| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * TI Keystone DSP remoteproc driver |
| * |
| * Copyright (C) 2015-2017 Texas Instruments Incorporated - http://www.ti.com/ |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/io.h> |
| #include <linux/interrupt.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/workqueue.h> |
| #include <linux/of_address.h> |
| #include <linux/of_reserved_mem.h> |
| #include <linux/gpio/consumer.h> |
| #include <linux/regmap.h> |
| #include <linux/mfd/syscon.h> |
| #include <linux/remoteproc.h> |
| #include <linux/reset.h> |
| |
| #include "remoteproc_internal.h" |
| |
| #define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1) |
| |
| /** |
| * struct keystone_rproc_mem - internal memory structure |
| * @cpu_addr: MPU virtual address of the memory region |
| * @bus_addr: Bus address used to access the memory region |
| * @dev_addr: Device address of the memory region from DSP view |
| * @size: Size of the memory region |
| */ |
| struct keystone_rproc_mem { |
| void __iomem *cpu_addr; |
| phys_addr_t bus_addr; |
| u32 dev_addr; |
| size_t size; |
| }; |
| |
| /** |
| * struct keystone_rproc - keystone remote processor driver structure |
| * @dev: cached device pointer |
| * @rproc: remoteproc device handle |
| * @mem: internal memory regions data |
| * @num_mems: number of internal memory regions |
| * @dev_ctrl: device control regmap handle |
| * @reset: reset control handle |
| * @boot_offset: boot register offset in @dev_ctrl regmap |
| * @irq_ring: irq entry for vring |
| * @irq_fault: irq entry for exception |
| * @kick_gpio: gpio used for virtio kicks |
| * @workqueue: workqueue for processing virtio interrupts |
| */ |
| struct keystone_rproc { |
| struct device *dev; |
| struct rproc *rproc; |
| struct keystone_rproc_mem *mem; |
| int num_mems; |
| struct regmap *dev_ctrl; |
| struct reset_control *reset; |
| struct gpio_desc *kick_gpio; |
| u32 boot_offset; |
| int irq_ring; |
| int irq_fault; |
| struct work_struct workqueue; |
| }; |
| |
| /* Put the DSP processor into reset */ |
| static void keystone_rproc_dsp_reset(struct keystone_rproc *ksproc) |
| { |
| reset_control_assert(ksproc->reset); |
| } |
| |
| /* Configure the boot address and boot the DSP processor */ |
| static int keystone_rproc_dsp_boot(struct keystone_rproc *ksproc, u32 boot_addr) |
| { |
| int ret; |
| |
| if (boot_addr & (SZ_1K - 1)) { |
| dev_err(ksproc->dev, "invalid boot address 0x%x, must be aligned on a 1KB boundary\n", |
| boot_addr); |
| return -EINVAL; |
| } |
| |
| ret = regmap_write(ksproc->dev_ctrl, ksproc->boot_offset, boot_addr); |
| if (ret) { |
| dev_err(ksproc->dev, "regmap_write of boot address failed, status = %d\n", |
| ret); |
| return ret; |
| } |
| |
| reset_control_deassert(ksproc->reset); |
| |
| return 0; |
| } |
| |
| /* |
| * Process the remoteproc exceptions |
| * |
| * The exception reporting on Keystone DSP remote processors is very simple |
| * compared to the equivalent processors on the OMAP family, it is notified |
| * through a software-designed specific interrupt source in the IPC interrupt |
| * generation register. |
| * |
| * This function just invokes the rproc_report_crash to report the exception |
| * to the remoteproc driver core, to trigger a recovery. |
| */ |
| static irqreturn_t keystone_rproc_exception_interrupt(int irq, void *dev_id) |
| { |
| struct keystone_rproc *ksproc = dev_id; |
| |
| rproc_report_crash(ksproc->rproc, RPROC_FATAL_ERROR); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Main virtqueue message workqueue function |
| * |
| * This function is executed upon scheduling of the keystone remoteproc |
| * driver's workqueue. The workqueue is scheduled by the vring ISR handler. |
| * |
| * There is no payload message indicating the virtqueue index as is the |
| * case with mailbox-based implementations on OMAP family. As such, this |
| * handler processes both the Tx and Rx virtqueue indices on every invocation. |
| * The rproc_vq_interrupt function can detect if there are new unprocessed |
| * messages or not (returns IRQ_NONE vs IRQ_HANDLED), but there is no need |
| * to check for these return values. The index 0 triggering will process all |
| * pending Rx buffers, and the index 1 triggering will process all newly |
| * available Tx buffers and will wakeup any potentially blocked senders. |
| * |
| * NOTE: |
| * 1. A payload could be added by using some of the source bits in the |
| * IPC interrupt generation registers, but this would need additional |
| * changes to the overall IPC stack, and currently there are no benefits |
| * of adapting that approach. |
| * 2. The current logic is based on an inherent design assumption of supporting |
| * only 2 vrings, but this can be changed if needed. |
| */ |
| static void handle_event(struct work_struct *work) |
| { |
| struct keystone_rproc *ksproc = |
| container_of(work, struct keystone_rproc, workqueue); |
| |
| rproc_vq_interrupt(ksproc->rproc, 0); |
| rproc_vq_interrupt(ksproc->rproc, 1); |
| } |
| |
| /* |
| * Interrupt handler for processing vring kicks from remote processor |
| */ |
| static irqreturn_t keystone_rproc_vring_interrupt(int irq, void *dev_id) |
| { |
| struct keystone_rproc *ksproc = dev_id; |
| |
| schedule_work(&ksproc->workqueue); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Power up the DSP remote processor. |
| * |
| * This function will be invoked only after the firmware for this rproc |
| * was loaded, parsed successfully, and all of its resource requirements |
| * were met. |
| */ |
| static int keystone_rproc_start(struct rproc *rproc) |
| { |
| struct keystone_rproc *ksproc = rproc->priv; |
| int ret; |
| |
| INIT_WORK(&ksproc->workqueue, handle_event); |
| |
| ret = request_irq(ksproc->irq_ring, keystone_rproc_vring_interrupt, 0, |
| dev_name(ksproc->dev), ksproc); |
| if (ret) { |
| dev_err(ksproc->dev, "failed to enable vring interrupt, ret = %d\n", |
| ret); |
| goto out; |
| } |
| |
| ret = request_irq(ksproc->irq_fault, keystone_rproc_exception_interrupt, |
| 0, dev_name(ksproc->dev), ksproc); |
| if (ret) { |
| dev_err(ksproc->dev, "failed to enable exception interrupt, ret = %d\n", |
| ret); |
| goto free_vring_irq; |
| } |
| |
| ret = keystone_rproc_dsp_boot(ksproc, rproc->bootaddr); |
| if (ret) |
| goto free_exc_irq; |
| |
| return 0; |
| |
| free_exc_irq: |
| free_irq(ksproc->irq_fault, ksproc); |
| free_vring_irq: |
| free_irq(ksproc->irq_ring, ksproc); |
| flush_work(&ksproc->workqueue); |
| out: |
| return ret; |
| } |
| |
| /* |
| * Stop the DSP remote processor. |
| * |
| * This function puts the DSP processor into reset, and finishes processing |
| * of any pending messages. |
| */ |
| static int keystone_rproc_stop(struct rproc *rproc) |
| { |
| struct keystone_rproc *ksproc = rproc->priv; |
| |
| keystone_rproc_dsp_reset(ksproc); |
| free_irq(ksproc->irq_fault, ksproc); |
| free_irq(ksproc->irq_ring, ksproc); |
| flush_work(&ksproc->workqueue); |
| |
| return 0; |
| } |
| |
| /* |
| * Kick the remote processor to notify about pending unprocessed messages. |
| * The vqid usage is not used and is inconsequential, as the kick is performed |
| * through a simulated GPIO (a bit in an IPC interrupt-triggering register), |
| * the remote processor is expected to process both its Tx and Rx virtqueues. |
| */ |
| static void keystone_rproc_kick(struct rproc *rproc, int vqid) |
| { |
| struct keystone_rproc *ksproc = rproc->priv; |
| |
| if (!ksproc->kick_gpio) |
| return; |
| |
| gpiod_set_value(ksproc->kick_gpio, 1); |
| } |
| |
| /* |
| * Custom function to translate a DSP device address (internal RAMs only) to a |
| * kernel virtual address. The DSPs can access their RAMs at either an internal |
| * address visible only from a DSP, or at the SoC-level bus address. Both these |
| * addresses need to be looked through for translation. The translated addresses |
| * can be used either by the remoteproc core for loading (when using kernel |
| * remoteproc loader), or by any rpmsg bus drivers. |
| */ |
| static void *keystone_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) |
| { |
| struct keystone_rproc *ksproc = rproc->priv; |
| void __iomem *va = NULL; |
| phys_addr_t bus_addr; |
| u32 dev_addr, offset; |
| size_t size; |
| int i; |
| |
| if (len == 0) |
| return NULL; |
| |
| for (i = 0; i < ksproc->num_mems; i++) { |
| bus_addr = ksproc->mem[i].bus_addr; |
| dev_addr = ksproc->mem[i].dev_addr; |
| size = ksproc->mem[i].size; |
| |
| if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) { |
| /* handle DSP-view addresses */ |
| if ((da >= dev_addr) && |
| ((da + len) <= (dev_addr + size))) { |
| offset = da - dev_addr; |
| va = ksproc->mem[i].cpu_addr + offset; |
| break; |
| } |
| } else { |
| /* handle SoC-view addresses */ |
| if ((da >= bus_addr) && |
| (da + len) <= (bus_addr + size)) { |
| offset = da - bus_addr; |
| va = ksproc->mem[i].cpu_addr + offset; |
| break; |
| } |
| } |
| } |
| |
| return (__force void *)va; |
| } |
| |
| static const struct rproc_ops keystone_rproc_ops = { |
| .start = keystone_rproc_start, |
| .stop = keystone_rproc_stop, |
| .kick = keystone_rproc_kick, |
| .da_to_va = keystone_rproc_da_to_va, |
| }; |
| |
| static int keystone_rproc_of_get_memories(struct platform_device *pdev, |
| struct keystone_rproc *ksproc) |
| { |
| static const char * const mem_names[] = {"l2sram", "l1pram", "l1dram"}; |
| struct device *dev = &pdev->dev; |
| struct resource *res; |
| int num_mems = 0; |
| int i; |
| |
| num_mems = ARRAY_SIZE(mem_names); |
| ksproc->mem = devm_kcalloc(ksproc->dev, num_mems, |
| sizeof(*ksproc->mem), GFP_KERNEL); |
| if (!ksproc->mem) |
| return -ENOMEM; |
| |
| for (i = 0; i < num_mems; i++) { |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, |
| mem_names[i]); |
| ksproc->mem[i].cpu_addr = devm_ioremap_resource(dev, res); |
| if (IS_ERR(ksproc->mem[i].cpu_addr)) { |
| dev_err(dev, "failed to parse and map %s memory\n", |
| mem_names[i]); |
| return PTR_ERR(ksproc->mem[i].cpu_addr); |
| } |
| ksproc->mem[i].bus_addr = res->start; |
| ksproc->mem[i].dev_addr = |
| res->start & KEYSTONE_RPROC_LOCAL_ADDRESS_MASK; |
| ksproc->mem[i].size = resource_size(res); |
| |
| /* zero out memories to start in a pristine state */ |
| memset((__force void *)ksproc->mem[i].cpu_addr, 0, |
| ksproc->mem[i].size); |
| } |
| ksproc->num_mems = num_mems; |
| |
| return 0; |
| } |
| |
| static int keystone_rproc_of_get_dev_syscon(struct platform_device *pdev, |
| struct keystone_rproc *ksproc) |
| { |
| struct device_node *np = pdev->dev.of_node; |
| struct device *dev = &pdev->dev; |
| int ret; |
| |
| if (!of_property_read_bool(np, "ti,syscon-dev")) { |
| dev_err(dev, "ti,syscon-dev property is absent\n"); |
| return -EINVAL; |
| } |
| |
| ksproc->dev_ctrl = |
| syscon_regmap_lookup_by_phandle(np, "ti,syscon-dev"); |
| if (IS_ERR(ksproc->dev_ctrl)) { |
| ret = PTR_ERR(ksproc->dev_ctrl); |
| return ret; |
| } |
| |
| if (of_property_read_u32_index(np, "ti,syscon-dev", 1, |
| &ksproc->boot_offset)) { |
| dev_err(dev, "couldn't read the boot register offset\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int keystone_rproc_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct device_node *np = dev->of_node; |
| struct keystone_rproc *ksproc; |
| struct rproc *rproc; |
| int dsp_id; |
| char *fw_name = NULL; |
| int ret = 0; |
| |
| if (!np) { |
| dev_err(dev, "only DT-based devices are supported\n"); |
| return -ENODEV; |
| } |
| |
| dsp_id = of_alias_get_id(np, "rproc"); |
| if (dsp_id < 0) { |
| dev_warn(dev, "device does not have an alias id\n"); |
| return dsp_id; |
| } |
| |
| /* construct a custom default fw name - subject to change in future */ |
| fw_name = devm_kasprintf(dev, GFP_KERNEL, "keystone-dsp%d-fw", dsp_id); |
| if (!fw_name) |
| return -ENOMEM; |
| |
| rproc = devm_rproc_alloc(dev, dev_name(dev), &keystone_rproc_ops, |
| fw_name, sizeof(*ksproc)); |
| if (!rproc) |
| return -ENOMEM; |
| |
| rproc->has_iommu = false; |
| ksproc = rproc->priv; |
| ksproc->rproc = rproc; |
| ksproc->dev = dev; |
| |
| ret = keystone_rproc_of_get_dev_syscon(pdev, ksproc); |
| if (ret) |
| return ret; |
| |
| ksproc->reset = devm_reset_control_get_exclusive(dev, NULL); |
| if (IS_ERR(ksproc->reset)) |
| return PTR_ERR(ksproc->reset); |
| |
| /* enable clock for accessing DSP internal memories */ |
| pm_runtime_enable(dev); |
| ret = pm_runtime_resume_and_get(dev); |
| if (ret < 0) { |
| dev_err(dev, "failed to enable clock, status = %d\n", ret); |
| goto disable_rpm; |
| } |
| |
| ret = keystone_rproc_of_get_memories(pdev, ksproc); |
| if (ret) |
| goto disable_clk; |
| |
| ksproc->irq_ring = platform_get_irq_byname(pdev, "vring"); |
| if (ksproc->irq_ring < 0) { |
| ret = ksproc->irq_ring; |
| goto disable_clk; |
| } |
| |
| ksproc->irq_fault = platform_get_irq_byname(pdev, "exception"); |
| if (ksproc->irq_fault < 0) { |
| ret = ksproc->irq_fault; |
| goto disable_clk; |
| } |
| |
| ksproc->kick_gpio = gpiod_get(dev, "kick", GPIOD_ASIS); |
| ret = PTR_ERR_OR_ZERO(ksproc->kick_gpio); |
| if (ret) { |
| dev_err(dev, "failed to get gpio for virtio kicks, status = %d\n", |
| ret); |
| goto disable_clk; |
| } |
| |
| if (of_reserved_mem_device_init(dev)) |
| dev_warn(dev, "device does not have specific CMA pool\n"); |
| |
| /* ensure the DSP is in reset before loading firmware */ |
| ret = reset_control_status(ksproc->reset); |
| if (ret < 0) { |
| dev_err(dev, "failed to get reset status, status = %d\n", ret); |
| goto release_mem; |
| } else if (ret == 0) { |
| WARN(1, "device is not in reset\n"); |
| keystone_rproc_dsp_reset(ksproc); |
| } |
| |
| ret = rproc_add(rproc); |
| if (ret) { |
| dev_err(dev, "failed to add register device with remoteproc core, status = %d\n", |
| ret); |
| goto release_mem; |
| } |
| |
| platform_set_drvdata(pdev, ksproc); |
| |
| return 0; |
| |
| release_mem: |
| of_reserved_mem_device_release(dev); |
| gpiod_put(ksproc->kick_gpio); |
| disable_clk: |
| pm_runtime_put_sync(dev); |
| disable_rpm: |
| pm_runtime_disable(dev); |
| return ret; |
| } |
| |
| static void keystone_rproc_remove(struct platform_device *pdev) |
| { |
| struct keystone_rproc *ksproc = platform_get_drvdata(pdev); |
| |
| rproc_del(ksproc->rproc); |
| gpiod_put(ksproc->kick_gpio); |
| pm_runtime_put_sync(&pdev->dev); |
| pm_runtime_disable(&pdev->dev); |
| of_reserved_mem_device_release(&pdev->dev); |
| } |
| |
| static const struct of_device_id keystone_rproc_of_match[] = { |
| { .compatible = "ti,k2hk-dsp", }, |
| { .compatible = "ti,k2l-dsp", }, |
| { .compatible = "ti,k2e-dsp", }, |
| { .compatible = "ti,k2g-dsp", }, |
| { /* sentinel */ }, |
| }; |
| MODULE_DEVICE_TABLE(of, keystone_rproc_of_match); |
| |
| static struct platform_driver keystone_rproc_driver = { |
| .probe = keystone_rproc_probe, |
| .remove = keystone_rproc_remove, |
| .driver = { |
| .name = "keystone-rproc", |
| .of_match_table = keystone_rproc_of_match, |
| }, |
| }; |
| |
| module_platform_driver(keystone_rproc_driver); |
| |
| MODULE_AUTHOR("Suman Anna <s-anna@ti.com>"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_DESCRIPTION("TI Keystone DSP Remoteproc driver"); |