| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * NET An implementation of the SOCKET network access protocol. |
| * |
| * Version: @(#)socket.c 1.1.93 18/02/95 |
| * |
| * Authors: Orest Zborowski, <obz@Kodak.COM> |
| * Ross Biro |
| * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
| * |
| * Fixes: |
| * Anonymous : NOTSOCK/BADF cleanup. Error fix in |
| * shutdown() |
| * Alan Cox : verify_area() fixes |
| * Alan Cox : Removed DDI |
| * Jonathan Kamens : SOCK_DGRAM reconnect bug |
| * Alan Cox : Moved a load of checks to the very |
| * top level. |
| * Alan Cox : Move address structures to/from user |
| * mode above the protocol layers. |
| * Rob Janssen : Allow 0 length sends. |
| * Alan Cox : Asynchronous I/O support (cribbed from the |
| * tty drivers). |
| * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) |
| * Jeff Uphoff : Made max number of sockets command-line |
| * configurable. |
| * Matti Aarnio : Made the number of sockets dynamic, |
| * to be allocated when needed, and mr. |
| * Uphoff's max is used as max to be |
| * allowed to allocate. |
| * Linus : Argh. removed all the socket allocation |
| * altogether: it's in the inode now. |
| * Alan Cox : Made sock_alloc()/sock_release() public |
| * for NetROM and future kernel nfsd type |
| * stuff. |
| * Alan Cox : sendmsg/recvmsg basics. |
| * Tom Dyas : Export net symbols. |
| * Marcin Dalecki : Fixed problems with CONFIG_NET="n". |
| * Alan Cox : Added thread locking to sys_* calls |
| * for sockets. May have errors at the |
| * moment. |
| * Kevin Buhr : Fixed the dumb errors in the above. |
| * Andi Kleen : Some small cleanups, optimizations, |
| * and fixed a copy_from_user() bug. |
| * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) |
| * Tigran Aivazian : Made listen(2) backlog sanity checks |
| * protocol-independent |
| * |
| * This module is effectively the top level interface to the BSD socket |
| * paradigm. |
| * |
| * Based upon Swansea University Computer Society NET3.039 |
| */ |
| |
| #include <linux/bpf-cgroup.h> |
| #include <linux/ethtool.h> |
| #include <linux/mm.h> |
| #include <linux/socket.h> |
| #include <linux/file.h> |
| #include <linux/splice.h> |
| #include <linux/net.h> |
| #include <linux/interrupt.h> |
| #include <linux/thread_info.h> |
| #include <linux/rcupdate.h> |
| #include <linux/netdevice.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/mutex.h> |
| #include <linux/if_bridge.h> |
| #include <linux/if_vlan.h> |
| #include <linux/ptp_classify.h> |
| #include <linux/init.h> |
| #include <linux/poll.h> |
| #include <linux/cache.h> |
| #include <linux/module.h> |
| #include <linux/highmem.h> |
| #include <linux/mount.h> |
| #include <linux/pseudo_fs.h> |
| #include <linux/security.h> |
| #include <linux/syscalls.h> |
| #include <linux/compat.h> |
| #include <linux/kmod.h> |
| #include <linux/audit.h> |
| #include <linux/wireless.h> |
| #include <linux/nsproxy.h> |
| #include <linux/magic.h> |
| #include <linux/slab.h> |
| #include <linux/xattr.h> |
| #include <linux/nospec.h> |
| #include <linux/indirect_call_wrapper.h> |
| #include <linux/io_uring/net.h> |
| |
| #include <linux/uaccess.h> |
| #include <asm/unistd.h> |
| |
| #include <net/compat.h> |
| #include <net/wext.h> |
| #include <net/cls_cgroup.h> |
| |
| #include <net/sock.h> |
| #include <linux/netfilter.h> |
| |
| #include <linux/if_tun.h> |
| #include <linux/ipv6_route.h> |
| #include <linux/route.h> |
| #include <linux/termios.h> |
| #include <linux/sockios.h> |
| #include <net/busy_poll.h> |
| #include <linux/errqueue.h> |
| #include <linux/ptp_clock_kernel.h> |
| #include <trace/events/sock.h> |
| |
| #ifdef CONFIG_NET_RX_BUSY_POLL |
| unsigned int sysctl_net_busy_read __read_mostly; |
| unsigned int sysctl_net_busy_poll __read_mostly; |
| #endif |
| |
| static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); |
| static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); |
| static int sock_mmap(struct file *file, struct vm_area_struct *vma); |
| |
| static int sock_close(struct inode *inode, struct file *file); |
| static __poll_t sock_poll(struct file *file, |
| struct poll_table_struct *wait); |
| static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); |
| #ifdef CONFIG_COMPAT |
| static long compat_sock_ioctl(struct file *file, |
| unsigned int cmd, unsigned long arg); |
| #endif |
| static int sock_fasync(int fd, struct file *filp, int on); |
| static ssize_t sock_splice_read(struct file *file, loff_t *ppos, |
| struct pipe_inode_info *pipe, size_t len, |
| unsigned int flags); |
| static void sock_splice_eof(struct file *file); |
| |
| #ifdef CONFIG_PROC_FS |
| static void sock_show_fdinfo(struct seq_file *m, struct file *f) |
| { |
| struct socket *sock = f->private_data; |
| const struct proto_ops *ops = READ_ONCE(sock->ops); |
| |
| if (ops->show_fdinfo) |
| ops->show_fdinfo(m, sock); |
| } |
| #else |
| #define sock_show_fdinfo NULL |
| #endif |
| |
| /* |
| * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear |
| * in the operation structures but are done directly via the socketcall() multiplexor. |
| */ |
| |
| static const struct file_operations socket_file_ops = { |
| .owner = THIS_MODULE, |
| .read_iter = sock_read_iter, |
| .write_iter = sock_write_iter, |
| .poll = sock_poll, |
| .unlocked_ioctl = sock_ioctl, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = compat_sock_ioctl, |
| #endif |
| .uring_cmd = io_uring_cmd_sock, |
| .mmap = sock_mmap, |
| .release = sock_close, |
| .fasync = sock_fasync, |
| .splice_write = splice_to_socket, |
| .splice_read = sock_splice_read, |
| .splice_eof = sock_splice_eof, |
| .show_fdinfo = sock_show_fdinfo, |
| }; |
| |
| static const char * const pf_family_names[] = { |
| [PF_UNSPEC] = "PF_UNSPEC", |
| [PF_UNIX] = "PF_UNIX/PF_LOCAL", |
| [PF_INET] = "PF_INET", |
| [PF_AX25] = "PF_AX25", |
| [PF_IPX] = "PF_IPX", |
| [PF_APPLETALK] = "PF_APPLETALK", |
| [PF_NETROM] = "PF_NETROM", |
| [PF_BRIDGE] = "PF_BRIDGE", |
| [PF_ATMPVC] = "PF_ATMPVC", |
| [PF_X25] = "PF_X25", |
| [PF_INET6] = "PF_INET6", |
| [PF_ROSE] = "PF_ROSE", |
| [PF_DECnet] = "PF_DECnet", |
| [PF_NETBEUI] = "PF_NETBEUI", |
| [PF_SECURITY] = "PF_SECURITY", |
| [PF_KEY] = "PF_KEY", |
| [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", |
| [PF_PACKET] = "PF_PACKET", |
| [PF_ASH] = "PF_ASH", |
| [PF_ECONET] = "PF_ECONET", |
| [PF_ATMSVC] = "PF_ATMSVC", |
| [PF_RDS] = "PF_RDS", |
| [PF_SNA] = "PF_SNA", |
| [PF_IRDA] = "PF_IRDA", |
| [PF_PPPOX] = "PF_PPPOX", |
| [PF_WANPIPE] = "PF_WANPIPE", |
| [PF_LLC] = "PF_LLC", |
| [PF_IB] = "PF_IB", |
| [PF_MPLS] = "PF_MPLS", |
| [PF_CAN] = "PF_CAN", |
| [PF_TIPC] = "PF_TIPC", |
| [PF_BLUETOOTH] = "PF_BLUETOOTH", |
| [PF_IUCV] = "PF_IUCV", |
| [PF_RXRPC] = "PF_RXRPC", |
| [PF_ISDN] = "PF_ISDN", |
| [PF_PHONET] = "PF_PHONET", |
| [PF_IEEE802154] = "PF_IEEE802154", |
| [PF_CAIF] = "PF_CAIF", |
| [PF_ALG] = "PF_ALG", |
| [PF_NFC] = "PF_NFC", |
| [PF_VSOCK] = "PF_VSOCK", |
| [PF_KCM] = "PF_KCM", |
| [PF_QIPCRTR] = "PF_QIPCRTR", |
| [PF_SMC] = "PF_SMC", |
| [PF_XDP] = "PF_XDP", |
| [PF_MCTP] = "PF_MCTP", |
| }; |
| |
| /* |
| * The protocol list. Each protocol is registered in here. |
| */ |
| |
| static DEFINE_SPINLOCK(net_family_lock); |
| static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; |
| |
| /* |
| * Support routines. |
| * Move socket addresses back and forth across the kernel/user |
| * divide and look after the messy bits. |
| */ |
| |
| /** |
| * move_addr_to_kernel - copy a socket address into kernel space |
| * @uaddr: Address in user space |
| * @kaddr: Address in kernel space |
| * @ulen: Length in user space |
| * |
| * The address is copied into kernel space. If the provided address is |
| * too long an error code of -EINVAL is returned. If the copy gives |
| * invalid addresses -EFAULT is returned. On a success 0 is returned. |
| */ |
| |
| int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) |
| { |
| if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) |
| return -EINVAL; |
| if (ulen == 0) |
| return 0; |
| if (copy_from_user(kaddr, uaddr, ulen)) |
| return -EFAULT; |
| return audit_sockaddr(ulen, kaddr); |
| } |
| |
| /** |
| * move_addr_to_user - copy an address to user space |
| * @kaddr: kernel space address |
| * @klen: length of address in kernel |
| * @uaddr: user space address |
| * @ulen: pointer to user length field |
| * |
| * The value pointed to by ulen on entry is the buffer length available. |
| * This is overwritten with the buffer space used. -EINVAL is returned |
| * if an overlong buffer is specified or a negative buffer size. -EFAULT |
| * is returned if either the buffer or the length field are not |
| * accessible. |
| * After copying the data up to the limit the user specifies, the true |
| * length of the data is written over the length limit the user |
| * specified. Zero is returned for a success. |
| */ |
| |
| static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, |
| void __user *uaddr, int __user *ulen) |
| { |
| int err; |
| int len; |
| |
| BUG_ON(klen > sizeof(struct sockaddr_storage)); |
| err = get_user(len, ulen); |
| if (err) |
| return err; |
| if (len > klen) |
| len = klen; |
| if (len < 0) |
| return -EINVAL; |
| if (len) { |
| if (audit_sockaddr(klen, kaddr)) |
| return -ENOMEM; |
| if (copy_to_user(uaddr, kaddr, len)) |
| return -EFAULT; |
| } |
| /* |
| * "fromlen shall refer to the value before truncation.." |
| * 1003.1g |
| */ |
| return __put_user(klen, ulen); |
| } |
| |
| static struct kmem_cache *sock_inode_cachep __ro_after_init; |
| |
| static struct inode *sock_alloc_inode(struct super_block *sb) |
| { |
| struct socket_alloc *ei; |
| |
| ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); |
| if (!ei) |
| return NULL; |
| init_waitqueue_head(&ei->socket.wq.wait); |
| ei->socket.wq.fasync_list = NULL; |
| ei->socket.wq.flags = 0; |
| |
| ei->socket.state = SS_UNCONNECTED; |
| ei->socket.flags = 0; |
| ei->socket.ops = NULL; |
| ei->socket.sk = NULL; |
| ei->socket.file = NULL; |
| |
| return &ei->vfs_inode; |
| } |
| |
| static void sock_free_inode(struct inode *inode) |
| { |
| struct socket_alloc *ei; |
| |
| ei = container_of(inode, struct socket_alloc, vfs_inode); |
| kmem_cache_free(sock_inode_cachep, ei); |
| } |
| |
| static void init_once(void *foo) |
| { |
| struct socket_alloc *ei = (struct socket_alloc *)foo; |
| |
| inode_init_once(&ei->vfs_inode); |
| } |
| |
| static void init_inodecache(void) |
| { |
| sock_inode_cachep = kmem_cache_create("sock_inode_cache", |
| sizeof(struct socket_alloc), |
| 0, |
| (SLAB_HWCACHE_ALIGN | |
| SLAB_RECLAIM_ACCOUNT | |
| SLAB_ACCOUNT), |
| init_once); |
| BUG_ON(sock_inode_cachep == NULL); |
| } |
| |
| static const struct super_operations sockfs_ops = { |
| .alloc_inode = sock_alloc_inode, |
| .free_inode = sock_free_inode, |
| .statfs = simple_statfs, |
| }; |
| |
| /* |
| * sockfs_dname() is called from d_path(). |
| */ |
| static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) |
| { |
| return dynamic_dname(buffer, buflen, "socket:[%lu]", |
| d_inode(dentry)->i_ino); |
| } |
| |
| static const struct dentry_operations sockfs_dentry_operations = { |
| .d_dname = sockfs_dname, |
| }; |
| |
| static int sockfs_xattr_get(const struct xattr_handler *handler, |
| struct dentry *dentry, struct inode *inode, |
| const char *suffix, void *value, size_t size) |
| { |
| if (value) { |
| if (dentry->d_name.len + 1 > size) |
| return -ERANGE; |
| memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); |
| } |
| return dentry->d_name.len + 1; |
| } |
| |
| #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" |
| #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) |
| #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) |
| |
| static const struct xattr_handler sockfs_xattr_handler = { |
| .name = XATTR_NAME_SOCKPROTONAME, |
| .get = sockfs_xattr_get, |
| }; |
| |
| static int sockfs_security_xattr_set(const struct xattr_handler *handler, |
| struct mnt_idmap *idmap, |
| struct dentry *dentry, struct inode *inode, |
| const char *suffix, const void *value, |
| size_t size, int flags) |
| { |
| /* Handled by LSM. */ |
| return -EAGAIN; |
| } |
| |
| static const struct xattr_handler sockfs_security_xattr_handler = { |
| .prefix = XATTR_SECURITY_PREFIX, |
| .set = sockfs_security_xattr_set, |
| }; |
| |
| static const struct xattr_handler * const sockfs_xattr_handlers[] = { |
| &sockfs_xattr_handler, |
| &sockfs_security_xattr_handler, |
| NULL |
| }; |
| |
| static int sockfs_init_fs_context(struct fs_context *fc) |
| { |
| struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); |
| if (!ctx) |
| return -ENOMEM; |
| ctx->ops = &sockfs_ops; |
| ctx->dops = &sockfs_dentry_operations; |
| ctx->xattr = sockfs_xattr_handlers; |
| return 0; |
| } |
| |
| static struct vfsmount *sock_mnt __read_mostly; |
| |
| static struct file_system_type sock_fs_type = { |
| .name = "sockfs", |
| .init_fs_context = sockfs_init_fs_context, |
| .kill_sb = kill_anon_super, |
| }; |
| |
| /* |
| * Obtains the first available file descriptor and sets it up for use. |
| * |
| * These functions create file structures and maps them to fd space |
| * of the current process. On success it returns file descriptor |
| * and file struct implicitly stored in sock->file. |
| * Note that another thread may close file descriptor before we return |
| * from this function. We use the fact that now we do not refer |
| * to socket after mapping. If one day we will need it, this |
| * function will increment ref. count on file by 1. |
| * |
| * In any case returned fd MAY BE not valid! |
| * This race condition is unavoidable |
| * with shared fd spaces, we cannot solve it inside kernel, |
| * but we take care of internal coherence yet. |
| */ |
| |
| /** |
| * sock_alloc_file - Bind a &socket to a &file |
| * @sock: socket |
| * @flags: file status flags |
| * @dname: protocol name |
| * |
| * Returns the &file bound with @sock, implicitly storing it |
| * in sock->file. If dname is %NULL, sets to "". |
| * |
| * On failure @sock is released, and an ERR pointer is returned. |
| * |
| * This function uses GFP_KERNEL internally. |
| */ |
| |
| struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) |
| { |
| struct file *file; |
| |
| if (!dname) |
| dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; |
| |
| file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, |
| O_RDWR | (flags & O_NONBLOCK), |
| &socket_file_ops); |
| if (IS_ERR(file)) { |
| sock_release(sock); |
| return file; |
| } |
| |
| file->f_mode |= FMODE_NOWAIT; |
| sock->file = file; |
| file->private_data = sock; |
| stream_open(SOCK_INODE(sock), file); |
| return file; |
| } |
| EXPORT_SYMBOL(sock_alloc_file); |
| |
| static int sock_map_fd(struct socket *sock, int flags) |
| { |
| struct file *newfile; |
| int fd = get_unused_fd_flags(flags); |
| if (unlikely(fd < 0)) { |
| sock_release(sock); |
| return fd; |
| } |
| |
| newfile = sock_alloc_file(sock, flags, NULL); |
| if (!IS_ERR(newfile)) { |
| fd_install(fd, newfile); |
| return fd; |
| } |
| |
| put_unused_fd(fd); |
| return PTR_ERR(newfile); |
| } |
| |
| /** |
| * sock_from_file - Return the &socket bounded to @file. |
| * @file: file |
| * |
| * On failure returns %NULL. |
| */ |
| |
| struct socket *sock_from_file(struct file *file) |
| { |
| if (likely(file->f_op == &socket_file_ops)) |
| return file->private_data; /* set in sock_alloc_file */ |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL(sock_from_file); |
| |
| /** |
| * sockfd_lookup - Go from a file number to its socket slot |
| * @fd: file handle |
| * @err: pointer to an error code return |
| * |
| * The file handle passed in is locked and the socket it is bound |
| * to is returned. If an error occurs the err pointer is overwritten |
| * with a negative errno code and NULL is returned. The function checks |
| * for both invalid handles and passing a handle which is not a socket. |
| * |
| * On a success the socket object pointer is returned. |
| */ |
| |
| struct socket *sockfd_lookup(int fd, int *err) |
| { |
| struct file *file; |
| struct socket *sock; |
| |
| file = fget(fd); |
| if (!file) { |
| *err = -EBADF; |
| return NULL; |
| } |
| |
| sock = sock_from_file(file); |
| if (!sock) { |
| *err = -ENOTSOCK; |
| fput(file); |
| } |
| return sock; |
| } |
| EXPORT_SYMBOL(sockfd_lookup); |
| |
| static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, |
| size_t size) |
| { |
| ssize_t len; |
| ssize_t used = 0; |
| |
| len = security_inode_listsecurity(d_inode(dentry), buffer, size); |
| if (len < 0) |
| return len; |
| used += len; |
| if (buffer) { |
| if (size < used) |
| return -ERANGE; |
| buffer += len; |
| } |
| |
| len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); |
| used += len; |
| if (buffer) { |
| if (size < used) |
| return -ERANGE; |
| memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); |
| buffer += len; |
| } |
| |
| return used; |
| } |
| |
| static int sockfs_setattr(struct mnt_idmap *idmap, |
| struct dentry *dentry, struct iattr *iattr) |
| { |
| int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); |
| |
| if (!err && (iattr->ia_valid & ATTR_UID)) { |
| struct socket *sock = SOCKET_I(d_inode(dentry)); |
| |
| if (sock->sk) |
| sock->sk->sk_uid = iattr->ia_uid; |
| else |
| err = -ENOENT; |
| } |
| |
| return err; |
| } |
| |
| static const struct inode_operations sockfs_inode_ops = { |
| .listxattr = sockfs_listxattr, |
| .setattr = sockfs_setattr, |
| }; |
| |
| /** |
| * sock_alloc - allocate a socket |
| * |
| * Allocate a new inode and socket object. The two are bound together |
| * and initialised. The socket is then returned. If we are out of inodes |
| * NULL is returned. This functions uses GFP_KERNEL internally. |
| */ |
| |
| struct socket *sock_alloc(void) |
| { |
| struct inode *inode; |
| struct socket *sock; |
| |
| inode = new_inode_pseudo(sock_mnt->mnt_sb); |
| if (!inode) |
| return NULL; |
| |
| sock = SOCKET_I(inode); |
| |
| inode->i_ino = get_next_ino(); |
| inode->i_mode = S_IFSOCK | S_IRWXUGO; |
| inode->i_uid = current_fsuid(); |
| inode->i_gid = current_fsgid(); |
| inode->i_op = &sockfs_inode_ops; |
| |
| return sock; |
| } |
| EXPORT_SYMBOL(sock_alloc); |
| |
| static void __sock_release(struct socket *sock, struct inode *inode) |
| { |
| const struct proto_ops *ops = READ_ONCE(sock->ops); |
| |
| if (ops) { |
| struct module *owner = ops->owner; |
| |
| if (inode) |
| inode_lock(inode); |
| ops->release(sock); |
| sock->sk = NULL; |
| if (inode) |
| inode_unlock(inode); |
| sock->ops = NULL; |
| module_put(owner); |
| } |
| |
| if (sock->wq.fasync_list) |
| pr_err("%s: fasync list not empty!\n", __func__); |
| |
| if (!sock->file) { |
| iput(SOCK_INODE(sock)); |
| return; |
| } |
| sock->file = NULL; |
| } |
| |
| /** |
| * sock_release - close a socket |
| * @sock: socket to close |
| * |
| * The socket is released from the protocol stack if it has a release |
| * callback, and the inode is then released if the socket is bound to |
| * an inode not a file. |
| */ |
| void sock_release(struct socket *sock) |
| { |
| __sock_release(sock, NULL); |
| } |
| EXPORT_SYMBOL(sock_release); |
| |
| void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags) |
| { |
| u8 flags = *tx_flags; |
| |
| if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) { |
| flags |= SKBTX_HW_TSTAMP; |
| |
| /* PTP hardware clocks can provide a free running cycle counter |
| * as a time base for virtual clocks. Tell driver to use the |
| * free running cycle counter for timestamp if socket is bound |
| * to virtual clock. |
| */ |
| if (tsflags & SOF_TIMESTAMPING_BIND_PHC) |
| flags |= SKBTX_HW_TSTAMP_USE_CYCLES; |
| } |
| |
| if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) |
| flags |= SKBTX_SW_TSTAMP; |
| |
| if (tsflags & SOF_TIMESTAMPING_TX_SCHED) |
| flags |= SKBTX_SCHED_TSTAMP; |
| |
| *tx_flags = flags; |
| } |
| EXPORT_SYMBOL(__sock_tx_timestamp); |
| |
| INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, |
| size_t)); |
| INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, |
| size_t)); |
| |
| static noinline void call_trace_sock_send_length(struct sock *sk, int ret, |
| int flags) |
| { |
| trace_sock_send_length(sk, ret, 0); |
| } |
| |
| static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) |
| { |
| int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg, |
| inet_sendmsg, sock, msg, |
| msg_data_left(msg)); |
| BUG_ON(ret == -EIOCBQUEUED); |
| |
| if (trace_sock_send_length_enabled()) |
| call_trace_sock_send_length(sock->sk, ret, 0); |
| return ret; |
| } |
| |
| static int __sock_sendmsg(struct socket *sock, struct msghdr *msg) |
| { |
| int err = security_socket_sendmsg(sock, msg, |
| msg_data_left(msg)); |
| |
| return err ?: sock_sendmsg_nosec(sock, msg); |
| } |
| |
| /** |
| * sock_sendmsg - send a message through @sock |
| * @sock: socket |
| * @msg: message to send |
| * |
| * Sends @msg through @sock, passing through LSM. |
| * Returns the number of bytes sent, or an error code. |
| */ |
| int sock_sendmsg(struct socket *sock, struct msghdr *msg) |
| { |
| struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name; |
| struct sockaddr_storage address; |
| int save_len = msg->msg_namelen; |
| int ret; |
| |
| if (msg->msg_name) { |
| memcpy(&address, msg->msg_name, msg->msg_namelen); |
| msg->msg_name = &address; |
| } |
| |
| ret = __sock_sendmsg(sock, msg); |
| msg->msg_name = save_addr; |
| msg->msg_namelen = save_len; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(sock_sendmsg); |
| |
| /** |
| * kernel_sendmsg - send a message through @sock (kernel-space) |
| * @sock: socket |
| * @msg: message header |
| * @vec: kernel vec |
| * @num: vec array length |
| * @size: total message data size |
| * |
| * Builds the message data with @vec and sends it through @sock. |
| * Returns the number of bytes sent, or an error code. |
| */ |
| |
| int kernel_sendmsg(struct socket *sock, struct msghdr *msg, |
| struct kvec *vec, size_t num, size_t size) |
| { |
| iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); |
| return sock_sendmsg(sock, msg); |
| } |
| EXPORT_SYMBOL(kernel_sendmsg); |
| |
| /** |
| * kernel_sendmsg_locked - send a message through @sock (kernel-space) |
| * @sk: sock |
| * @msg: message header |
| * @vec: output s/g array |
| * @num: output s/g array length |
| * @size: total message data size |
| * |
| * Builds the message data with @vec and sends it through @sock. |
| * Returns the number of bytes sent, or an error code. |
| * Caller must hold @sk. |
| */ |
| |
| int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, |
| struct kvec *vec, size_t num, size_t size) |
| { |
| struct socket *sock = sk->sk_socket; |
| const struct proto_ops *ops = READ_ONCE(sock->ops); |
| |
| if (!ops->sendmsg_locked) |
| return sock_no_sendmsg_locked(sk, msg, size); |
| |
| iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); |
| |
| return ops->sendmsg_locked(sk, msg, msg_data_left(msg)); |
| } |
| EXPORT_SYMBOL(kernel_sendmsg_locked); |
| |
| static bool skb_is_err_queue(const struct sk_buff *skb) |
| { |
| /* pkt_type of skbs enqueued on the error queue are set to |
| * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do |
| * in recvmsg, since skbs received on a local socket will never |
| * have a pkt_type of PACKET_OUTGOING. |
| */ |
| return skb->pkt_type == PACKET_OUTGOING; |
| } |
| |
| /* On transmit, software and hardware timestamps are returned independently. |
| * As the two skb clones share the hardware timestamp, which may be updated |
| * before the software timestamp is received, a hardware TX timestamp may be |
| * returned only if there is no software TX timestamp. Ignore false software |
| * timestamps, which may be made in the __sock_recv_timestamp() call when the |
| * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a |
| * hardware timestamp. |
| */ |
| static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) |
| { |
| return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); |
| } |
| |
| static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) |
| { |
| bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC; |
| struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); |
| struct net_device *orig_dev; |
| ktime_t hwtstamp; |
| |
| rcu_read_lock(); |
| orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); |
| if (orig_dev) { |
| *if_index = orig_dev->ifindex; |
| hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); |
| } else { |
| hwtstamp = shhwtstamps->hwtstamp; |
| } |
| rcu_read_unlock(); |
| |
| return hwtstamp; |
| } |
| |
| static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, |
| int if_index) |
| { |
| struct scm_ts_pktinfo ts_pktinfo; |
| struct net_device *orig_dev; |
| |
| if (!skb_mac_header_was_set(skb)) |
| return; |
| |
| memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); |
| |
| if (!if_index) { |
| rcu_read_lock(); |
| orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); |
| if (orig_dev) |
| if_index = orig_dev->ifindex; |
| rcu_read_unlock(); |
| } |
| ts_pktinfo.if_index = if_index; |
| |
| ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); |
| put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, |
| sizeof(ts_pktinfo), &ts_pktinfo); |
| } |
| |
| /* |
| * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) |
| */ |
| void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, |
| struct sk_buff *skb) |
| { |
| int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); |
| int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); |
| struct scm_timestamping_internal tss; |
| int empty = 1, false_tstamp = 0; |
| struct skb_shared_hwtstamps *shhwtstamps = |
| skb_hwtstamps(skb); |
| int if_index; |
| ktime_t hwtstamp; |
| u32 tsflags; |
| |
| /* Race occurred between timestamp enabling and packet |
| receiving. Fill in the current time for now. */ |
| if (need_software_tstamp && skb->tstamp == 0) { |
| __net_timestamp(skb); |
| false_tstamp = 1; |
| } |
| |
| if (need_software_tstamp) { |
| if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { |
| if (new_tstamp) { |
| struct __kernel_sock_timeval tv; |
| |
| skb_get_new_timestamp(skb, &tv); |
| put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, |
| sizeof(tv), &tv); |
| } else { |
| struct __kernel_old_timeval tv; |
| |
| skb_get_timestamp(skb, &tv); |
| put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, |
| sizeof(tv), &tv); |
| } |
| } else { |
| if (new_tstamp) { |
| struct __kernel_timespec ts; |
| |
| skb_get_new_timestampns(skb, &ts); |
| put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, |
| sizeof(ts), &ts); |
| } else { |
| struct __kernel_old_timespec ts; |
| |
| skb_get_timestampns(skb, &ts); |
| put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, |
| sizeof(ts), &ts); |
| } |
| } |
| } |
| |
| memset(&tss, 0, sizeof(tss)); |
| tsflags = READ_ONCE(sk->sk_tsflags); |
| if ((tsflags & SOF_TIMESTAMPING_SOFTWARE && |
| (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || |
| skb_is_err_queue(skb) || |
| !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && |
| ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) |
| empty = 0; |
| if (shhwtstamps && |
| (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && |
| (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || |
| skb_is_err_queue(skb) || |
| !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && |
| !skb_is_swtx_tstamp(skb, false_tstamp)) { |
| if_index = 0; |
| if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) |
| hwtstamp = get_timestamp(sk, skb, &if_index); |
| else |
| hwtstamp = shhwtstamps->hwtstamp; |
| |
| if (tsflags & SOF_TIMESTAMPING_BIND_PHC) |
| hwtstamp = ptp_convert_timestamp(&hwtstamp, |
| READ_ONCE(sk->sk_bind_phc)); |
| |
| if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { |
| empty = 0; |
| |
| if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && |
| !skb_is_err_queue(skb)) |
| put_ts_pktinfo(msg, skb, if_index); |
| } |
| } |
| if (!empty) { |
| if (sock_flag(sk, SOCK_TSTAMP_NEW)) |
| put_cmsg_scm_timestamping64(msg, &tss); |
| else |
| put_cmsg_scm_timestamping(msg, &tss); |
| |
| if (skb_is_err_queue(skb) && skb->len && |
| SKB_EXT_ERR(skb)->opt_stats) |
| put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, |
| skb->len, skb->data); |
| } |
| } |
| EXPORT_SYMBOL_GPL(__sock_recv_timestamp); |
| |
| #ifdef CONFIG_WIRELESS |
| void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, |
| struct sk_buff *skb) |
| { |
| int ack; |
| |
| if (!sock_flag(sk, SOCK_WIFI_STATUS)) |
| return; |
| if (!skb->wifi_acked_valid) |
| return; |
| |
| ack = skb->wifi_acked; |
| |
| put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); |
| } |
| EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); |
| #endif |
| |
| static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, |
| struct sk_buff *skb) |
| { |
| if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) |
| put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, |
| sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); |
| } |
| |
| static void sock_recv_mark(struct msghdr *msg, struct sock *sk, |
| struct sk_buff *skb) |
| { |
| if (sock_flag(sk, SOCK_RCVMARK) && skb) { |
| /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ |
| __u32 mark = skb->mark; |
| |
| put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); |
| } |
| } |
| |
| void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, |
| struct sk_buff *skb) |
| { |
| sock_recv_timestamp(msg, sk, skb); |
| sock_recv_drops(msg, sk, skb); |
| sock_recv_mark(msg, sk, skb); |
| } |
| EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); |
| |
| INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, |
| size_t, int)); |
| INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, |
| size_t, int)); |
| |
| static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) |
| { |
| trace_sock_recv_length(sk, ret, flags); |
| } |
| |
| static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, |
| int flags) |
| { |
| int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg, |
| inet6_recvmsg, |
| inet_recvmsg, sock, msg, |
| msg_data_left(msg), flags); |
| if (trace_sock_recv_length_enabled()) |
| call_trace_sock_recv_length(sock->sk, ret, flags); |
| return ret; |
| } |
| |
| /** |
| * sock_recvmsg - receive a message from @sock |
| * @sock: socket |
| * @msg: message to receive |
| * @flags: message flags |
| * |
| * Receives @msg from @sock, passing through LSM. Returns the total number |
| * of bytes received, or an error. |
| */ |
| int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) |
| { |
| int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); |
| |
| return err ?: sock_recvmsg_nosec(sock, msg, flags); |
| } |
| EXPORT_SYMBOL(sock_recvmsg); |
| |
| /** |
| * kernel_recvmsg - Receive a message from a socket (kernel space) |
| * @sock: The socket to receive the message from |
| * @msg: Received message |
| * @vec: Input s/g array for message data |
| * @num: Size of input s/g array |
| * @size: Number of bytes to read |
| * @flags: Message flags (MSG_DONTWAIT, etc...) |
| * |
| * On return the msg structure contains the scatter/gather array passed in the |
| * vec argument. The array is modified so that it consists of the unfilled |
| * portion of the original array. |
| * |
| * The returned value is the total number of bytes received, or an error. |
| */ |
| |
| int kernel_recvmsg(struct socket *sock, struct msghdr *msg, |
| struct kvec *vec, size_t num, size_t size, int flags) |
| { |
| msg->msg_control_is_user = false; |
| iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); |
| return sock_recvmsg(sock, msg, flags); |
| } |
| EXPORT_SYMBOL(kernel_recvmsg); |
| |
| static ssize_t sock_splice_read(struct file *file, loff_t *ppos, |
| struct pipe_inode_info *pipe, size_t len, |
| unsigned int flags) |
| { |
| struct socket *sock = file->private_data; |
| const struct proto_ops *ops; |
| |
| ops = READ_ONCE(sock->ops); |
| if (unlikely(!ops->splice_read)) |
| return copy_splice_read(file, ppos, pipe, len, flags); |
| |
| return ops->splice_read(sock, ppos, pipe, len, flags); |
| } |
| |
| static void sock_splice_eof(struct file *file) |
| { |
| struct socket *sock = file->private_data; |
| const struct proto_ops *ops; |
| |
| ops = READ_ONCE(sock->ops); |
| if (ops->splice_eof) |
| ops->splice_eof(sock); |
| } |
| |
| static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) |
| { |
| struct file *file = iocb->ki_filp; |
| struct socket *sock = file->private_data; |
| struct msghdr msg = {.msg_iter = *to, |
| .msg_iocb = iocb}; |
| ssize_t res; |
| |
| if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) |
| msg.msg_flags = MSG_DONTWAIT; |
| |
| if (iocb->ki_pos != 0) |
| return -ESPIPE; |
| |
| if (!iov_iter_count(to)) /* Match SYS5 behaviour */ |
| return 0; |
| |
| res = sock_recvmsg(sock, &msg, msg.msg_flags); |
| *to = msg.msg_iter; |
| return res; |
| } |
| |
| static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) |
| { |
| struct file *file = iocb->ki_filp; |
| struct socket *sock = file->private_data; |
| struct msghdr msg = {.msg_iter = *from, |
| .msg_iocb = iocb}; |
| ssize_t res; |
| |
| if (iocb->ki_pos != 0) |
| return -ESPIPE; |
| |
| if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) |
| msg.msg_flags = MSG_DONTWAIT; |
| |
| if (sock->type == SOCK_SEQPACKET) |
| msg.msg_flags |= MSG_EOR; |
| |
| res = __sock_sendmsg(sock, &msg); |
| *from = msg.msg_iter; |
| return res; |
| } |
| |
| /* |
| * Atomic setting of ioctl hooks to avoid race |
| * with module unload. |
| */ |
| |
| static DEFINE_MUTEX(br_ioctl_mutex); |
| static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, |
| unsigned int cmd, struct ifreq *ifr, |
| void __user *uarg); |
| |
| void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, |
| unsigned int cmd, struct ifreq *ifr, |
| void __user *uarg)) |
| { |
| mutex_lock(&br_ioctl_mutex); |
| br_ioctl_hook = hook; |
| mutex_unlock(&br_ioctl_mutex); |
| } |
| EXPORT_SYMBOL(brioctl_set); |
| |
| int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, |
| struct ifreq *ifr, void __user *uarg) |
| { |
| int err = -ENOPKG; |
| |
| if (!br_ioctl_hook) |
| request_module("bridge"); |
| |
| mutex_lock(&br_ioctl_mutex); |
| if (br_ioctl_hook) |
| err = br_ioctl_hook(net, br, cmd, ifr, uarg); |
| mutex_unlock(&br_ioctl_mutex); |
| |
| return err; |
| } |
| |
| static DEFINE_MUTEX(vlan_ioctl_mutex); |
| static int (*vlan_ioctl_hook) (struct net *, void __user *arg); |
| |
| void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) |
| { |
| mutex_lock(&vlan_ioctl_mutex); |
| vlan_ioctl_hook = hook; |
| mutex_unlock(&vlan_ioctl_mutex); |
| } |
| EXPORT_SYMBOL(vlan_ioctl_set); |
| |
| static long sock_do_ioctl(struct net *net, struct socket *sock, |
| unsigned int cmd, unsigned long arg) |
| { |
| const struct proto_ops *ops = READ_ONCE(sock->ops); |
| struct ifreq ifr; |
| bool need_copyout; |
| int err; |
| void __user *argp = (void __user *)arg; |
| void __user *data; |
| |
| err = ops->ioctl(sock, cmd, arg); |
| |
| /* |
| * If this ioctl is unknown try to hand it down |
| * to the NIC driver. |
| */ |
| if (err != -ENOIOCTLCMD) |
| return err; |
| |
| if (!is_socket_ioctl_cmd(cmd)) |
| return -ENOTTY; |
| |
| if (get_user_ifreq(&ifr, &data, argp)) |
| return -EFAULT; |
| err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); |
| if (!err && need_copyout) |
| if (put_user_ifreq(&ifr, argp)) |
| return -EFAULT; |
| |
| return err; |
| } |
| |
| /* |
| * With an ioctl, arg may well be a user mode pointer, but we don't know |
| * what to do with it - that's up to the protocol still. |
| */ |
| |
| static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) |
| { |
| const struct proto_ops *ops; |
| struct socket *sock; |
| struct sock *sk; |
| void __user *argp = (void __user *)arg; |
| int pid, err; |
| struct net *net; |
| |
| sock = file->private_data; |
| ops = READ_ONCE(sock->ops); |
| sk = sock->sk; |
| net = sock_net(sk); |
| if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { |
| struct ifreq ifr; |
| void __user *data; |
| bool need_copyout; |
| if (get_user_ifreq(&ifr, &data, argp)) |
| return -EFAULT; |
| err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); |
| if (!err && need_copyout) |
| if (put_user_ifreq(&ifr, argp)) |
| return -EFAULT; |
| } else |
| #ifdef CONFIG_WEXT_CORE |
| if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { |
| err = wext_handle_ioctl(net, cmd, argp); |
| } else |
| #endif |
| switch (cmd) { |
| case FIOSETOWN: |
| case SIOCSPGRP: |
| err = -EFAULT; |
| if (get_user(pid, (int __user *)argp)) |
| break; |
| err = f_setown(sock->file, pid, 1); |
| break; |
| case FIOGETOWN: |
| case SIOCGPGRP: |
| err = put_user(f_getown(sock->file), |
| (int __user *)argp); |
| break; |
| case SIOCGIFBR: |
| case SIOCSIFBR: |
| case SIOCBRADDBR: |
| case SIOCBRDELBR: |
| err = br_ioctl_call(net, NULL, cmd, NULL, argp); |
| break; |
| case SIOCGIFVLAN: |
| case SIOCSIFVLAN: |
| err = -ENOPKG; |
| if (!vlan_ioctl_hook) |
| request_module("8021q"); |
| |
| mutex_lock(&vlan_ioctl_mutex); |
| if (vlan_ioctl_hook) |
| err = vlan_ioctl_hook(net, argp); |
| mutex_unlock(&vlan_ioctl_mutex); |
| break; |
| case SIOCGSKNS: |
| err = -EPERM; |
| if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) |
| break; |
| |
| err = open_related_ns(&net->ns, get_net_ns); |
| break; |
| case SIOCGSTAMP_OLD: |
| case SIOCGSTAMPNS_OLD: |
| if (!ops->gettstamp) { |
| err = -ENOIOCTLCMD; |
| break; |
| } |
| err = ops->gettstamp(sock, argp, |
| cmd == SIOCGSTAMP_OLD, |
| !IS_ENABLED(CONFIG_64BIT)); |
| break; |
| case SIOCGSTAMP_NEW: |
| case SIOCGSTAMPNS_NEW: |
| if (!ops->gettstamp) { |
| err = -ENOIOCTLCMD; |
| break; |
| } |
| err = ops->gettstamp(sock, argp, |
| cmd == SIOCGSTAMP_NEW, |
| false); |
| break; |
| |
| case SIOCGIFCONF: |
| err = dev_ifconf(net, argp); |
| break; |
| |
| default: |
| err = sock_do_ioctl(net, sock, cmd, arg); |
| break; |
| } |
| return err; |
| } |
| |
| /** |
| * sock_create_lite - creates a socket |
| * @family: protocol family (AF_INET, ...) |
| * @type: communication type (SOCK_STREAM, ...) |
| * @protocol: protocol (0, ...) |
| * @res: new socket |
| * |
| * Creates a new socket and assigns it to @res, passing through LSM. |
| * The new socket initialization is not complete, see kernel_accept(). |
| * Returns 0 or an error. On failure @res is set to %NULL. |
| * This function internally uses GFP_KERNEL. |
| */ |
| |
| int sock_create_lite(int family, int type, int protocol, struct socket **res) |
| { |
| int err; |
| struct socket *sock = NULL; |
| |
| err = security_socket_create(family, type, protocol, 1); |
| if (err) |
| goto out; |
| |
| sock = sock_alloc(); |
| if (!sock) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| sock->type = type; |
| err = security_socket_post_create(sock, family, type, protocol, 1); |
| if (err) |
| goto out_release; |
| |
| out: |
| *res = sock; |
| return err; |
| out_release: |
| sock_release(sock); |
| sock = NULL; |
| goto out; |
| } |
| EXPORT_SYMBOL(sock_create_lite); |
| |
| /* No kernel lock held - perfect */ |
| static __poll_t sock_poll(struct file *file, poll_table *wait) |
| { |
| struct socket *sock = file->private_data; |
| const struct proto_ops *ops = READ_ONCE(sock->ops); |
| __poll_t events = poll_requested_events(wait), flag = 0; |
| |
| if (!ops->poll) |
| return 0; |
| |
| if (sk_can_busy_loop(sock->sk)) { |
| /* poll once if requested by the syscall */ |
| if (events & POLL_BUSY_LOOP) |
| sk_busy_loop(sock->sk, 1); |
| |
| /* if this socket can poll_ll, tell the system call */ |
| flag = POLL_BUSY_LOOP; |
| } |
| |
| return ops->poll(file, sock, wait) | flag; |
| } |
| |
| static int sock_mmap(struct file *file, struct vm_area_struct *vma) |
| { |
| struct socket *sock = file->private_data; |
| |
| return READ_ONCE(sock->ops)->mmap(file, sock, vma); |
| } |
| |
| static int sock_close(struct inode *inode, struct file *filp) |
| { |
| __sock_release(SOCKET_I(inode), inode); |
| return 0; |
| } |
| |
| /* |
| * Update the socket async list |
| * |
| * Fasync_list locking strategy. |
| * |
| * 1. fasync_list is modified only under process context socket lock |
| * i.e. under semaphore. |
| * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) |
| * or under socket lock |
| */ |
| |
| static int sock_fasync(int fd, struct file *filp, int on) |
| { |
| struct socket *sock = filp->private_data; |
| struct sock *sk = sock->sk; |
| struct socket_wq *wq = &sock->wq; |
| |
| if (sk == NULL) |
| return -EINVAL; |
| |
| lock_sock(sk); |
| fasync_helper(fd, filp, on, &wq->fasync_list); |
| |
| if (!wq->fasync_list) |
| sock_reset_flag(sk, SOCK_FASYNC); |
| else |
| sock_set_flag(sk, SOCK_FASYNC); |
| |
| release_sock(sk); |
| return 0; |
| } |
| |
| /* This function may be called only under rcu_lock */ |
| |
| int sock_wake_async(struct socket_wq *wq, int how, int band) |
| { |
| if (!wq || !wq->fasync_list) |
| return -1; |
| |
| switch (how) { |
| case SOCK_WAKE_WAITD: |
| if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) |
| break; |
| goto call_kill; |
| case SOCK_WAKE_SPACE: |
| if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) |
| break; |
| fallthrough; |
| case SOCK_WAKE_IO: |
| call_kill: |
| kill_fasync(&wq->fasync_list, SIGIO, band); |
| break; |
| case SOCK_WAKE_URG: |
| kill_fasync(&wq->fasync_list, SIGURG, band); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(sock_wake_async); |
| |
| /** |
| * __sock_create - creates a socket |
| * @net: net namespace |
| * @family: protocol family (AF_INET, ...) |
| * @type: communication type (SOCK_STREAM, ...) |
| * @protocol: protocol (0, ...) |
| * @res: new socket |
| * @kern: boolean for kernel space sockets |
| * |
| * Creates a new socket and assigns it to @res, passing through LSM. |
| * Returns 0 or an error. On failure @res is set to %NULL. @kern must |
| * be set to true if the socket resides in kernel space. |
| * This function internally uses GFP_KERNEL. |
| */ |
| |
| int __sock_create(struct net *net, int family, int type, int protocol, |
| struct socket **res, int kern) |
| { |
| int err; |
| struct socket *sock; |
| const struct net_proto_family *pf; |
| |
| /* |
| * Check protocol is in range |
| */ |
| if (family < 0 || family >= NPROTO) |
| return -EAFNOSUPPORT; |
| if (type < 0 || type >= SOCK_MAX) |
| return -EINVAL; |
| |
| /* Compatibility. |
| |
| This uglymoron is moved from INET layer to here to avoid |
| deadlock in module load. |
| */ |
| if (family == PF_INET && type == SOCK_PACKET) { |
| pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", |
| current->comm); |
| family = PF_PACKET; |
| } |
| |
| err = security_socket_create(family, type, protocol, kern); |
| if (err) |
| return err; |
| |
| /* |
| * Allocate the socket and allow the family to set things up. if |
| * the protocol is 0, the family is instructed to select an appropriate |
| * default. |
| */ |
| sock = sock_alloc(); |
| if (!sock) { |
| net_warn_ratelimited("socket: no more sockets\n"); |
| return -ENFILE; /* Not exactly a match, but its the |
| closest posix thing */ |
| } |
| |
| sock->type = type; |
| |
| #ifdef CONFIG_MODULES |
| /* Attempt to load a protocol module if the find failed. |
| * |
| * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user |
| * requested real, full-featured networking support upon configuration. |
| * Otherwise module support will break! |
| */ |
| if (rcu_access_pointer(net_families[family]) == NULL) |
| request_module("net-pf-%d", family); |
| #endif |
| |
| rcu_read_lock(); |
| pf = rcu_dereference(net_families[family]); |
| err = -EAFNOSUPPORT; |
| if (!pf) |
| goto out_release; |
| |
| /* |
| * We will call the ->create function, that possibly is in a loadable |
| * module, so we have to bump that loadable module refcnt first. |
| */ |
| if (!try_module_get(pf->owner)) |
| goto out_release; |
| |
| /* Now protected by module ref count */ |
| rcu_read_unlock(); |
| |
| err = pf->create(net, sock, protocol, kern); |
| if (err < 0) { |
| /* ->create should release the allocated sock->sk object on error |
| * and make sure sock->sk is set to NULL to avoid use-after-free |
| */ |
| DEBUG_NET_WARN_ONCE(sock->sk, |
| "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n", |
| pf->create, family, type, protocol); |
| goto out_module_put; |
| } |
| |
| /* |
| * Now to bump the refcnt of the [loadable] module that owns this |
| * socket at sock_release time we decrement its refcnt. |
| */ |
| if (!try_module_get(sock->ops->owner)) |
| goto out_module_busy; |
| |
| /* |
| * Now that we're done with the ->create function, the [loadable] |
| * module can have its refcnt decremented |
| */ |
| module_put(pf->owner); |
| err = security_socket_post_create(sock, family, type, protocol, kern); |
| if (err) |
| goto out_sock_release; |
| *res = sock; |
| |
| return 0; |
| |
| out_module_busy: |
| err = -EAFNOSUPPORT; |
| out_module_put: |
| sock->ops = NULL; |
| module_put(pf->owner); |
| out_sock_release: |
| sock_release(sock); |
| return err; |
| |
| out_release: |
| rcu_read_unlock(); |
| goto out_sock_release; |
| } |
| EXPORT_SYMBOL(__sock_create); |
| |
| /** |
| * sock_create - creates a socket |
| * @family: protocol family (AF_INET, ...) |
| * @type: communication type (SOCK_STREAM, ...) |
| * @protocol: protocol (0, ...) |
| * @res: new socket |
| * |
| * A wrapper around __sock_create(). |
| * Returns 0 or an error. This function internally uses GFP_KERNEL. |
| */ |
| |
| int sock_create(int family, int type, int protocol, struct socket **res) |
| { |
| return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); |
| } |
| EXPORT_SYMBOL(sock_create); |
| |
| /** |
| * sock_create_kern - creates a socket (kernel space) |
| * @net: net namespace |
| * @family: protocol family (AF_INET, ...) |
| * @type: communication type (SOCK_STREAM, ...) |
| * @protocol: protocol (0, ...) |
| * @res: new socket |
| * |
| * A wrapper around __sock_create(). |
| * Returns 0 or an error. This function internally uses GFP_KERNEL. |
| */ |
| |
| int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) |
| { |
| return __sock_create(net, family, type, protocol, res, 1); |
| } |
| EXPORT_SYMBOL(sock_create_kern); |
| |
| static struct socket *__sys_socket_create(int family, int type, int protocol) |
| { |
| struct socket *sock; |
| int retval; |
| |
| /* Check the SOCK_* constants for consistency. */ |
| BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); |
| BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); |
| BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); |
| BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); |
| |
| if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) |
| return ERR_PTR(-EINVAL); |
| type &= SOCK_TYPE_MASK; |
| |
| retval = sock_create(family, type, protocol, &sock); |
| if (retval < 0) |
| return ERR_PTR(retval); |
| |
| return sock; |
| } |
| |
| struct file *__sys_socket_file(int family, int type, int protocol) |
| { |
| struct socket *sock; |
| int flags; |
| |
| sock = __sys_socket_create(family, type, protocol); |
| if (IS_ERR(sock)) |
| return ERR_CAST(sock); |
| |
| flags = type & ~SOCK_TYPE_MASK; |
| if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) |
| flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; |
| |
| return sock_alloc_file(sock, flags, NULL); |
| } |
| |
| /* A hook for bpf progs to attach to and update socket protocol. |
| * |
| * A static noinline declaration here could cause the compiler to |
| * optimize away the function. A global noinline declaration will |
| * keep the definition, but may optimize away the callsite. |
| * Therefore, __weak is needed to ensure that the call is still |
| * emitted, by telling the compiler that we don't know what the |
| * function might eventually be. |
| */ |
| |
| __bpf_hook_start(); |
| |
| __weak noinline int update_socket_protocol(int family, int type, int protocol) |
| { |
| return protocol; |
| } |
| |
| __bpf_hook_end(); |
| |
| int __sys_socket(int family, int type, int protocol) |
| { |
| struct socket *sock; |
| int flags; |
| |
| sock = __sys_socket_create(family, type, |
| update_socket_protocol(family, type, protocol)); |
| if (IS_ERR(sock)) |
| return PTR_ERR(sock); |
| |
| flags = type & ~SOCK_TYPE_MASK; |
| if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) |
| flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; |
| |
| return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); |
| } |
| |
| SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) |
| { |
| return __sys_socket(family, type, protocol); |
| } |
| |
| /* |
| * Create a pair of connected sockets. |
| */ |
| |
| int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) |
| { |
| struct socket *sock1, *sock2; |
| int fd1, fd2, err; |
| struct file *newfile1, *newfile2; |
| int flags; |
| |
| flags = type & ~SOCK_TYPE_MASK; |
| if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) |
| return -EINVAL; |
| type &= SOCK_TYPE_MASK; |
| |
| if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) |
| flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; |
| |
| /* |
| * reserve descriptors and make sure we won't fail |
| * to return them to userland. |
| */ |
| fd1 = get_unused_fd_flags(flags); |
| if (unlikely(fd1 < 0)) |
| return fd1; |
| |
| fd2 = get_unused_fd_flags(flags); |
| if (unlikely(fd2 < 0)) { |
| put_unused_fd(fd1); |
| return fd2; |
| } |
| |
| err = put_user(fd1, &usockvec[0]); |
| if (err) |
| goto out; |
| |
| err = put_user(fd2, &usockvec[1]); |
| if (err) |
| goto out; |
| |
| /* |
| * Obtain the first socket and check if the underlying protocol |
| * supports the socketpair call. |
| */ |
| |
| err = sock_create(family, type, protocol, &sock1); |
| if (unlikely(err < 0)) |
| goto out; |
| |
| err = sock_create(family, type, protocol, &sock2); |
| if (unlikely(err < 0)) { |
| sock_release(sock1); |
| goto out; |
| } |
| |
| err = security_socket_socketpair(sock1, sock2); |
| if (unlikely(err)) { |
| sock_release(sock2); |
| sock_release(sock1); |
| goto out; |
| } |
| |
| err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2); |
| if (unlikely(err < 0)) { |
| sock_release(sock2); |
| sock_release(sock1); |
| goto out; |
| } |
| |
| newfile1 = sock_alloc_file(sock1, flags, NULL); |
| if (IS_ERR(newfile1)) { |
| err = PTR_ERR(newfile1); |
| sock_release(sock2); |
| goto out; |
| } |
| |
| newfile2 = sock_alloc_file(sock2, flags, NULL); |
| if (IS_ERR(newfile2)) { |
| err = PTR_ERR(newfile2); |
| fput(newfile1); |
| goto out; |
| } |
| |
| audit_fd_pair(fd1, fd2); |
| |
| fd_install(fd1, newfile1); |
| fd_install(fd2, newfile2); |
| return 0; |
| |
| out: |
| put_unused_fd(fd2); |
| put_unused_fd(fd1); |
| return err; |
| } |
| |
| SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, |
| int __user *, usockvec) |
| { |
| return __sys_socketpair(family, type, protocol, usockvec); |
| } |
| |
| int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address, |
| int addrlen) |
| { |
| int err; |
| |
| err = security_socket_bind(sock, (struct sockaddr *)address, |
| addrlen); |
| if (!err) |
| err = READ_ONCE(sock->ops)->bind(sock, |
| (struct sockaddr *)address, |
| addrlen); |
| return err; |
| } |
| |
| /* |
| * Bind a name to a socket. Nothing much to do here since it's |
| * the protocol's responsibility to handle the local address. |
| * |
| * We move the socket address to kernel space before we call |
| * the protocol layer (having also checked the address is ok). |
| */ |
| |
| int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) |
| { |
| struct socket *sock; |
| struct sockaddr_storage address; |
| CLASS(fd, f)(fd); |
| int err; |
| |
| if (fd_empty(f)) |
| return -EBADF; |
| sock = sock_from_file(fd_file(f)); |
| if (unlikely(!sock)) |
| return -ENOTSOCK; |
| |
| err = move_addr_to_kernel(umyaddr, addrlen, &address); |
| if (unlikely(err)) |
| return err; |
| |
| return __sys_bind_socket(sock, &address, addrlen); |
| } |
| |
| SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) |
| { |
| return __sys_bind(fd, umyaddr, addrlen); |
| } |
| |
| /* |
| * Perform a listen. Basically, we allow the protocol to do anything |
| * necessary for a listen, and if that works, we mark the socket as |
| * ready for listening. |
| */ |
| int __sys_listen_socket(struct socket *sock, int backlog) |
| { |
| int somaxconn, err; |
| |
| somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); |
| if ((unsigned int)backlog > somaxconn) |
| backlog = somaxconn; |
| |
| err = security_socket_listen(sock, backlog); |
| if (!err) |
| err = READ_ONCE(sock->ops)->listen(sock, backlog); |
| return err; |
| } |
| |
| int __sys_listen(int fd, int backlog) |
| { |
| CLASS(fd, f)(fd); |
| struct socket *sock; |
| |
| if (fd_empty(f)) |
| return -EBADF; |
| sock = sock_from_file(fd_file(f)); |
| if (unlikely(!sock)) |
| return -ENOTSOCK; |
| |
| return __sys_listen_socket(sock, backlog); |
| } |
| |
| SYSCALL_DEFINE2(listen, int, fd, int, backlog) |
| { |
| return __sys_listen(fd, backlog); |
| } |
| |
| struct file *do_accept(struct file *file, struct proto_accept_arg *arg, |
| struct sockaddr __user *upeer_sockaddr, |
| int __user *upeer_addrlen, int flags) |
| { |
| struct socket *sock, *newsock; |
| struct file *newfile; |
| int err, len; |
| struct sockaddr_storage address; |
| const struct proto_ops *ops; |
| |
| sock = sock_from_file(file); |
| if (!sock) |
| return ERR_PTR(-ENOTSOCK); |
| |
| newsock = sock_alloc(); |
| if (!newsock) |
| return ERR_PTR(-ENFILE); |
| ops = READ_ONCE(sock->ops); |
| |
| newsock->type = sock->type; |
| newsock->ops = ops; |
| |
| /* |
| * We don't need try_module_get here, as the listening socket (sock) |
| * has the protocol module (sock->ops->owner) held. |
| */ |
| __module_get(ops->owner); |
| |
| newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); |
| if (IS_ERR(newfile)) |
| return newfile; |
| |
| err = security_socket_accept(sock, newsock); |
| if (err) |
| goto out_fd; |
| |
| arg->flags |= sock->file->f_flags; |
| err = ops->accept(sock, newsock, arg); |
| if (err < 0) |
| goto out_fd; |
| |
| if (upeer_sockaddr) { |
| len = ops->getname(newsock, (struct sockaddr *)&address, 2); |
| if (len < 0) { |
| err = -ECONNABORTED; |
| goto out_fd; |
| } |
| err = move_addr_to_user(&address, |
| len, upeer_sockaddr, upeer_addrlen); |
| if (err < 0) |
| goto out_fd; |
| } |
| |
| /* File flags are not inherited via accept() unlike another OSes. */ |
| return newfile; |
| out_fd: |
| fput(newfile); |
| return ERR_PTR(err); |
| } |
| |
| static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, |
| int __user *upeer_addrlen, int flags) |
| { |
| struct proto_accept_arg arg = { }; |
| struct file *newfile; |
| int newfd; |
| |
| if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) |
| return -EINVAL; |
| |
| if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) |
| flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; |
| |
| newfd = get_unused_fd_flags(flags); |
| if (unlikely(newfd < 0)) |
| return newfd; |
| |
| newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen, |
| flags); |
| if (IS_ERR(newfile)) { |
| put_unused_fd(newfd); |
| return PTR_ERR(newfile); |
| } |
| fd_install(newfd, newfile); |
| return newfd; |
| } |
| |
| /* |
| * For accept, we attempt to create a new socket, set up the link |
| * with the client, wake up the client, then return the new |
| * connected fd. We collect the address of the connector in kernel |
| * space and move it to user at the very end. This is unclean because |
| * we open the socket then return an error. |
| * |
| * 1003.1g adds the ability to recvmsg() to query connection pending |
| * status to recvmsg. We need to add that support in a way thats |
| * clean when we restructure accept also. |
| */ |
| |
| int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, |
| int __user *upeer_addrlen, int flags) |
| { |
| CLASS(fd, f)(fd); |
| |
| if (fd_empty(f)) |
| return -EBADF; |
| return __sys_accept4_file(fd_file(f), upeer_sockaddr, |
| upeer_addrlen, flags); |
| } |
| |
| SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, |
| int __user *, upeer_addrlen, int, flags) |
| { |
| return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); |
| } |
| |
| SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, |
| int __user *, upeer_addrlen) |
| { |
| return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); |
| } |
| |
| /* |
| * Attempt to connect to a socket with the server address. The address |
| * is in user space so we verify it is OK and move it to kernel space. |
| * |
| * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to |
| * break bindings |
| * |
| * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and |
| * other SEQPACKET protocols that take time to connect() as it doesn't |
| * include the -EINPROGRESS status for such sockets. |
| */ |
| |
| int __sys_connect_file(struct file *file, struct sockaddr_storage *address, |
| int addrlen, int file_flags) |
| { |
| struct socket *sock; |
| int err; |
| |
| sock = sock_from_file(file); |
| if (!sock) { |
| err = -ENOTSOCK; |
| goto out; |
| } |
| |
| err = |
| security_socket_connect(sock, (struct sockaddr *)address, addrlen); |
| if (err) |
| goto out; |
| |
| err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address, |
| addrlen, sock->file->f_flags | file_flags); |
| out: |
| return err; |
| } |
| |
| int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) |
| { |
| struct sockaddr_storage address; |
| CLASS(fd, f)(fd); |
| int ret; |
| |
| if (fd_empty(f)) |
| return -EBADF; |
| |
| ret = move_addr_to_kernel(uservaddr, addrlen, &address); |
| if (ret) |
| return ret; |
| |
| return __sys_connect_file(fd_file(f), &address, addrlen, 0); |
| } |
| |
| SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, |
| int, addrlen) |
| { |
| return __sys_connect(fd, uservaddr, addrlen); |
| } |
| |
| /* |
| * Get the local address ('name') of a socket object. Move the obtained |
| * name to user space. |
| */ |
| |
| int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, |
| int __user *usockaddr_len) |
| { |
| struct socket *sock; |
| struct sockaddr_storage address; |
| CLASS(fd, f)(fd); |
| int err; |
| |
| if (fd_empty(f)) |
| return -EBADF; |
| sock = sock_from_file(fd_file(f)); |
| if (unlikely(!sock)) |
| return -ENOTSOCK; |
| |
| err = security_socket_getsockname(sock); |
| if (err) |
| return err; |
| |
| err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0); |
| if (err < 0) |
| return err; |
| |
| /* "err" is actually length in this case */ |
| return move_addr_to_user(&address, err, usockaddr, usockaddr_len); |
| } |
| |
| SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, |
| int __user *, usockaddr_len) |
| { |
| return __sys_getsockname(fd, usockaddr, usockaddr_len); |
| } |
| |
| /* |
| * Get the remote address ('name') of a socket object. Move the obtained |
| * name to user space. |
| */ |
| |
| int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, |
| int __user *usockaddr_len) |
| { |
| struct socket *sock; |
| struct sockaddr_storage address; |
| CLASS(fd, f)(fd); |
| int err; |
| |
| if (fd_empty(f)) |
| return -EBADF; |
| sock = sock_from_file(fd_file(f)); |
| if (unlikely(!sock)) |
| return -ENOTSOCK; |
| |
| err = security_socket_getpeername(sock); |
| if (err) |
| return err; |
| |
| err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1); |
| if (err < 0) |
| return err; |
| |
| /* "err" is actually length in this case */ |
| return move_addr_to_user(&address, err, usockaddr, usockaddr_len); |
| } |
| |
| SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, |
| int __user *, usockaddr_len) |
| { |
| return __sys_getpeername(fd, usockaddr, usockaddr_len); |
| } |
| |
| /* |
| * Send a datagram to a given address. We move the address into kernel |
| * space and check the user space data area is readable before invoking |
| * the protocol. |
| */ |
| int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, |
| struct sockaddr __user *addr, int addr_len) |
| { |
| struct socket *sock; |
| struct sockaddr_storage address; |
| int err; |
| struct msghdr msg; |
| |
| err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter); |
| if (unlikely(err)) |
| return err; |
| |
| CLASS(fd, f)(fd); |
| if (fd_empty(f)) |
| return -EBADF; |
| sock = sock_from_file(fd_file(f)); |
| if (unlikely(!sock)) |
| return -ENOTSOCK; |
| |
| msg.msg_name = NULL; |
| msg.msg_control = NULL; |
| msg.msg_controllen = 0; |
| msg.msg_namelen = 0; |
| msg.msg_ubuf = NULL; |
| if (addr) { |
| err = move_addr_to_kernel(addr, addr_len, &address); |
| if (err < 0) |
| return err; |
| msg.msg_name = (struct sockaddr *)&address; |
| msg.msg_namelen = addr_len; |
| } |
| flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; |
| if (sock->file->f_flags & O_NONBLOCK) |
| flags |= MSG_DONTWAIT; |
| msg.msg_flags = flags; |
| return __sock_sendmsg(sock, &msg); |
| } |
| |
| SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, |
| unsigned int, flags, struct sockaddr __user *, addr, |
| int, addr_len) |
| { |
| return __sys_sendto(fd, buff, len, flags, addr, addr_len); |
| } |
| |
| /* |
| * Send a datagram down a socket. |
| */ |
| |
| SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, |
| unsigned int, flags) |
| { |
| return __sys_sendto(fd, buff, len, flags, NULL, 0); |
| } |
| |
| /* |
| * Receive a frame from the socket and optionally record the address of the |
| * sender. We verify the buffers are writable and if needed move the |
| * sender address from kernel to user space. |
| */ |
| int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, |
| struct sockaddr __user *addr, int __user *addr_len) |
| { |
| struct sockaddr_storage address; |
| struct msghdr msg = { |
| /* Save some cycles and don't copy the address if not needed */ |
| .msg_name = addr ? (struct sockaddr *)&address : NULL, |
| }; |
| struct socket *sock; |
| int err, err2; |
| |
| err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter); |
| if (unlikely(err)) |
| return err; |
| |
| CLASS(fd, f)(fd); |
| |
| if (fd_empty(f)) |
| return -EBADF; |
| sock = sock_from_file(fd_file(f)); |
| if (unlikely(!sock)) |
| return -ENOTSOCK; |
| |
| if (sock->file->f_flags & O_NONBLOCK) |
| flags |= MSG_DONTWAIT; |
| err = sock_recvmsg(sock, &msg, flags); |
| |
| if (err >= 0 && addr != NULL) { |
| err2 = move_addr_to_user(&address, |
| msg.msg_namelen, addr, addr_len); |
| if (err2 < 0) |
| err = err2; |
| } |
| return err; |
| } |
| |
| SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, |
| unsigned int, flags, struct sockaddr __user *, addr, |
| int __user *, addr_len) |
| { |
| return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); |
| } |
| |
| /* |
| * Receive a datagram from a socket. |
| */ |
| |
| SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, |
| unsigned int, flags) |
| { |
| return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); |
| } |
| |
| static bool sock_use_custom_sol_socket(const struct socket *sock) |
| { |
| return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); |
| } |
| |
| int do_sock_setsockopt(struct socket *sock, bool compat, int level, |
| int optname, sockptr_t optval, int optlen) |
| { |
| const struct proto_ops *ops; |
| char *kernel_optval = NULL; |
| int err; |
| |
| if (optlen < 0) |
| return -EINVAL; |
| |
| err = security_socket_setsockopt(sock, level, optname); |
| if (err) |
| goto out_put; |
| |
| if (!compat) |
| err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, |
| optval, &optlen, |
| &kernel_optval); |
| if (err < 0) |
| goto out_put; |
| if (err > 0) { |
| err = 0; |
| goto out_put; |
| } |
| |
| if (kernel_optval) |
| optval = KERNEL_SOCKPTR(kernel_optval); |
| ops = READ_ONCE(sock->ops); |
| if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) |
| err = sock_setsockopt(sock, level, optname, optval, optlen); |
| else if (unlikely(!ops->setsockopt)) |
| err = -EOPNOTSUPP; |
| else |
| err = ops->setsockopt(sock, level, optname, optval, |
| optlen); |
| kfree(kernel_optval); |
| out_put: |
| return err; |
| } |
| EXPORT_SYMBOL(do_sock_setsockopt); |
| |
| /* Set a socket option. Because we don't know the option lengths we have |
| * to pass the user mode parameter for the protocols to sort out. |
| */ |
| int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, |
| int optlen) |
| { |
| sockptr_t optval = USER_SOCKPTR(user_optval); |
| bool compat = in_compat_syscall(); |
| struct socket *sock; |
| CLASS(fd, f)(fd); |
| |
| if (fd_empty(f)) |
| return -EBADF; |
| sock = sock_from_file(fd_file(f)); |
| if (unlikely(!sock)) |
| return -ENOTSOCK; |
| |
| return do_sock_setsockopt(sock, compat, level, optname, optval, optlen); |
| } |
| |
| SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, |
| char __user *, optval, int, optlen) |
| { |
| return __sys_setsockopt(fd, level, optname, optval, optlen); |
| } |
| |
| INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, |
| int optname)); |
| |
| int do_sock_getsockopt(struct socket *sock, bool compat, int level, |
| int optname, sockptr_t optval, sockptr_t optlen) |
| { |
| int max_optlen __maybe_unused = 0; |
| const struct proto_ops *ops; |
| int err; |
| |
| err = security_socket_getsockopt(sock, level, optname); |
| if (err) |
| return err; |
| |
| if (!compat) |
| copy_from_sockptr(&max_optlen, optlen, sizeof(int)); |
| |
| ops = READ_ONCE(sock->ops); |
| if (level == SOL_SOCKET) { |
| err = sk_getsockopt(sock->sk, level, optname, optval, optlen); |
| } else if (unlikely(!ops->getsockopt)) { |
| err = -EOPNOTSUPP; |
| } else { |
| if (WARN_ONCE(optval.is_kernel || optlen.is_kernel, |
| "Invalid argument type")) |
| return -EOPNOTSUPP; |
| |
| err = ops->getsockopt(sock, level, optname, optval.user, |
| optlen.user); |
| } |
| |
| if (!compat) |
| err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, |
| optval, optlen, max_optlen, |
| err); |
| |
| return err; |
| } |
| EXPORT_SYMBOL(do_sock_getsockopt); |
| |
| /* |
| * Get a socket option. Because we don't know the option lengths we have |
| * to pass a user mode parameter for the protocols to sort out. |
| */ |
| int __sys_getsockopt(int fd, int level, int optname, char __user *optval, |
| int __user *optlen) |
| { |
| struct socket *sock; |
| CLASS(fd, f)(fd); |
| |
| if (fd_empty(f)) |
| return -EBADF; |
| sock = sock_from_file(fd_file(f)); |
| if (unlikely(!sock)) |
| return -ENOTSOCK; |
| |
| return do_sock_getsockopt(sock, in_compat_syscall(), level, optname, |
| USER_SOCKPTR(optval), USER_SOCKPTR(optlen)); |
| } |
| |
| SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, |
| char __user *, optval, int __user *, optlen) |
| { |
| return __sys_getsockopt(fd, level, optname, optval, optlen); |
| } |
| |
| /* |
| * Shutdown a socket. |
| */ |
| |
| int __sys_shutdown_sock(struct socket *sock, int how) |
| { |
| int err; |
| |
| err = security_socket_shutdown(sock, how); |
| if (!err) |
| err = READ_ONCE(sock->ops)->shutdown(sock, how); |
| |
| return err; |
| } |
| |
| int __sys_shutdown(int fd, int how) |
| { |
| struct socket *sock; |
| CLASS(fd, f)(fd); |
| |
| if (fd_empty(f)) |
| return -EBADF; |
| sock = sock_from_file(fd_file(f)); |
| if (unlikely(!sock)) |
| return -ENOTSOCK; |
| |
| return __sys_shutdown_sock(sock, how); |
| } |
| |
| SYSCALL_DEFINE2(shutdown, int, fd, int, how) |
| { |
| return __sys_shutdown(fd, how); |
| } |
| |
| /* A couple of helpful macros for getting the address of the 32/64 bit |
| * fields which are the same type (int / unsigned) on our platforms. |
| */ |
| #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) |
| #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) |
| #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) |
| |
| struct used_address { |
| struct sockaddr_storage name; |
| unsigned int name_len; |
| }; |
| |
| int __copy_msghdr(struct msghdr *kmsg, |
| struct user_msghdr *msg, |
| struct sockaddr __user **save_addr) |
| { |
| ssize_t err; |
| |
| kmsg->msg_control_is_user = true; |
| kmsg->msg_get_inq = 0; |
| kmsg->msg_control_user = msg->msg_control; |
| kmsg->msg_controllen = msg->msg_controllen; |
| kmsg->msg_flags = msg->msg_flags; |
| |
| kmsg->msg_namelen = msg->msg_namelen; |
| if (!msg->msg_name) |
| kmsg->msg_namelen = 0; |
| |
| if (kmsg->msg_namelen < 0) |
| return -EINVAL; |
| |
| if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) |
| kmsg->msg_namelen = sizeof(struct sockaddr_storage); |
| |
| if (save_addr) |
| *save_addr = msg->msg_name; |
| |
| if (msg->msg_name && kmsg->msg_namelen) { |
| if (!save_addr) { |
| err = move_addr_to_kernel(msg->msg_name, |
| kmsg->msg_namelen, |
| kmsg->msg_name); |
| if (err < 0) |
| return err; |
| } |
| } else { |
| kmsg->msg_name = NULL; |
| kmsg->msg_namelen = 0; |
| } |
| |
| if (msg->msg_iovlen > UIO_MAXIOV) |
| return -EMSGSIZE; |
| |
| kmsg->msg_iocb = NULL; |
| kmsg->msg_ubuf = NULL; |
| return 0; |
| } |
| |
| static int copy_msghdr_from_user(struct msghdr *kmsg, |
| struct user_msghdr __user *umsg, |
| struct sockaddr __user **save_addr, |
| struct iovec **iov) |
| { |
| struct user_msghdr msg; |
| ssize_t err; |
| |
| if (copy_from_user(&msg, umsg, sizeof(*umsg))) |
| return -EFAULT; |
| |
| err = __copy_msghdr(kmsg, &msg, save_addr); |
| if (err) |
| return err; |
| |
| err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, |
| msg.msg_iov, msg.msg_iovlen, |
| UIO_FASTIOV, iov, &kmsg->msg_iter); |
| return err < 0 ? err : 0; |
| } |
| |
| static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, |
| unsigned int flags, struct used_address *used_address, |
| unsigned int allowed_msghdr_flags) |
| { |
| unsigned char ctl[sizeof(struct cmsghdr) + 20] |
| __aligned(sizeof(__kernel_size_t)); |
| /* 20 is size of ipv6_pktinfo */ |
| unsigned char *ctl_buf = ctl; |
| int ctl_len; |
| ssize_t err; |
| |
| err = -ENOBUFS; |
| |
| if (msg_sys->msg_controllen > INT_MAX) |
| goto out; |
| flags |= (msg_sys->msg_flags & allowed_msghdr_flags); |
| ctl_len = msg_sys->msg_controllen; |
| if ((MSG_CMSG_COMPAT & flags) && ctl_len) { |
| err = |
| cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, |
| sizeof(ctl)); |
| if (err) |
| goto out; |
| ctl_buf = msg_sys->msg_control; |
| ctl_len = msg_sys->msg_controllen; |
| } else if (ctl_len) { |
| BUILD_BUG_ON(sizeof(struct cmsghdr) != |
| CMSG_ALIGN(sizeof(struct cmsghdr))); |
| if (ctl_len > sizeof(ctl)) { |
| ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); |
| if (ctl_buf == NULL) |
| goto out; |
| } |
| err = -EFAULT; |
| if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) |
| goto out_freectl; |
| msg_sys->msg_control = ctl_buf; |
| msg_sys->msg_control_is_user = false; |
| } |
| flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; |
| msg_sys->msg_flags = flags; |
| |
| if (sock->file->f_flags & O_NONBLOCK) |
| msg_sys->msg_flags |= MSG_DONTWAIT; |
| /* |
| * If this is sendmmsg() and current destination address is same as |
| * previously succeeded address, omit asking LSM's decision. |
| * used_address->name_len is initialized to UINT_MAX so that the first |
| * destination address never matches. |
| */ |
| if (used_address && msg_sys->msg_name && |
| used_address->name_len == msg_sys->msg_namelen && |
| !memcmp(&used_address->name, msg_sys->msg_name, |
| used_address->name_len)) { |
| err = sock_sendmsg_nosec(sock, msg_sys); |
| goto out_freectl; |
| } |
| err = __sock_sendmsg(sock, msg_sys); |
| /* |
| * If this is sendmmsg() and sending to current destination address was |
| * successful, remember it. |
| */ |
| if (used_address && err >= 0) { |
| used_address->name_len = msg_sys->msg_namelen; |
| if (msg_sys->msg_name) |
| memcpy(&used_address->name, msg_sys->msg_name, |
| used_address->name_len); |
| } |
| |
| out_freectl: |
| if (ctl_buf != ctl) |
| sock_kfree_s(sock->sk, ctl_buf, ctl_len); |
| out: |
| return err; |
| } |
| |
| static int sendmsg_copy_msghdr(struct msghdr *msg, |
| struct user_msghdr __user *umsg, unsigned flags, |
| struct iovec **iov) |
| { |
| int err; |
| |
| if (flags & MSG_CMSG_COMPAT) { |
| struct compat_msghdr __user *msg_compat; |
| |
| msg_compat = (struct compat_msghdr __user *) umsg; |
| err = get_compat_msghdr(msg, msg_compat, NULL, iov); |
| } else { |
| err = copy_msghdr_from_user(msg, umsg, NULL, iov); |
| } |
| if (err < 0) |
| return err; |
| |
| return 0; |
| } |
| |
| static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, |
| struct msghdr *msg_sys, unsigned int flags, |
| struct used_address *used_address, |
| unsigned int allowed_msghdr_flags) |
| { |
| struct sockaddr_storage address; |
| struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; |
| ssize_t err; |
| |
| msg_sys->msg_name = &address; |
| |
| err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); |
| if (err < 0) |
| return err; |
| |
| err = ____sys_sendmsg(sock, msg_sys, flags, used_address, |
| allowed_msghdr_flags); |
| kfree(iov); |
| return err; |
| } |
| |
| /* |
| * BSD sendmsg interface |
| */ |
| long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, |
| unsigned int flags) |
| { |
| return ____sys_sendmsg(sock, msg, flags, NULL, 0); |
| } |
| |
| long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, |
| bool forbid_cmsg_compat) |
| { |
| struct msghdr msg_sys; |
| struct socket *sock; |
| |
| if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) |
| return -EINVAL; |
| |
| CLASS(fd, f)(fd); |
| |
| if (fd_empty(f)) |
| return -EBADF; |
| sock = sock_from_file(fd_file(f)); |
| if (unlikely(!sock)) |
| return -ENOTSOCK; |
| |
| return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); |
| } |
| |
| SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) |
| { |
| return __sys_sendmsg(fd, msg, flags, true); |
| } |
| |
| /* |
| * Linux sendmmsg interface |
| */ |
| |
| int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, |
| unsigned int flags, bool forbid_cmsg_compat) |
| { |
| int err, datagrams; |
| struct socket *sock; |
| struct mmsghdr __user *entry; |
| struct compat_mmsghdr __user *compat_entry; |
| struct msghdr msg_sys; |
| struct used_address used_address; |
| unsigned int oflags = flags; |
| |
| if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) |
| return -EINVAL; |
| |
| if (vlen > UIO_MAXIOV) |
| vlen = UIO_MAXIOV; |
| |
| datagrams = 0; |
| |
| CLASS(fd, f)(fd); |
| |
| if (fd_empty(f)) |
| return -EBADF; |
| sock = sock_from_file(fd_file(f)); |
| if (unlikely(!sock)) |
| return -ENOTSOCK; |
| |
| used_address.name_len = UINT_MAX; |
| entry = mmsg; |
| compat_entry = (struct compat_mmsghdr __user *)mmsg; |
| err = 0; |
| flags |= MSG_BATCH; |
| |
| while (datagrams < vlen) { |
| if (datagrams == vlen - 1) |
| flags = oflags; |
| |
| if (MSG_CMSG_COMPAT & flags) { |
| err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, |
| &msg_sys, flags, &used_address, MSG_EOR); |
| if (err < 0) |
| break; |
| err = __put_user(err, &compat_entry->msg_len); |
| ++compat_entry; |
| } else { |
| err = ___sys_sendmsg(sock, |
| (struct user_msghdr __user *)entry, |
| &msg_sys, flags, &used_address, MSG_EOR); |
| if (err < 0) |
| break; |
| err = put_user(err, &entry->msg_len); |
| ++entry; |
| } |
| |
| if (err) |
| break; |
| ++datagrams; |
| if (msg_data_left(&msg_sys)) |
| break; |
| cond_resched(); |
| } |
| |
| /* We only return an error if no datagrams were able to be sent */ |
| if (datagrams != 0) |
| return datagrams; |
| |
| return err; |
| } |
| |
| SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, |
| unsigned int, vlen, unsigned int, flags) |
| { |
| return __sys_sendmmsg(fd, mmsg, vlen, flags, true); |
| } |
| |
| static int recvmsg_copy_msghdr(struct msghdr *msg, |
| struct user_msghdr __user *umsg, unsigned flags, |
| struct sockaddr __user **uaddr, |
| struct iovec **iov) |
| { |
| ssize_t err; |
| |
| if (MSG_CMSG_COMPAT & flags) { |
| struct compat_msghdr __user *msg_compat; |
| |
| msg_compat = (struct compat_msghdr __user *) umsg; |
| err = get_compat_msghdr(msg, msg_compat, uaddr, iov); |
| } else { |
| err = copy_msghdr_from_user(msg, umsg, uaddr, iov); |
| } |
| if (err < 0) |
| return err; |
| |
| return 0; |
| } |
| |
| static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, |
| struct user_msghdr __user *msg, |
| struct sockaddr __user *uaddr, |
| unsigned int flags, int nosec) |
| { |
| struct compat_msghdr __user *msg_compat = |
| (struct compat_msghdr __user *) msg; |
| int __user *uaddr_len = COMPAT_NAMELEN(msg); |
| struct sockaddr_storage addr; |
| unsigned long cmsg_ptr; |
| int len; |
| ssize_t err; |
| |
| msg_sys->msg_name = &addr; |
| cmsg_ptr = (unsigned long)msg_sys->msg_control; |
| msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); |
| |
| /* We assume all kernel code knows the size of sockaddr_storage */ |
| msg_sys->msg_namelen = 0; |
| |
| if (sock->file->f_flags & O_NONBLOCK) |
| flags |= MSG_DONTWAIT; |
| |
| if (unlikely(nosec)) |
| err = sock_recvmsg_nosec(sock, msg_sys, flags); |
| else |
| err = sock_recvmsg(sock, msg_sys, flags); |
| |
| if (err < 0) |
| goto out; |
| len = err; |
| |
| if (uaddr != NULL) { |
| err = move_addr_to_user(&addr, |
| msg_sys->msg_namelen, uaddr, |
| uaddr_len); |
| if (err < 0) |
| goto out; |
| } |
| err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), |
| COMPAT_FLAGS(msg)); |
| if (err) |
| goto out; |
| if (MSG_CMSG_COMPAT & flags) |
| err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, |
| &msg_compat->msg_controllen); |
| else |
| err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, |
| &msg->msg_controllen); |
| if (err) |
| goto out; |
| err = len; |
| out: |
| return err; |
| } |
| |
| static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, |
| struct msghdr *msg_sys, unsigned int flags, int nosec) |
| { |
| struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; |
| /* user mode address pointers */ |
| struct sockaddr __user *uaddr; |
| ssize_t err; |
| |
| err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); |
| if (err < 0) |
| return err; |
| |
| err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); |
| kfree(iov); |
| return err; |
| } |
| |
| /* |
| * BSD recvmsg interface |
| */ |
| |
| long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, |
| struct user_msghdr __user *umsg, |
| struct sockaddr __user *uaddr, unsigned int flags) |
| { |
| return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); |
| } |
| |
| long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, |
| bool forbid_cmsg_compat) |
| { |
| struct msghdr msg_sys; |
| struct socket *sock; |
| |
| if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) |
| return -EINVAL; |
| |
| CLASS(fd, f)(fd); |
| |
| if (fd_empty(f)) |
| return -EBADF; |
| sock = sock_from_file(fd_file(f)); |
| if (unlikely(!sock)) |
| return -ENOTSOCK; |
| |
| return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); |
| } |
| |
| SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, |
| unsigned int, flags) |
| { |
| return __sys_recvmsg(fd, msg, flags, true); |
| } |
| |
| /* |
| * Linux recvmmsg interface |
| */ |
| |
| static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, |
| unsigned int vlen, unsigned int flags, |
| struct timespec64 *timeout) |
| { |
| int err = 0, datagrams; |
| struct socket *sock; |
| struct mmsghdr __user *entry; |
| struct compat_mmsghdr __user *compat_entry; |
| struct msghdr msg_sys; |
| struct timespec64 end_time; |
| struct timespec64 timeout64; |
| |
| if (timeout && |
| poll_select_set_timeout(&end_time, timeout->tv_sec, |
| timeout->tv_nsec)) |
| return -EINVAL; |
| |
| datagrams = 0; |
| |
| CLASS(fd, f)(fd); |
| |
| if (fd_empty(f)) |
| return -EBADF; |
| sock = sock_from_file(fd_file(f)); |
| if (unlikely(!sock)) |
| return -ENOTSOCK; |
| |
| if (likely(!(flags & MSG_ERRQUEUE))) { |
| err = sock_error(sock->sk); |
| if (err) |
| return err; |
| } |
| |
| entry = mmsg; |
| compat_entry = (struct compat_mmsghdr __user *)mmsg; |
| |
| while (datagrams < vlen) { |
| /* |
| * No need to ask LSM for more than the first datagram. |
| */ |
| if (MSG_CMSG_COMPAT & flags) { |
| err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, |
| &msg_sys, flags & ~MSG_WAITFORONE, |
| datagrams); |
| if (err < 0) |
| break; |
| err = __put_user(err, &compat_entry->msg_len); |
| ++compat_entry; |
| } else { |
| err = ___sys_recvmsg(sock, |
| (struct user_msghdr __user *)entry, |
| &msg_sys, flags & ~MSG_WAITFORONE, |
| datagrams); |
| if (err < 0) |
| break; |
| err = put_user(err, &entry->msg_len); |
| ++entry; |
| } |
| |
| if (err) |
| break; |
| ++datagrams; |
| |
| /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ |
| if (flags & MSG_WAITFORONE) |
| flags |= MSG_DONTWAIT; |
| |
| if (timeout) { |
| ktime_get_ts64(&timeout64); |
| *timeout = timespec64_sub(end_time, timeout64); |
| if (timeout->tv_sec < 0) { |
| timeout->tv_sec = timeout->tv_nsec = 0; |
| break; |
| } |
| |
| /* Timeout, return less than vlen datagrams */ |
| if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) |
| break; |
| } |
| |
| /* Out of band data, return right away */ |
| if (msg_sys.msg_flags & MSG_OOB) |
| break; |
| cond_resched(); |
| } |
| |
| if (err == 0) |
| return datagrams; |
| |
| if (datagrams == 0) |
| return err; |
| |
| /* |
| * We may return less entries than requested (vlen) if the |
| * sock is non block and there aren't enough datagrams... |
| */ |
| if (err != -EAGAIN) { |
| /* |
| * ... or if recvmsg returns an error after we |
| * received some datagrams, where we record the |
| * error to return on the next call or if the |
| * app asks about it using getsockopt(SO_ERROR). |
| */ |
| WRITE_ONCE(sock->sk->sk_err, -err); |
| } |
| return datagrams; |
| } |
| |
| int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, |
| unsigned int vlen, unsigned int flags, |
| struct __kernel_timespec __user *timeout, |
| struct old_timespec32 __user *timeout32) |
| { |
| int datagrams; |
| struct timespec64 timeout_sys; |
| |
| if (timeout && get_timespec64(&timeout_sys, timeout)) |
| return -EFAULT; |
| |
| if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) |
| return -EFAULT; |
| |
| if (!timeout && !timeout32) |
| return do_recvmmsg(fd, mmsg, vlen, flags, NULL); |
| |
| datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); |
| |
| if (datagrams <= 0) |
| return datagrams; |
| |
| if (timeout && put_timespec64(&timeout_sys, timeout)) |
| datagrams = -EFAULT; |
| |
| if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) |
| datagrams = -EFAULT; |
| |
| return datagrams; |
| } |
| |
| SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, |
| unsigned int, vlen, unsigned int, flags, |
| struct __kernel_timespec __user *, timeout) |
| { |
| if (flags & MSG_CMSG_COMPAT) |
| return -EINVAL; |
| |
| return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); |
| } |
| |
| #ifdef CONFIG_COMPAT_32BIT_TIME |
| SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, |
| unsigned int, vlen, unsigned int, flags, |
| struct old_timespec32 __user *, timeout) |
| { |
| if (flags & MSG_CMSG_COMPAT) |
| return -EINVAL; |
| |
| return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); |
| } |
| #endif |
| |
| #ifdef __ARCH_WANT_SYS_SOCKETCALL |
| /* Argument list sizes for sys_socketcall */ |
| #define AL(x) ((x) * sizeof(unsigned long)) |
| static const unsigned char nargs[21] = { |
| AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), |
| AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), |
| AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), |
| AL(4), AL(5), AL(4) |
| }; |
| |
| #undef AL |
| |
| /* |
| * System call vectors. |
| * |
| * Argument checking cleaned up. Saved 20% in size. |
| * This function doesn't need to set the kernel lock because |
| * it is set by the callees. |
| */ |
| |
| SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) |
| { |
| unsigned long a[AUDITSC_ARGS]; |
| unsigned long a0, a1; |
| int err; |
| unsigned int len; |
| |
| if (call < 1 || call > SYS_SENDMMSG) |
| return -EINVAL; |
| call = array_index_nospec(call, SYS_SENDMMSG + 1); |
| |
| len = nargs[call]; |
| if (len > sizeof(a)) |
| return -EINVAL; |
| |
| /* copy_from_user should be SMP safe. */ |
| if (copy_from_user(a, args, len)) |
| return -EFAULT; |
| |
| err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); |
| if (err) |
| return err; |
| |
| a0 = a[0]; |
| a1 = a[1]; |
| |
| switch (call) { |
| case SYS_SOCKET: |
| err = __sys_socket(a0, a1, a[2]); |
| break; |
| case SYS_BIND: |
| err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); |
| break; |
| case SYS_CONNECT: |
| err = __sys_connect(a0, (struct sockaddr __user |