
* * When reference count hits 0, it means it will never increase back.
* * When reference count hits 0, it means that no references from
* outside exist to this socket and current process on current CPU
* is last user and may/should destroy this socket.
* * sk_free is called from any context: process, BH, IRQ. When
* it is called, socket has no references from outside -> sk_free
* may release descendant resources allocated by the socket, but
* to the time when it is called, socket is NOT referenced by any
* hash tables, lists etc.
* * Packets, delivered from outside (from network or from another process)
* and enqueued on receive/error queues SHOULD NOT grab reference count,
* when they sit in queue. Otherwise, packets will leak to hole, when
* socket is looked up by one cpu and unhasing is made by another CPU.
* It is true for udp/raw, netlink (leak to receive and error queues), tcp
* (leak to backlog). Packet socket does all the processing inside
* BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
* use separate SMP lock, so that they are prone too.
*/
/* Grab socket reference count. This operation is valid only
when sk is ALREADY grabbed f.e. it is found in hash table
or a list and the lookup is made under lock preventing hash table
modifications.
*/
static inline void sock_hold(struct sock *sk)
{
atomic_inc(&sk->refcnt);
}
/* Ungrab socket in the context, which assumes that socket refcnt
cannot hit zero, f.e. it is true in context of any socketcall.
*/
static inline void __sock_put(struct sock *sk)
{
atomic_dec(&sk->refcnt);
}
/* Ungrab socket and destroy it, if it was the last reference. */
static inline void sock_put(struct sock *sk)
{
if (atomic_dec_and_test(&sk->refcnt))
sk_free(sk);
}
/* Detach socket from process context.
* Announce socket dead, detach it from wait queue and inode.
* Note that parent inode held reference count on this struct sock,
* we do not release it in this function, because protocol
* probably wants some additional cleanups or even continuing
* to work with this socket (TCP).
*/
static inline void sock_orphan(struct sock *sk)
{
write_lock_bh(&sk->callback_lock);
sk->dead = 1;
sk->socket = NULL;
sk->sleep = NULL;
write_unlock_bh(&sk->callback_lock);
}
static inline void sock_graft(struct sock *sk, struct socket *parent)
{
write_lock_bh(&sk->callback_lock);
sk->sleep = &parent->wait;
parent->sk = sk;
sk->socket = parent;
write_unlock_bh(&sk->callback_lock);
}
static inline int sock_i_uid(struct sock *sk)
{
int uid;
read_lock(&sk->callback_lock);
uid = sk->socket ? SOCK_INODE(sk->socket)->i_uid : 0;
read_unlock(&sk->callback_lock);
return uid;
}
static inline unsigned long sock_i_ino(struct sock *sk)
{
unsigned long ino;
read_lock(&sk->callback_lock);
ino = sk->socket ? SOCK_INODE(sk->socket)->i_ino : 0;
read_unlock(&sk->callback_lock);
return ino;
}
static inline struct dst_entry *
__sk_dst_get(struct sock *sk)
{
return sk->dst_cache;
}
static inline struct dst_entry *
sk_dst_get(struct sock *sk)
{
struct dst_entry *dst;
read_lock(&sk->dst_lock);
dst = sk->dst_cache;
if (dst)
dst_hold(dst);
read_unlock(&sk->dst_lock);
return dst;
}
static inline void
__sk_dst_set(struct sock *sk, struct dst_entry *dst)
{
struct dst_entry *old_dst;
old_dst = sk->dst_cache;
sk->dst_cache = dst;
dst_release(old_dst);
}
static inline void
sk_dst_set(struct sock *sk, struct dst_entry *dst)
{
write_lock(&sk->dst_lock);
__sk_dst_set(sk, dst);
write_unlock(&sk->dst_lock);
}
static inline void
__sk_dst_reset(struct sock *sk)
{
struct dst_entry *old_dst;
old_dst = sk->dst_cache;
sk->dst_cache = NULL;
dst_release(old_dst);
}
static inline void
sk_dst_reset(struct sock *sk)
{
write_lock(&sk->dst_lock);
__sk_dst_reset(sk);
write_unlock(&sk->dst_lock);
}
static inline struct dst_entry *
__sk_dst_check(struct sock *sk, u32 cookie)
{
struct dst_entry *dst = sk->dst_cache;
if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
sk->dst_cache = NULL;
return NULL;
}
return dst;
}
static inline struct dst_entry *
sk_dst_check(struct sock *sk, u32 cookie)
{
struct dst_entry *dst = sk_dst_get(sk);
if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
sk_dst_reset(sk);
return NULL;
}
return dst;
}
/*
* Queue a received datagram if it will fit. Stream and sequenced
* protocols can't normally use this as they need to fit buffers in
* and play with them.
*
* Inlined as it's very short and called for pretty much every
* packet ever received.
*/
static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
{
sock_hold(sk);
skb->sk = sk;
skb->destructor = sock_wfree;
atomic_add(skb->truesize, &sk->wmem_alloc);
}
static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
{
skb->sk = sk;
skb->destructor = sock_rfree;
atomic_add(skb->truesize, &sk->rmem_alloc);
}
static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
{
/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
number of warnings when compiling with -W --ANK
*/
if (atomic_read(&sk->rmem_alloc) + skb->truesize >= (unsigned)sk->rcvbuf)
return -ENOMEM;
#ifdef CONFIG_FILTER
if (sk->filter) {
int err = 0;
struct sk_filter *filter;
/* It would be deadlock, if sock_queue_rcv_skb is used
with socket lock! We assume that users of this
function are lock free.
*/
bh_lock_sock(sk);
if ((filter = sk->filter) != NULL && sk_filter(skb, filter))
err = -EPERM;
bh_unlock_sock(sk);
if (err)
return err; /* Toss packet */
}
#endif /* CONFIG_FILTER */
skb->dev = NULL;
skb_set_owner_r(skb, sk);
skb_queue_tail(&sk->receive_queue, skb);
if (!sk->dead)
sk->data_ready(sk,skb->len);
return 0;
}
static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
{
/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
number of warnings when compiling with -W --ANK
*/
if (atomic_read(&sk->rmem_alloc) + skb->truesize >= (unsigned)sk->rcvbuf)
return -ENOMEM;
skb_set_owner_r(skb, sk);
skb_queue_tail(&sk->error_queue,skb);
if (!sk->dead)
sk->data_ready(sk,skb->len);
return 0;
}
/*
* Recover an error report and clear atomically
*/
static inline int sock_error(struct sock *sk)
{
int err=xchg(&sk->err,0);
return -err;
}
static inline unsigned long sock_wspace(struct sock *sk)
{
int amt = 0;
if (!(sk->shutdown & SEND_SHUTDOWN)) {
amt = sk->sndbuf - atomic_read(&sk->wmem_alloc);
if (amt < 0)
amt = 0;
}
return amt;
}
static inline void sk_wake_async(struct sock *sk, int how, int band)
{
if (sk->socket && sk->socket->fasync_list)
sock_wake_async(sk->socket, how, band);
}
#define SOCK_MIN_SNDBUF 2048
#define SOCK_MIN_RCVBUF 256
/* Must be less or equal SOCK_MIN_SNDBUF */
#define SOCK_MIN_WRITE_SPACE SOCK_MIN_SNDBUF
/*
* Default write policy as shown to user space via poll/select/SIGIO
* Kernel internally doesn't use the MIN_WRITE_SPACE threshold.
*/
static inline int sock_writeable(struct sock *sk)
{
return sock_wspace(sk) >= SOCK_MIN_WRITE_SPACE;
}
static inline int gfp_any(void)
{
return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
}
static inline long sock_rcvtimeo(struct sock *sk, int noblock)
{
return noblock ? 0 : sk->rcvtimeo;
}
static inline long sock_sndtimeo(struct sock *sk, int noblock)
{
return noblock ? 0 : sk->sndtimeo;
}
static inline int sock_rcvlowat(struct sock *sk, int waitall, int len)
{
return (waitall ? len : min_t(int, sk->rcvlowat, len)) ? : 1;
}
/* Alas, with timeout socket operations are not restartable.
* Compare this to poll().
*/
static inline int sock_intr_errno(long timeo)
{
return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
}
static __inline__ void
sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
{
if (sk->rcvtstamp)
put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP, sizeof(skb->stamp), &skb->stamp);
else
sk->stamp = skb->stamp;
}
/*
* Enable debug/info messages
*/
#if 0
#define NETDEBUG(x) do { } while (0)
#else
#define NETDEBUG(x) do { x; } while (0)
#endif
/*
* Macros for sleeping on a socket. Use them like this:
*
* SOCK_SLEEP_PRE(sk)
* if (condition)
* schedule();
* SOCK_SLEEP_POST(sk)
*
*/
#define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \
DECLARE_WAITQUEUE(wait, tsk); \
tsk->state = TASK_INTERRUPTIBLE; \
add_wait_queue((sk)->sleep, &wait); \
release_sock(sk);
#define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \
remove_wait_queue((sk)->sleep, &wait); \
lock_sock(sk); \
}
extern __u32 sysctl_wmem_max;
extern __u32 sysctl_rmem_max;
#endif /* _SOCK_H */