blob: 02e6167a53b0af6bcbc166cc810cae9ab04e54f7 [file] [log] [blame]
/*
* linux/kernel/acct.c
*
* BSD Process Accounting for Linux
*
* Author: Marco van Wieringen <mvw@planets.elm.net>
*
* Some code based on ideas and code from:
* Thomas K. Dyas <tdyas@eden.rutgers.edu>
*
* This file implements BSD-style process accounting. Whenever any
* process exits, an accounting record of type "struct acct" is
* written to the file specified with the acct() system call. It is
* up to user-level programs to do useful things with the accounting
* log. The kernel just provides the raw accounting information.
*
* (C) Copyright 1995 - 1997 Marco van Wieringen - ELM Consultancy B.V.
*
* Plugged two leaks. 1) It didn't return acct_file into the free_filps if
* the file happened to be read-only. 2) If the accounting was suspended
* due to the lack of space it happily allowed to reopen it and completely
* lost the old acct_file. 3/10/98, Al Viro.
*
* Now we silently close acct_file on attempt to reopen. Cleaned sys_acct().
* XTerms and EMACS are manifestations of pure evil. 21/10/98, AV.
*
* Fixed a nasty interaction with with sys_umount(). If the accointing
* was suspeneded we failed to stop it on umount(). Messy.
* Another one: remount to readonly didn't stop accounting.
* Question: what should we do if we have CAP_SYS_ADMIN but not
* CAP_SYS_PACCT? Current code does the following: umount returns -EBUSY
* unless we are messing with the root. In that case we are getting a
* real mess with do_remount_sb(). 9/11/98, AV.
*
* Fixed a bunch of races (and pair of leaks). Probably not the best way,
* but this one obviously doesn't introduce deadlocks. Later. BTW, found
* one race (and leak) in BSD implementation.
* OK, that's better. ANOTHER race and leak in BSD variant. There always
* is one more bug... 10/11/98, AV.
*
* Oh, fsck... Oopsable SMP race in do_process_acct() - we must hold
* ->mmap_sem to walk the vma list of current->mm. Nasty, since it leaks
* a struct file opened for write. Fixed. 2/6/2000, AV.
*/
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/acct.h>
#include <linux/capability.h>
#include <linux/file.h>
#include <linux/tty.h>
#include <linux/security.h>
#include <linux/vfs.h>
#include <linux/jiffies.h>
#include <linux/times.h>
#include <linux/syscalls.h>
#include <linux/mount.h>
#include <asm/uaccess.h>
#include <asm/div64.h>
#include <linux/blkdev.h> /* sector_div */
#include <linux/pid_namespace.h>
/*
* These constants control the amount of freespace that suspend and
* resume the process accounting system, and the time delay between
* each check.
* Turned into sysctl-controllable parameters. AV, 12/11/98
*/
int acct_parm[3] = {4, 2, 30};
#define RESUME (acct_parm[0]) /* >foo% free space - resume */
#define SUSPEND (acct_parm[1]) /* <foo% free space - suspend */
#define ACCT_TIMEOUT (acct_parm[2]) /* foo second timeout between checks */
/*
* External references and all of the globals.
*/
static void do_acct_process(struct bsd_acct_struct *acct,
struct pid_namespace *ns, struct file *);
/*
* This structure is used so that all the data protected by lock
* can be placed in the same cache line as the lock. This primes
* the cache line to have the data after getting the lock.
*/
struct bsd_acct_struct {
int active;
unsigned long needcheck;
struct file *file;
struct pid_namespace *ns;
struct list_head list;
};
static DEFINE_SPINLOCK(acct_lock);
static LIST_HEAD(acct_list);
/*
* Check the amount of free space and suspend/resume accordingly.
*/
static int check_free_space(struct bsd_acct_struct *acct, struct file *file)
{
struct kstatfs sbuf;
int res;
int act;
u64 resume;
u64 suspend;
spin_lock(&acct_lock);
res = acct->active;
if (!file || time_is_before_jiffies(acct->needcheck))
goto out;
spin_unlock(&acct_lock);
/* May block */
if (vfs_statfs(&file->f_path, &sbuf))
return res;
suspend = sbuf.f_blocks * SUSPEND;
resume = sbuf.f_blocks * RESUME;
do_div(suspend, 100);
do_div(resume, 100);
if (sbuf.f_bavail <= suspend)
act = -1;
else if (sbuf.f_bavail >= resume)
act = 1;
else
act = 0;
/*
* If some joker switched acct->file under us we'ld better be
* silent and _not_ touch anything.
*/
spin_lock(&acct_lock);
if (file != acct->file) {
if (act)
res = act>0;
goto out;
}
if (acct->active) {
if (act < 0) {
acct->active = 0;
printk(KERN_INFO "Process accounting paused\n");
}
} else {
if (act > 0) {
acct->active = 1;
printk(KERN_INFO "Process accounting resumed\n");
}
}
acct->needcheck = jiffies + ACCT_TIMEOUT*HZ;
res = acct->active;
out:
spin_unlock(&acct_lock);
return res;
}
/*
* Close the old accounting file (if currently open) and then replace
* it with file (if non-NULL).
*
* NOTE: acct_lock MUST be held on entry and exit.
*/
static void acct_file_reopen(struct bsd_acct_struct *acct, struct file *file,
struct pid_namespace *ns)
{
struct file *old_acct = NULL;
struct pid_namespace *old_ns = NULL;
if (acct->file) {
old_acct = acct->file;
old_ns = acct->ns;
acct->active = 0;
acct->file = NULL;
acct->ns = NULL;
list_del(&acct->list);
}
if (file) {
acct->file = file;
acct->ns = ns;
acct->needcheck = jiffies + ACCT_TIMEOUT*HZ;
acct->active = 1;
list_add(&acct->list, &acct_list);
}
if (old_acct) {
mnt_unpin(old_acct->f_path.mnt);
spin_unlock(&acct_lock);
do_acct_process(acct, old_ns, old_acct);
filp_close(old_acct, NULL);
spin_lock(&acct_lock);
}
}
static int acct_on(char *name)
{
struct file *file;
struct vfsmount *mnt;
struct pid_namespace *ns;
struct bsd_acct_struct *acct = NULL;
/* Difference from BSD - they don't do O_APPEND */
file = filp_open(name, O_WRONLY|O_APPEND|O_LARGEFILE, 0);
if (IS_ERR(file))
return PTR_ERR(file);
if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) {
filp_close(file, NULL);
return -EACCES;
}
if (!file->f_op->write) {
filp_close(file, NULL);
return -EIO;
}
ns = task_active_pid_ns(current);
if (ns->bacct == NULL) {
acct = kzalloc(sizeof(struct bsd_acct_struct), GFP_KERNEL);
if (acct == NULL) {
filp_close(file, NULL);
return -ENOMEM;
}
}
spin_lock(&acct_lock);
if (ns->bacct == NULL) {
ns->bacct = acct;
acct = NULL;
}
mnt = file->f_path.mnt;
mnt_pin(mnt);
acct_file_reopen(ns->bacct, file, ns);
spin_unlock(&acct_lock);
mntput(mnt); /* it's pinned, now give up active reference */
kfree(acct);
return 0;
}
/**
* sys_acct - enable/disable process accounting
* @name: file name for accounting records or NULL to shutdown accounting
*
* Returns 0 for success or negative errno values for failure.
*
* sys_acct() is the only system call needed to implement process
* accounting. It takes the name of the file where accounting records
* should be written. If the filename is NULL, accounting will be
* shutdown.
*/
SYSCALL_DEFINE1(acct, const char __user *, name)
{
int error = 0;
if (!capable(CAP_SYS_PACCT))
return -EPERM;
if (name) {
char *tmp = getname(name);
if (IS_ERR(tmp))
return (PTR_ERR(tmp));
error = acct_on(tmp);
putname(tmp);
} else {
struct bsd_acct_struct *acct;
acct = task_active_pid_ns(current)->bacct;
if (acct == NULL)
return 0;
spin_lock(&acct_lock);
acct_file_reopen(acct, NULL, NULL);
spin_unlock(&acct_lock);
}
return error;
}
/**
* acct_auto_close - turn off a filesystem's accounting if it is on
* @m: vfsmount being shut down
*
* If the accounting is turned on for a file in the subtree pointed to
* to by m, turn accounting off. Done when m is about to die.
*/
void acct_auto_close_mnt(struct vfsmount *m)
{
struct bsd_acct_struct *acct;
spin_lock(&acct_lock);
restart:
list_for_each_entry(acct, &acct_list, list)
if (acct->file && acct->file->f_path.mnt == m) {
acct_file_reopen(acct, NULL, NULL);
goto restart;
}
spin_unlock(&acct_lock);
}
/**
* acct_auto_close - turn off a filesystem's accounting if it is on
* @sb: super block for the filesystem
*
* If the accounting is turned on for a file in the filesystem pointed
* to by sb, turn accounting off.
*/
void acct_auto_close(struct super_block *sb)
{
struct bsd_acct_struct *acct;
spin_lock(&acct_lock);
restart:
list_for_each_entry(acct, &acct_list, list)
if (acct->file && acct->file->f_path.dentry->d_sb == sb) {
acct_file_reopen(acct, NULL, NULL);
goto restart;
}
spin_unlock(&acct_lock);
}
void acct_exit_ns(struct pid_namespace *ns)
{
struct bsd_acct_struct *acct = ns->bacct;
if (acct == NULL)
return;
spin_lock(&acct_lock);
if (acct->file != NULL)
acct_file_reopen(acct, NULL, NULL);
spin_unlock(&acct_lock);
kfree(acct);
}
/*
* encode an unsigned long into a comp_t
*
* This routine has been adopted from the encode_comp_t() function in
* the kern_acct.c file of the FreeBSD operating system. The encoding
* is a 13-bit fraction with a 3-bit (base 8) exponent.
*/
#define MANTSIZE 13 /* 13 bit mantissa. */
#define EXPSIZE 3 /* Base 8 (3 bit) exponent. */
#define MAXFRACT ((1 << MANTSIZE) - 1) /* Maximum fractional value. */
static comp_t encode_comp_t(unsigned long value)
{
int exp, rnd;
exp = rnd = 0;
while (value > MAXFRACT) {
rnd = value & (1 << (EXPSIZE - 1)); /* Round up? */
value >>= EXPSIZE; /* Base 8 exponent == 3 bit shift. */
exp++;
}
/*
* If we need to round up, do it (and handle overflow correctly).
*/
if (rnd && (++value > MAXFRACT)) {
value >>= EXPSIZE;
exp++;
}
/*
* Clean it up and polish it off.
*/
exp <<= MANTSIZE; /* Shift the exponent into place */
exp += value; /* and add on the mantissa. */
return exp;
}
#if ACCT_VERSION==1 || ACCT_VERSION==2
/*
* encode an u64 into a comp2_t (24 bits)
*
* Format: 5 bit base 2 exponent, 20 bits mantissa.
* The leading bit of the mantissa is not stored, but implied for
* non-zero exponents.
* Largest encodable value is 50 bits.
*/
#define MANTSIZE2 20 /* 20 bit mantissa. */
#define EXPSIZE2 5 /* 5 bit base 2 exponent. */
#define MAXFRACT2 ((1ul << MANTSIZE2) - 1) /* Maximum fractional value. */
#define MAXEXP2 ((1 <<EXPSIZE2) - 1) /* Maximum exponent. */
static comp2_t encode_comp2_t(u64 value)
{
int exp, rnd;
exp = (value > (MAXFRACT2>>1));
rnd = 0;
while (value > MAXFRACT2) {
rnd = value & 1;
value >>= 1;
exp++;
}
/*
* If we need to round up, do it (and handle overflow correctly).
*/
if (rnd && (++value > MAXFRACT2)) {
value >>= 1;
exp++;
}
if (exp > MAXEXP2) {
/* Overflow. Return largest representable number instead. */
return (1ul << (MANTSIZE2+EXPSIZE2-1)) - 1;
} else {
return (value & (MAXFRACT2>>1)) | (exp << (MANTSIZE2-1));
}
}
#endif
#if ACCT_VERSION==3
/*
* encode an u64 into a 32 bit IEEE float
*/
static u32 encode_float(u64 value)
{
unsigned exp = 190;
unsigned u;
if (value==0) return 0;
while ((s64)value > 0){
value <<= 1;
exp--;
}
u = (u32)(value >> 40) & 0x7fffffu;
return u | (exp << 23);
}
#endif
/*
* Write an accounting entry for an exiting process
*
* The acct_process() call is the workhorse of the process
* accounting system. The struct acct is built here and then written
* into the accounting file. This function should only be called from
* do_exit() or when switching to a different output file.
*/
/*
* do_acct_process does all actual work. Caller holds the reference to file.
*/
static void do_acct_process(struct bsd_acct_struct *acct,
struct pid_namespace *ns, struct file *file)
{
struct pacct_struct *pacct = &current->signal->pacct;
acct_t ac;
mm_segment_t fs;
unsigned long flim;
u64 elapsed;
u64 run_time;
struct timespec uptime;
struct tty_struct *tty;
const struct cred *orig_cred;
/* Perform file operations on behalf of whoever enabled accounting */
orig_cred = override_creds(file->f_cred);
/*
* First check to see if there is enough free_space to continue
* the process accounting system.
*/
if (!check_free_space(acct, file))
goto out;
/*
* Fill the accounting struct with the needed info as recorded
* by the different kernel functions.
*/
memset(&ac, 0, sizeof(acct_t));
ac.ac_version = ACCT_VERSION | ACCT_BYTEORDER;
strlcpy(ac.ac_comm, current->comm, sizeof(ac.ac_comm));
/* calculate run_time in nsec*/
do_posix_clock_monotonic_gettime(&uptime);
run_time = (u64)uptime.tv_sec*NSEC_PER_SEC + uptime.tv_nsec;
run_time -= (u64)current->group_leader->start_time.tv_sec * NSEC_PER_SEC
+ current->group_leader->start_time.tv_nsec;
/* convert nsec -> AHZ */
elapsed = nsec_to_AHZ(run_time);
#if ACCT_VERSION==3
ac.ac_etime = encode_float(elapsed);
#else
ac.ac_etime = encode_comp_t(elapsed < (unsigned long) -1l ?
(unsigned long) elapsed : (unsigned long) -1l);
#endif
#if ACCT_VERSION==1 || ACCT_VERSION==2
{
/* new enlarged etime field */
comp2_t etime = encode_comp2_t(elapsed);
ac.ac_etime_hi = etime >> 16;
ac.ac_etime_lo = (u16) etime;
}
#endif
do_div(elapsed, AHZ);
ac.ac_btime = get_seconds() - elapsed;
/* we really need to bite the bullet and change layout */
ac.ac_uid = orig_cred->uid;
ac.ac_gid = orig_cred->gid;
#if ACCT_VERSION==2
ac.ac_ahz = AHZ;
#endif
#if ACCT_VERSION==1 || ACCT_VERSION==2
/* backward-compatible 16 bit fields */
ac.ac_uid16 = ac.ac_uid;
ac.ac_gid16 = ac.ac_gid;
#endif
#if ACCT_VERSION==3
ac.ac_pid = task_tgid_nr_ns(current, ns);
rcu_read_lock();
ac.ac_ppid = task_tgid_nr_ns(rcu_dereference(current->real_parent), ns);
rcu_read_unlock();
#endif
spin_lock_irq(&current->sighand->siglock);
tty = current->signal->tty; /* Safe as we hold the siglock */
ac.ac_tty = tty ? old_encode_dev(tty_devnum(tty)) : 0;
ac.ac_utime = encode_comp_t(jiffies_to_AHZ(cputime_to_jiffies(pacct->ac_utime)));
ac.ac_stime = encode_comp_t(jiffies_to_AHZ(cputime_to_jiffies(pacct->ac_stime)));
ac.ac_flag = pacct->ac_flag;
ac.ac_mem = encode_comp_t(pacct->ac_mem);
ac.ac_minflt = encode_comp_t(pacct->ac_minflt);
ac.ac_majflt = encode_comp_t(pacct->ac_majflt);
ac.ac_exitcode = pacct->ac_exitcode;
spin_unlock_irq(&current->sighand->siglock);
ac.ac_io = encode_comp_t(0 /* current->io_usage */); /* %% */
ac.ac_rw = encode_comp_t(ac.ac_io / 1024);
ac.ac_swaps = encode_comp_t(0);
/*
* Kernel segment override to datasegment and write it
* to the accounting file.
*/
fs = get_fs();
set_fs(KERNEL_DS);
/*
* Accounting records are not subject to resource limits.
*/
flim = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
current->signal->rlim[RLIMIT_FSIZE].rlim_cur = RLIM_INFINITY;
file->f_op->write(file, (char *)&ac,
sizeof(acct_t), &file->f_pos);
current->signal->rlim[RLIMIT_FSIZE].rlim_cur = flim;
set_fs(fs);
out:
revert_creds(orig_cred);
}
/**
* acct_collect - collect accounting information into pacct_struct
* @exitcode: task exit code
* @group_dead: not 0, if this thread is the last one in the process.
*/
void acct_collect(long exitcode, int group_dead)
{
struct pacct_struct *pacct = &current->signal->pacct;
unsigned long vsize = 0;
if (group_dead && current->mm) {
struct vm_area_struct *vma;
down_read(&current->mm->mmap_sem);
vma = current->mm->mmap;
while (vma) {
vsize += vma->vm_end - vma->vm_start;
vma = vma->vm_next;
}
up_read(&current->mm->mmap_sem);
}
spin_lock_irq(&current->sighand->siglock);
if (group_dead)
pacct->ac_mem = vsize / 1024;
if (thread_group_leader(current)) {
pacct->ac_exitcode = exitcode;
if (current->flags & PF_FORKNOEXEC)
pacct->ac_flag |= AFORK;
}
if (current->flags & PF_SUPERPRIV)
pacct->ac_flag |= ASU;
if (current->flags & PF_DUMPCORE)
pacct->ac_flag |= ACORE;
if (current->flags & PF_SIGNALED)
pacct->ac_flag |= AXSIG;
pacct->ac_utime += current->utime;
pacct->ac_stime += current->stime;
pacct->ac_minflt += current->min_flt;
pacct->ac_majflt += current->maj_flt;
spin_unlock_irq(&current->sighand->siglock);
}
static void acct_process_in_ns(struct pid_namespace *ns)
{
struct file *file = NULL;
struct bsd_acct_struct *acct;
acct = ns->bacct;
/*
* accelerate the common fastpath:
*/
if (!acct || !acct->file)
return;
spin_lock(&acct_lock);
file = acct->file;
if (unlikely(!file)) {
spin_unlock(&acct_lock);
return;
}
get_file(file);
spin_unlock(&acct_lock);
do_acct_process(acct, ns, file);
fput(file);
}
/**
* acct_process - now just a wrapper around acct_process_in_ns,
* which in turn is a wrapper around do_acct_process.
*
* handles process accounting for an exiting task
*/
void acct_process(void)
{
struct pid_namespace *ns;
/*
* This loop is safe lockless, since current is still
* alive and holds its namespace, which in turn holds
* its parent.
*/
for (ns = task_active_pid_ns(current); ns != NULL; ns = ns->parent)
acct_process_in_ns(ns);
}