blob: f8cbb512132fdcd224f6dda223689de4a4bb4350 [file] [log] [blame]
/*
* Copyright 2012 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include <core/object.h>
#include <core/client.h>
#include <core/parent.h>
#include <core/handle.h>
#include <core/enum.h>
#include <nvif/unpack.h>
#include <nvif/class.h>
#include <subdev/bios.h>
#include <subdev/bios/dcb.h>
#include <subdev/bios/disp.h>
#include <subdev/bios/init.h>
#include <subdev/bios/pll.h>
#include <subdev/devinit.h>
#include <subdev/timer.h>
#include <subdev/fb.h>
#include "nv50.h"
/*******************************************************************************
* EVO channel base class
******************************************************************************/
static int
nv50_disp_chan_create_(struct nouveau_object *parent,
struct nouveau_object *engine,
struct nouveau_oclass *oclass, int head,
int length, void **pobject)
{
const struct nv50_disp_chan_impl *impl = (void *)oclass->ofuncs;
struct nv50_disp_base *base = (void *)parent;
struct nv50_disp_chan *chan;
int chid = impl->chid + head;
int ret;
if (base->chan & (1 << chid))
return -EBUSY;
base->chan |= (1 << chid);
ret = nouveau_namedb_create_(parent, engine, oclass, 0, NULL,
(1ULL << NVDEV_ENGINE_DMAOBJ),
length, pobject);
chan = *pobject;
if (ret)
return ret;
chan->chid = chid;
nv_parent(chan)->object_attach = impl->attach;
nv_parent(chan)->object_detach = impl->detach;
return 0;
}
static void
nv50_disp_chan_destroy(struct nv50_disp_chan *chan)
{
struct nv50_disp_base *base = (void *)nv_object(chan)->parent;
base->chan &= ~(1 << chan->chid);
nouveau_namedb_destroy(&chan->base);
}
int
nv50_disp_chan_map(struct nouveau_object *object, u64 *addr, u32 *size)
{
struct nv50_disp_chan *chan = (void *)object;
*addr = nv_device_resource_start(nv_device(object), 0) +
0x640000 + (chan->chid * 0x1000);
*size = 0x001000;
return 0;
}
u32
nv50_disp_chan_rd32(struct nouveau_object *object, u64 addr)
{
struct nv50_disp_priv *priv = (void *)object->engine;
struct nv50_disp_chan *chan = (void *)object;
return nv_rd32(priv, 0x640000 + (chan->chid * 0x1000) + addr);
}
void
nv50_disp_chan_wr32(struct nouveau_object *object, u64 addr, u32 data)
{
struct nv50_disp_priv *priv = (void *)object->engine;
struct nv50_disp_chan *chan = (void *)object;
nv_wr32(priv, 0x640000 + (chan->chid * 0x1000) + addr, data);
}
/*******************************************************************************
* EVO DMA channel base class
******************************************************************************/
static int
nv50_disp_dmac_object_attach(struct nouveau_object *parent,
struct nouveau_object *object, u32 name)
{
struct nv50_disp_base *base = (void *)parent->parent;
struct nv50_disp_chan *chan = (void *)parent;
u32 addr = nv_gpuobj(object)->node->offset;
u32 chid = chan->chid;
u32 data = (chid << 28) | (addr << 10) | chid;
return nouveau_ramht_insert(base->ramht, chid, name, data);
}
static void
nv50_disp_dmac_object_detach(struct nouveau_object *parent, int cookie)
{
struct nv50_disp_base *base = (void *)parent->parent;
nouveau_ramht_remove(base->ramht, cookie);
}
static int
nv50_disp_dmac_create_(struct nouveau_object *parent,
struct nouveau_object *engine,
struct nouveau_oclass *oclass, u32 pushbuf, int head,
int length, void **pobject)
{
struct nv50_disp_dmac *dmac;
int ret;
ret = nv50_disp_chan_create_(parent, engine, oclass, head,
length, pobject);
dmac = *pobject;
if (ret)
return ret;
dmac->pushdma = (void *)nouveau_handle_ref(parent, pushbuf);
if (!dmac->pushdma)
return -ENOENT;
switch (nv_mclass(dmac->pushdma)) {
case 0x0002:
case 0x003d:
if (dmac->pushdma->limit - dmac->pushdma->start != 0xfff)
return -EINVAL;
switch (dmac->pushdma->target) {
case NV_MEM_TARGET_VRAM:
dmac->push = 0x00000000 | dmac->pushdma->start >> 8;
break;
case NV_MEM_TARGET_PCI_NOSNOOP:
dmac->push = 0x00000003 | dmac->pushdma->start >> 8;
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
return 0;
}
void
nv50_disp_dmac_dtor(struct nouveau_object *object)
{
struct nv50_disp_dmac *dmac = (void *)object;
nouveau_object_ref(NULL, (struct nouveau_object **)&dmac->pushdma);
nv50_disp_chan_destroy(&dmac->base);
}
static int
nv50_disp_dmac_init(struct nouveau_object *object)
{
struct nv50_disp_priv *priv = (void *)object->engine;
struct nv50_disp_dmac *dmac = (void *)object;
int chid = dmac->base.chid;
int ret;
ret = nv50_disp_chan_init(&dmac->base);
if (ret)
return ret;
/* enable error reporting */
nv_mask(priv, 0x610028, 0x00010001 << chid, 0x00010001 << chid);
/* initialise channel for dma command submission */
nv_wr32(priv, 0x610204 + (chid * 0x0010), dmac->push);
nv_wr32(priv, 0x610208 + (chid * 0x0010), 0x00010000);
nv_wr32(priv, 0x61020c + (chid * 0x0010), chid);
nv_mask(priv, 0x610200 + (chid * 0x0010), 0x00000010, 0x00000010);
nv_wr32(priv, 0x640000 + (chid * 0x1000), 0x00000000);
nv_wr32(priv, 0x610200 + (chid * 0x0010), 0x00000013);
/* wait for it to go inactive */
if (!nv_wait(priv, 0x610200 + (chid * 0x10), 0x80000000, 0x00000000)) {
nv_error(dmac, "init timeout, 0x%08x\n",
nv_rd32(priv, 0x610200 + (chid * 0x10)));
return -EBUSY;
}
return 0;
}
static int
nv50_disp_dmac_fini(struct nouveau_object *object, bool suspend)
{
struct nv50_disp_priv *priv = (void *)object->engine;
struct nv50_disp_dmac *dmac = (void *)object;
int chid = dmac->base.chid;
/* deactivate channel */
nv_mask(priv, 0x610200 + (chid * 0x0010), 0x00001010, 0x00001000);
nv_mask(priv, 0x610200 + (chid * 0x0010), 0x00000003, 0x00000000);
if (!nv_wait(priv, 0x610200 + (chid * 0x10), 0x001e0000, 0x00000000)) {
nv_error(dmac, "fini timeout, 0x%08x\n",
nv_rd32(priv, 0x610200 + (chid * 0x10)));
if (suspend)
return -EBUSY;
}
/* disable error reporting */
nv_mask(priv, 0x610028, 0x00010001 << chid, 0x00000000 << chid);
return nv50_disp_chan_fini(&dmac->base, suspend);
}
/*******************************************************************************
* EVO master channel object
******************************************************************************/
static void
nv50_disp_mthd_list(struct nv50_disp_priv *priv, int debug, u32 base, int c,
const struct nv50_disp_mthd_list *list, int inst)
{
struct nouveau_object *disp = nv_object(priv);
int i;
for (i = 0; list->data[i].mthd; i++) {
if (list->data[i].addr) {
u32 next = nv_rd32(priv, list->data[i].addr + base + 0);
u32 prev = nv_rd32(priv, list->data[i].addr + base + c);
u32 mthd = list->data[i].mthd + (list->mthd * inst);
const char *name = list->data[i].name;
char mods[16];
if (prev != next)
snprintf(mods, sizeof(mods), "-> 0x%08x", next);
else
snprintf(mods, sizeof(mods), "%13c", ' ');
nv_printk_(disp, debug, "\t0x%04x: 0x%08x %s%s%s\n",
mthd, prev, mods, name ? " // " : "",
name ? name : "");
}
}
}
void
nv50_disp_mthd_chan(struct nv50_disp_priv *priv, int debug, int head,
const struct nv50_disp_mthd_chan *chan)
{
struct nouveau_object *disp = nv_object(priv);
const struct nv50_disp_impl *impl = (void *)disp->oclass;
const struct nv50_disp_mthd_list *list;
int i, j;
if (debug > nv_subdev(priv)->debug)
return;
for (i = 0; (list = chan->data[i].mthd) != NULL; i++) {
u32 base = head * chan->addr;
for (j = 0; j < chan->data[i].nr; j++, base += list->addr) {
const char *cname = chan->name;
const char *sname = "";
char cname_[16], sname_[16];
if (chan->addr) {
snprintf(cname_, sizeof(cname_), "%s %d",
chan->name, head);
cname = cname_;
}
if (chan->data[i].nr > 1) {
snprintf(sname_, sizeof(sname_), " - %s %d",
chan->data[i].name, j);
sname = sname_;
}
nv_printk_(disp, debug, "%s%s:\n", cname, sname);
nv50_disp_mthd_list(priv, debug, base, impl->mthd.prev,
list, j);
}
}
}
const struct nv50_disp_mthd_list
nv50_disp_mast_mthd_base = {
.mthd = 0x0000,
.addr = 0x000000,
.data = {
{ 0x0080, 0x000000 },
{ 0x0084, 0x610bb8 },
{ 0x0088, 0x610b9c },
{ 0x008c, 0x000000 },
{}
}
};
static const struct nv50_disp_mthd_list
nv50_disp_mast_mthd_dac = {
.mthd = 0x0080,
.addr = 0x000008,
.data = {
{ 0x0400, 0x610b58 },
{ 0x0404, 0x610bdc },
{ 0x0420, 0x610828 },
{}
}
};
const struct nv50_disp_mthd_list
nv50_disp_mast_mthd_sor = {
.mthd = 0x0040,
.addr = 0x000008,
.data = {
{ 0x0600, 0x610b70 },
{}
}
};
const struct nv50_disp_mthd_list
nv50_disp_mast_mthd_pior = {
.mthd = 0x0040,
.addr = 0x000008,
.data = {
{ 0x0700, 0x610b80 },
{}
}
};
static const struct nv50_disp_mthd_list
nv50_disp_mast_mthd_head = {
.mthd = 0x0400,
.addr = 0x000540,
.data = {
{ 0x0800, 0x610ad8 },
{ 0x0804, 0x610ad0 },
{ 0x0808, 0x610a48 },
{ 0x080c, 0x610a78 },
{ 0x0810, 0x610ac0 },
{ 0x0814, 0x610af8 },
{ 0x0818, 0x610b00 },
{ 0x081c, 0x610ae8 },
{ 0x0820, 0x610af0 },
{ 0x0824, 0x610b08 },
{ 0x0828, 0x610b10 },
{ 0x082c, 0x610a68 },
{ 0x0830, 0x610a60 },
{ 0x0834, 0x000000 },
{ 0x0838, 0x610a40 },
{ 0x0840, 0x610a24 },
{ 0x0844, 0x610a2c },
{ 0x0848, 0x610aa8 },
{ 0x084c, 0x610ab0 },
{ 0x0860, 0x610a84 },
{ 0x0864, 0x610a90 },
{ 0x0868, 0x610b18 },
{ 0x086c, 0x610b20 },
{ 0x0870, 0x610ac8 },
{ 0x0874, 0x610a38 },
{ 0x0880, 0x610a58 },
{ 0x0884, 0x610a9c },
{ 0x08a0, 0x610a70 },
{ 0x08a4, 0x610a50 },
{ 0x08a8, 0x610ae0 },
{ 0x08c0, 0x610b28 },
{ 0x08c4, 0x610b30 },
{ 0x08c8, 0x610b40 },
{ 0x08d4, 0x610b38 },
{ 0x08d8, 0x610b48 },
{ 0x08dc, 0x610b50 },
{ 0x0900, 0x610a18 },
{ 0x0904, 0x610ab8 },
{}
}
};
static const struct nv50_disp_mthd_chan
nv50_disp_mast_mthd_chan = {
.name = "Core",
.addr = 0x000000,
.data = {
{ "Global", 1, &nv50_disp_mast_mthd_base },
{ "DAC", 3, &nv50_disp_mast_mthd_dac },
{ "SOR", 2, &nv50_disp_mast_mthd_sor },
{ "PIOR", 3, &nv50_disp_mast_mthd_pior },
{ "HEAD", 2, &nv50_disp_mast_mthd_head },
{}
}
};
int
nv50_disp_mast_ctor(struct nouveau_object *parent,
struct nouveau_object *engine,
struct nouveau_oclass *oclass, void *data, u32 size,
struct nouveau_object **pobject)
{
union {
struct nv50_disp_core_channel_dma_v0 v0;
} *args = data;
struct nv50_disp_dmac *mast;
int ret;
nv_ioctl(parent, "create disp core channel dma size %d\n", size);
if (nvif_unpack(args->v0, 0, 0, false)) {
nv_ioctl(parent, "create disp core channel dma vers %d "
"pushbuf %08x\n",
args->v0.version, args->v0.pushbuf);
} else
return ret;
ret = nv50_disp_dmac_create_(parent, engine, oclass, args->v0.pushbuf,
0, sizeof(*mast), (void **)&mast);
*pobject = nv_object(mast);
if (ret)
return ret;
return 0;
}
static int
nv50_disp_mast_init(struct nouveau_object *object)
{
struct nv50_disp_priv *priv = (void *)object->engine;
struct nv50_disp_dmac *mast = (void *)object;
int ret;
ret = nv50_disp_chan_init(&mast->base);
if (ret)
return ret;
/* enable error reporting */
nv_mask(priv, 0x610028, 0x00010001, 0x00010001);
/* attempt to unstick channel from some unknown state */
if ((nv_rd32(priv, 0x610200) & 0x009f0000) == 0x00020000)
nv_mask(priv, 0x610200, 0x00800000, 0x00800000);
if ((nv_rd32(priv, 0x610200) & 0x003f0000) == 0x00030000)
nv_mask(priv, 0x610200, 0x00600000, 0x00600000);
/* initialise channel for dma command submission */
nv_wr32(priv, 0x610204, mast->push);
nv_wr32(priv, 0x610208, 0x00010000);
nv_wr32(priv, 0x61020c, 0x00000000);
nv_mask(priv, 0x610200, 0x00000010, 0x00000010);
nv_wr32(priv, 0x640000, 0x00000000);
nv_wr32(priv, 0x610200, 0x01000013);
/* wait for it to go inactive */
if (!nv_wait(priv, 0x610200, 0x80000000, 0x00000000)) {
nv_error(mast, "init: 0x%08x\n", nv_rd32(priv, 0x610200));
return -EBUSY;
}
return 0;
}
static int
nv50_disp_mast_fini(struct nouveau_object *object, bool suspend)
{
struct nv50_disp_priv *priv = (void *)object->engine;
struct nv50_disp_dmac *mast = (void *)object;
/* deactivate channel */
nv_mask(priv, 0x610200, 0x00000010, 0x00000000);
nv_mask(priv, 0x610200, 0x00000003, 0x00000000);
if (!nv_wait(priv, 0x610200, 0x001e0000, 0x00000000)) {
nv_error(mast, "fini: 0x%08x\n", nv_rd32(priv, 0x610200));
if (suspend)
return -EBUSY;
}
/* disable error reporting */
nv_mask(priv, 0x610028, 0x00010001, 0x00000000);
return nv50_disp_chan_fini(&mast->base, suspend);
}
struct nv50_disp_chan_impl
nv50_disp_mast_ofuncs = {
.base.ctor = nv50_disp_mast_ctor,
.base.dtor = nv50_disp_dmac_dtor,
.base.init = nv50_disp_mast_init,
.base.fini = nv50_disp_mast_fini,
.base.map = nv50_disp_chan_map,
.base.rd32 = nv50_disp_chan_rd32,
.base.wr32 = nv50_disp_chan_wr32,
.chid = 0,
.attach = nv50_disp_dmac_object_attach,
.detach = nv50_disp_dmac_object_detach,
};
/*******************************************************************************
* EVO sync channel objects
******************************************************************************/
static const struct nv50_disp_mthd_list
nv50_disp_sync_mthd_base = {
.mthd = 0x0000,
.addr = 0x000000,
.data = {
{ 0x0080, 0x000000 },
{ 0x0084, 0x0008c4 },
{ 0x0088, 0x0008d0 },
{ 0x008c, 0x0008dc },
{ 0x0090, 0x0008e4 },
{ 0x0094, 0x610884 },
{ 0x00a0, 0x6108a0 },
{ 0x00a4, 0x610878 },
{ 0x00c0, 0x61086c },
{ 0x00e0, 0x610858 },
{ 0x00e4, 0x610860 },
{ 0x00e8, 0x6108ac },
{ 0x00ec, 0x6108b4 },
{ 0x0100, 0x610894 },
{ 0x0110, 0x6108bc },
{ 0x0114, 0x61088c },
{}
}
};
const struct nv50_disp_mthd_list
nv50_disp_sync_mthd_image = {
.mthd = 0x0400,
.addr = 0x000000,
.data = {
{ 0x0800, 0x6108f0 },
{ 0x0804, 0x6108fc },
{ 0x0808, 0x61090c },
{ 0x080c, 0x610914 },
{ 0x0810, 0x610904 },
{}
}
};
static const struct nv50_disp_mthd_chan
nv50_disp_sync_mthd_chan = {
.name = "Base",
.addr = 0x000540,
.data = {
{ "Global", 1, &nv50_disp_sync_mthd_base },
{ "Image", 2, &nv50_disp_sync_mthd_image },
{}
}
};
int
nv50_disp_sync_ctor(struct nouveau_object *parent,
struct nouveau_object *engine,
struct nouveau_oclass *oclass, void *data, u32 size,
struct nouveau_object **pobject)
{
union {
struct nv50_disp_base_channel_dma_v0 v0;
} *args = data;
struct nv50_disp_priv *priv = (void *)engine;
struct nv50_disp_dmac *dmac;
int ret;
nv_ioctl(parent, "create disp base channel dma size %d\n", size);
if (nvif_unpack(args->v0, 0, 0, false)) {
nv_ioctl(parent, "create disp base channel dma vers %d "
"pushbuf %08x head %d\n",
args->v0.version, args->v0.pushbuf, args->v0.head);
if (args->v0.head > priv->head.nr)
return -EINVAL;
} else
return ret;
ret = nv50_disp_dmac_create_(parent, engine, oclass, args->v0.pushbuf,
args->v0.head, sizeof(*dmac),
(void **)&dmac);
*pobject = nv_object(dmac);
if (ret)
return ret;
return 0;
}
struct nv50_disp_chan_impl
nv50_disp_sync_ofuncs = {
.base.ctor = nv50_disp_sync_ctor,
.base.dtor = nv50_disp_dmac_dtor,
.base.init = nv50_disp_dmac_init,
.base.fini = nv50_disp_dmac_fini,
.base.map = nv50_disp_chan_map,
.base.rd32 = nv50_disp_chan_rd32,
.base.wr32 = nv50_disp_chan_wr32,
.chid = 1,
.attach = nv50_disp_dmac_object_attach,
.detach = nv50_disp_dmac_object_detach,
};
/*******************************************************************************
* EVO overlay channel objects
******************************************************************************/
const struct nv50_disp_mthd_list
nv50_disp_ovly_mthd_base = {
.mthd = 0x0000,
.addr = 0x000000,
.data = {
{ 0x0080, 0x000000 },
{ 0x0084, 0x0009a0 },
{ 0x0088, 0x0009c0 },
{ 0x008c, 0x0009c8 },
{ 0x0090, 0x6109b4 },
{ 0x0094, 0x610970 },
{ 0x00a0, 0x610998 },
{ 0x00a4, 0x610964 },
{ 0x00c0, 0x610958 },
{ 0x00e0, 0x6109a8 },
{ 0x00e4, 0x6109d0 },
{ 0x00e8, 0x6109d8 },
{ 0x0100, 0x61094c },
{ 0x0104, 0x610984 },
{ 0x0108, 0x61098c },
{ 0x0800, 0x6109f8 },
{ 0x0808, 0x610a08 },
{ 0x080c, 0x610a10 },
{ 0x0810, 0x610a00 },
{}
}
};
static const struct nv50_disp_mthd_chan
nv50_disp_ovly_mthd_chan = {
.name = "Overlay",
.addr = 0x000540,
.data = {
{ "Global", 1, &nv50_disp_ovly_mthd_base },
{}
}
};
int
nv50_disp_ovly_ctor(struct nouveau_object *parent,
struct nouveau_object *engine,
struct nouveau_oclass *oclass, void *data, u32 size,
struct nouveau_object **pobject)
{
union {
struct nv50_disp_overlay_channel_dma_v0 v0;
} *args = data;
struct nv50_disp_priv *priv = (void *)engine;
struct nv50_disp_dmac *dmac;
int ret;
nv_ioctl(parent, "create disp overlay channel dma size %d\n", size);
if (nvif_unpack(args->v0, 0, 0, false)) {
nv_ioctl(parent, "create disp overlay channel dma vers %d "
"pushbuf %08x head %d\n",
args->v0.version, args->v0.pushbuf, args->v0.head);
if (args->v0.head > priv->head.nr)
return -EINVAL;
} else
return ret;
ret = nv50_disp_dmac_create_(parent, engine, oclass, args->v0.pushbuf,
args->v0.head, sizeof(*dmac),
(void **)&dmac);
*pobject = nv_object(dmac);
if (ret)
return ret;
return 0;
}
struct nv50_disp_chan_impl
nv50_disp_ovly_ofuncs = {
.base.ctor = nv50_disp_ovly_ctor,
.base.dtor = nv50_disp_dmac_dtor,
.base.init = nv50_disp_dmac_init,
.base.fini = nv50_disp_dmac_fini,
.base.map = nv50_disp_chan_map,
.base.rd32 = nv50_disp_chan_rd32,
.base.wr32 = nv50_disp_chan_wr32,
.chid = 3,
.attach = nv50_disp_dmac_object_attach,
.detach = nv50_disp_dmac_object_detach,
};
/*******************************************************************************
* EVO PIO channel base class
******************************************************************************/
static int
nv50_disp_pioc_create_(struct nouveau_object *parent,
struct nouveau_object *engine,
struct nouveau_oclass *oclass, int head,
int length, void **pobject)
{
return nv50_disp_chan_create_(parent, engine, oclass, head,
length, pobject);
}
void
nv50_disp_pioc_dtor(struct nouveau_object *object)
{
struct nv50_disp_pioc *pioc = (void *)object;
nv50_disp_chan_destroy(&pioc->base);
}
static int
nv50_disp_pioc_init(struct nouveau_object *object)
{
struct nv50_disp_priv *priv = (void *)object->engine;
struct nv50_disp_pioc *pioc = (void *)object;
int chid = pioc->base.chid;
int ret;
ret = nv50_disp_chan_init(&pioc->base);
if (ret)
return ret;
nv_wr32(priv, 0x610200 + (chid * 0x10), 0x00002000);
if (!nv_wait(priv, 0x610200 + (chid * 0x10), 0x00000000, 0x00000000)) {
nv_error(pioc, "timeout0: 0x%08x\n",
nv_rd32(priv, 0x610200 + (chid * 0x10)));
return -EBUSY;
}
nv_wr32(priv, 0x610200 + (chid * 0x10), 0x00000001);
if (!nv_wait(priv, 0x610200 + (chid * 0x10), 0x00030000, 0x00010000)) {
nv_error(pioc, "timeout1: 0x%08x\n",
nv_rd32(priv, 0x610200 + (chid * 0x10)));
return -EBUSY;
}
return 0;
}
static int
nv50_disp_pioc_fini(struct nouveau_object *object, bool suspend)
{
struct nv50_disp_priv *priv = (void *)object->engine;
struct nv50_disp_pioc *pioc = (void *)object;
int chid = pioc->base.chid;
nv_mask(priv, 0x610200 + (chid * 0x10), 0x00000001, 0x00000000);
if (!nv_wait(priv, 0x610200 + (chid * 0x10), 0x00030000, 0x00000000)) {
nv_error(pioc, "timeout: 0x%08x\n",
nv_rd32(priv, 0x610200 + (chid * 0x10)));
if (suspend)
return -EBUSY;
}
return nv50_disp_chan_fini(&pioc->base, suspend);
}
/*******************************************************************************
* EVO immediate overlay channel objects
******************************************************************************/
int
nv50_disp_oimm_ctor(struct nouveau_object *parent,
struct nouveau_object *engine,
struct nouveau_oclass *oclass, void *data, u32 size,
struct nouveau_object **pobject)
{
union {
struct nv50_disp_overlay_v0 v0;
} *args = data;
struct nv50_disp_priv *priv = (void *)engine;
struct nv50_disp_pioc *pioc;
int ret;
nv_ioctl(parent, "create disp overlay size %d\n", size);
if (nvif_unpack(args->v0, 0, 0, false)) {
nv_ioctl(parent, "create disp overlay vers %d head %d\n",
args->v0.version, args->v0.head);
if (args->v0.head > priv->head.nr)
return -EINVAL;
} else
return ret;
ret = nv50_disp_pioc_create_(parent, engine, oclass, args->v0.head,
sizeof(*pioc), (void **)&pioc);
*pobject = nv_object(pioc);
if (ret)
return ret;
return 0;
}
struct nv50_disp_chan_impl
nv50_disp_oimm_ofuncs = {
.base.ctor = nv50_disp_oimm_ctor,
.base.dtor = nv50_disp_pioc_dtor,
.base.init = nv50_disp_pioc_init,
.base.fini = nv50_disp_pioc_fini,
.base.map = nv50_disp_chan_map,
.base.rd32 = nv50_disp_chan_rd32,
.base.wr32 = nv50_disp_chan_wr32,
.chid = 5,
};
/*******************************************************************************
* EVO cursor channel objects
******************************************************************************/
int
nv50_disp_curs_ctor(struct nouveau_object *parent,
struct nouveau_object *engine,
struct nouveau_oclass *oclass, void *data, u32 size,
struct nouveau_object **pobject)
{
union {
struct nv50_disp_cursor_v0 v0;
} *args = data;
struct nv50_disp_priv *priv = (void *)engine;
struct nv50_disp_pioc *pioc;
int ret;
nv_ioctl(parent, "create disp cursor size %d\n", size);
if (nvif_unpack(args->v0, 0, 0, false)) {
nv_ioctl(parent, "create disp cursor vers %d head %d\n",
args->v0.version, args->v0.head);
if (args->v0.head > priv->head.nr)
return -EINVAL;
} else
return ret;
ret = nv50_disp_pioc_create_(parent, engine, oclass, args->v0.head,
sizeof(*pioc), (void **)&pioc);
*pobject = nv_object(pioc);
if (ret)
return ret;
return 0;
}
struct nv50_disp_chan_impl
nv50_disp_curs_ofuncs = {
.base.ctor = nv50_disp_curs_ctor,
.base.dtor = nv50_disp_pioc_dtor,
.base.init = nv50_disp_pioc_init,
.base.fini = nv50_disp_pioc_fini,
.base.map = nv50_disp_chan_map,
.base.rd32 = nv50_disp_chan_rd32,
.base.wr32 = nv50_disp_chan_wr32,
.chid = 7,
};
/*******************************************************************************
* Base display object
******************************************************************************/
int
nv50_disp_base_scanoutpos(NV50_DISP_MTHD_V0)
{
const u32 blanke = nv_rd32(priv, 0x610aec + (head * 0x540));
const u32 blanks = nv_rd32(priv, 0x610af4 + (head * 0x540));
const u32 total = nv_rd32(priv, 0x610afc + (head * 0x540));
union {
struct nv04_disp_scanoutpos_v0 v0;
} *args = data;
int ret;
nv_ioctl(object, "disp scanoutpos size %d\n", size);
if (nvif_unpack(args->v0, 0, 0, false)) {
nv_ioctl(object, "disp scanoutpos vers %d\n", args->v0.version);
args->v0.vblanke = (blanke & 0xffff0000) >> 16;
args->v0.hblanke = (blanke & 0x0000ffff);
args->v0.vblanks = (blanks & 0xffff0000) >> 16;
args->v0.hblanks = (blanks & 0x0000ffff);
args->v0.vtotal = ( total & 0xffff0000) >> 16;
args->v0.htotal = ( total & 0x0000ffff);
args->v0.time[0] = ktime_to_ns(ktime_get());
args->v0.vline = /* vline read locks hline */
nv_rd32(priv, 0x616340 + (head * 0x800)) & 0xffff;
args->v0.time[1] = ktime_to_ns(ktime_get());
args->v0.hline =
nv_rd32(priv, 0x616344 + (head * 0x800)) & 0xffff;
} else
return ret;
return 0;
}
int
nv50_disp_base_mthd(struct nouveau_object *object, u32 mthd,
void *data, u32 size)
{
const struct nv50_disp_impl *impl = (void *)nv_oclass(object->engine);
union {
struct nv50_disp_mthd_v0 v0;
struct nv50_disp_mthd_v1 v1;
} *args = data;
struct nv50_disp_priv *priv = (void *)object->engine;
struct nvkm_output *outp = NULL;
struct nvkm_output *temp;
u16 type, mask = 0;
int head, ret;
if (mthd != NV50_DISP_MTHD)
return -EINVAL;
nv_ioctl(object, "disp mthd size %d\n", size);
if (nvif_unpack(args->v0, 0, 0, true)) {
nv_ioctl(object, "disp mthd vers %d mthd %02x head %d\n",
args->v0.version, args->v0.method, args->v0.head);
mthd = args->v0.method;
head = args->v0.head;
} else
if (nvif_unpack(args->v1, 1, 1, true)) {
nv_ioctl(object, "disp mthd vers %d mthd %02x "
"type %04x mask %04x\n",
args->v1.version, args->v1.method,
args->v1.hasht, args->v1.hashm);
mthd = args->v1.method;
type = args->v1.hasht;
mask = args->v1.hashm;
head = ffs((mask >> 8) & 0x0f) - 1;
} else
return ret;
if (head < 0 || head >= priv->head.nr)
return -ENXIO;
if (mask) {
list_for_each_entry(temp, &priv->base.outp, head) {
if ((temp->info.hasht == type) &&
(temp->info.hashm & mask) == mask) {
outp = temp;
break;
}
}
if (outp == NULL)
return -ENXIO;
}
switch (mthd) {
case NV50_DISP_SCANOUTPOS:
return impl->head.scanoutpos(object, priv, data, size, head);
default:
break;
}
switch (mthd * !!outp) {
case NV50_DISP_MTHD_V1_DAC_PWR:
return priv->dac.power(object, priv, data, size, head, outp);
case NV50_DISP_MTHD_V1_DAC_LOAD:
return priv->dac.sense(object, priv, data, size, head, outp);
case NV50_DISP_MTHD_V1_SOR_PWR:
return priv->sor.power(object, priv, data, size, head, outp);
case NV50_DISP_MTHD_V1_SOR_HDA_ELD:
if (!priv->sor.hda_eld)
return -ENODEV;
return priv->sor.hda_eld(object, priv, data, size, head, outp);
case NV50_DISP_MTHD_V1_SOR_HDMI_PWR:
if (!priv->sor.hdmi)
return -ENODEV;
return priv->sor.hdmi(object, priv, data, size, head, outp);
case NV50_DISP_MTHD_V1_SOR_LVDS_SCRIPT: {
union {
struct nv50_disp_sor_lvds_script_v0 v0;
} *args = data;
nv_ioctl(object, "disp sor lvds script size %d\n", size);
if (nvif_unpack(args->v0, 0, 0, false)) {
nv_ioctl(object, "disp sor lvds script "
"vers %d name %04x\n",
args->v0.version, args->v0.script);
priv->sor.lvdsconf = args->v0.script;
return 0;
} else
return ret;
}
break;
case NV50_DISP_MTHD_V1_SOR_DP_PWR: {
struct nvkm_output_dp *outpdp = (void *)outp;
union {
struct nv50_disp_sor_dp_pwr_v0 v0;
} *args = data;
nv_ioctl(object, "disp sor dp pwr size %d\n", size);
if (nvif_unpack(args->v0, 0, 0, false)) {
nv_ioctl(object, "disp sor dp pwr vers %d state %d\n",
args->v0.version, args->v0.state);
if (args->v0.state == 0) {
nvkm_notify_put(&outpdp->irq);
((struct nvkm_output_dp_impl *)nv_oclass(outp))
->lnk_pwr(outpdp, 0);
atomic_set(&outpdp->lt.done, 0);
return 0;
} else
if (args->v0.state != 0) {
nvkm_output_dp_train(&outpdp->base, 0, true);
return 0;
}
} else
return ret;
}
break;
case NV50_DISP_MTHD_V1_PIOR_PWR:
if (!priv->pior.power)
return -ENODEV;
return priv->pior.power(object, priv, data, size, head, outp);
default:
break;
}
return -EINVAL;
}
int
nv50_disp_base_ctor(struct nouveau_object *parent,
struct nouveau_object *engine,
struct nouveau_oclass *oclass, void *data, u32 size,
struct nouveau_object **pobject)
{
struct nv50_disp_priv *priv = (void *)engine;
struct nv50_disp_base *base;
int ret;
ret = nouveau_parent_create(parent, engine, oclass, 0,
priv->sclass, 0, &base);
*pobject = nv_object(base);
if (ret)
return ret;
return nouveau_ramht_new(nv_object(base), nv_object(base), 0x1000, 0,
&base->ramht);
}
void
nv50_disp_base_dtor(struct nouveau_object *object)
{
struct nv50_disp_base *base = (void *)object;
nouveau_ramht_ref(NULL, &base->ramht);
nouveau_parent_destroy(&base->base);
}
static int
nv50_disp_base_init(struct nouveau_object *object)
{
struct nv50_disp_priv *priv = (void *)object->engine;
struct nv50_disp_base *base = (void *)object;
int ret, i;
u32 tmp;
ret = nouveau_parent_init(&base->base);
if (ret)
return ret;
/* The below segments of code copying values from one register to
* another appear to inform EVO of the display capabilities or
* something similar. NFI what the 0x614004 caps are for..
*/
tmp = nv_rd32(priv, 0x614004);
nv_wr32(priv, 0x610184, tmp);
/* ... CRTC caps */
for (i = 0; i < priv->head.nr; i++) {
tmp = nv_rd32(priv, 0x616100 + (i * 0x800));
nv_wr32(priv, 0x610190 + (i * 0x10), tmp);
tmp = nv_rd32(priv, 0x616104 + (i * 0x800));
nv_wr32(priv, 0x610194 + (i * 0x10), tmp);
tmp = nv_rd32(priv, 0x616108 + (i * 0x800));
nv_wr32(priv, 0x610198 + (i * 0x10), tmp);
tmp = nv_rd32(priv, 0x61610c + (i * 0x800));
nv_wr32(priv, 0x61019c + (i * 0x10), tmp);
}
/* ... DAC caps */
for (i = 0; i < priv->dac.nr; i++) {
tmp = nv_rd32(priv, 0x61a000 + (i * 0x800));
nv_wr32(priv, 0x6101d0 + (i * 0x04), tmp);
}
/* ... SOR caps */
for (i = 0; i < priv->sor.nr; i++) {
tmp = nv_rd32(priv, 0x61c000 + (i * 0x800));
nv_wr32(priv, 0x6101e0 + (i * 0x04), tmp);
}
/* ... PIOR caps */
for (i = 0; i < priv->pior.nr; i++) {
tmp = nv_rd32(priv, 0x61e000 + (i * 0x800));
nv_wr32(priv, 0x6101f0 + (i * 0x04), tmp);
}
/* steal display away from vbios, or something like that */
if (nv_rd32(priv, 0x610024) & 0x00000100) {
nv_wr32(priv, 0x610024, 0x00000100);
nv_mask(priv, 0x6194e8, 0x00000001, 0x00000000);
if (!nv_wait(priv, 0x6194e8, 0x00000002, 0x00000000)) {
nv_error(priv, "timeout acquiring display\n");
return -EBUSY;
}
}
/* point at display engine memory area (hash table, objects) */
nv_wr32(priv, 0x610010, (nv_gpuobj(base->ramht)->addr >> 8) | 9);
/* enable supervisor interrupts, disable everything else */
nv_wr32(priv, 0x61002c, 0x00000370);
nv_wr32(priv, 0x610028, 0x00000000);
return 0;
}
static int
nv50_disp_base_fini(struct nouveau_object *object, bool suspend)
{
struct nv50_disp_priv *priv = (void *)object->engine;
struct nv50_disp_base *base = (void *)object;
/* disable all interrupts */
nv_wr32(priv, 0x610024, 0x00000000);
nv_wr32(priv, 0x610020, 0x00000000);
return nouveau_parent_fini(&base->base, suspend);
}
struct nouveau_ofuncs
nv50_disp_base_ofuncs = {
.ctor = nv50_disp_base_ctor,
.dtor = nv50_disp_base_dtor,
.init = nv50_disp_base_init,
.fini = nv50_disp_base_fini,
.mthd = nv50_disp_base_mthd,
.ntfy = nouveau_disp_ntfy,
};
static struct nouveau_oclass
nv50_disp_base_oclass[] = {
{ NV50_DISP, &nv50_disp_base_ofuncs },
{}
};
static struct nouveau_oclass
nv50_disp_sclass[] = {
{ NV50_DISP_CORE_CHANNEL_DMA, &nv50_disp_mast_ofuncs.base },
{ NV50_DISP_BASE_CHANNEL_DMA, &nv50_disp_sync_ofuncs.base },
{ NV50_DISP_OVERLAY_CHANNEL_DMA, &nv50_disp_ovly_ofuncs.base },
{ NV50_DISP_OVERLAY, &nv50_disp_oimm_ofuncs.base },
{ NV50_DISP_CURSOR, &nv50_disp_curs_ofuncs.base },
{}
};
/*******************************************************************************
* Display context, tracks instmem allocation and prevents more than one
* client using the display hardware at any time.
******************************************************************************/
static int
nv50_disp_data_ctor(struct nouveau_object *parent,
struct nouveau_object *engine,
struct nouveau_oclass *oclass, void *data, u32 size,
struct nouveau_object **pobject)
{
struct nv50_disp_priv *priv = (void *)engine;
struct nouveau_engctx *ectx;
int ret = -EBUSY;
/* no context needed for channel objects... */
if (nv_mclass(parent) != NV_DEVICE) {
atomic_inc(&parent->refcount);
*pobject = parent;
return 1;
}
/* allocate display hardware to client */
mutex_lock(&nv_subdev(priv)->mutex);
if (list_empty(&nv_engine(priv)->contexts)) {
ret = nouveau_engctx_create(parent, engine, oclass, NULL,
0x10000, 0x10000,
NVOBJ_FLAG_HEAP, &ectx);
*pobject = nv_object(ectx);
}
mutex_unlock(&nv_subdev(priv)->mutex);
return ret;
}
struct nouveau_oclass
nv50_disp_cclass = {
.handle = NV_ENGCTX(DISP, 0x50),
.ofuncs = &(struct nouveau_ofuncs) {
.ctor = nv50_disp_data_ctor,
.dtor = _nouveau_engctx_dtor,
.init = _nouveau_engctx_init,
.fini = _nouveau_engctx_fini,
.rd32 = _nouveau_engctx_rd32,
.wr32 = _nouveau_engctx_wr32,
},
};
/*******************************************************************************
* Display engine implementation
******************************************************************************/
static void
nv50_disp_vblank_fini(struct nvkm_event *event, int type, int head)
{
struct nouveau_disp *disp = container_of(event, typeof(*disp), vblank);
nv_mask(disp, 0x61002c, (4 << head), 0);
}
static void
nv50_disp_vblank_init(struct nvkm_event *event, int type, int head)
{
struct nouveau_disp *disp = container_of(event, typeof(*disp), vblank);
nv_mask(disp, 0x61002c, (4 << head), (4 << head));
}
const struct nvkm_event_func
nv50_disp_vblank_func = {
.ctor = nouveau_disp_vblank_ctor,
.init = nv50_disp_vblank_init,
.fini = nv50_disp_vblank_fini,
};
static const struct nouveau_enum
nv50_disp_intr_error_type[] = {
{ 3, "ILLEGAL_MTHD" },
{ 4, "INVALID_VALUE" },
{ 5, "INVALID_STATE" },
{ 7, "INVALID_HANDLE" },
{}
};
static const struct nouveau_enum
nv50_disp_intr_error_code[] = {
{ 0x00, "" },
{}
};
static void
nv50_disp_intr_error(struct nv50_disp_priv *priv, int chid)
{
struct nv50_disp_impl *impl = (void *)nv_object(priv)->oclass;
u32 data = nv_rd32(priv, 0x610084 + (chid * 0x08));
u32 addr = nv_rd32(priv, 0x610080 + (chid * 0x08));
u32 code = (addr & 0x00ff0000) >> 16;
u32 type = (addr & 0x00007000) >> 12;
u32 mthd = (addr & 0x00000ffc);
const struct nouveau_enum *ec, *et;
char ecunk[6], etunk[6];
et = nouveau_enum_find(nv50_disp_intr_error_type, type);
if (!et)
snprintf(etunk, sizeof(etunk), "UNK%02X", type);
ec = nouveau_enum_find(nv50_disp_intr_error_code, code);
if (!ec)
snprintf(ecunk, sizeof(ecunk), "UNK%02X", code);
nv_error(priv, "%s [%s] chid %d mthd 0x%04x data 0x%08x\n",
et ? et->name : etunk, ec ? ec->name : ecunk,
chid, mthd, data);
if (chid == 0) {
switch (mthd) {
case 0x0080:
nv50_disp_mthd_chan(priv, NV_DBG_ERROR, chid - 0,
impl->mthd.core);
break;
default:
break;
}
} else
if (chid <= 2) {
switch (mthd) {
case 0x0080:
nv50_disp_mthd_chan(priv, NV_DBG_ERROR, chid - 1,
impl->mthd.base);
break;
default:
break;
}
} else
if (chid <= 4) {
switch (mthd) {
case 0x0080:
nv50_disp_mthd_chan(priv, NV_DBG_ERROR, chid - 3,
impl->mthd.ovly);
break;
default:
break;
}
}
nv_wr32(priv, 0x610020, 0x00010000 << chid);
nv_wr32(priv, 0x610080 + (chid * 0x08), 0x90000000);
}
static struct nvkm_output *
exec_lookup(struct nv50_disp_priv *priv, int head, int or, u32 ctrl,
u32 *data, u8 *ver, u8 *hdr, u8 *cnt, u8 *len,
struct nvbios_outp *info)
{
struct nouveau_bios *bios = nouveau_bios(priv);
struct nvkm_output *outp;
u16 mask, type;
if (or < 4) {
type = DCB_OUTPUT_ANALOG;
mask = 0;
} else
if (or < 8) {
switch (ctrl & 0x00000f00) {
case 0x00000000: type = DCB_OUTPUT_LVDS; mask = 1; break;
case 0x00000100: type = DCB_OUTPUT_TMDS; mask = 1; break;
case 0x00000200: type = DCB_OUTPUT_TMDS; mask = 2; break;
case 0x00000500: type = DCB_OUTPUT_TMDS; mask = 3; break;
case 0x00000800: type = DCB_OUTPUT_DP; mask = 1; break;
case 0x00000900: type = DCB_OUTPUT_DP; mask = 2; break;
default:
nv_error(priv, "unknown SOR mc 0x%08x\n", ctrl);
return NULL;
}
or -= 4;
} else {
or = or - 8;
type = 0x0010;
mask = 0;
switch (ctrl & 0x00000f00) {
case 0x00000000: type |= priv->pior.type[or]; break;
default:
nv_error(priv, "unknown PIOR mc 0x%08x\n", ctrl);
return NULL;
}
}
mask = 0x00c0 & (mask << 6);
mask |= 0x0001 << or;
mask |= 0x0100 << head;
list_for_each_entry(outp, &priv->base.outp, head) {
if ((outp->info.hasht & 0xff) == type &&
(outp->info.hashm & mask) == mask) {
*data = nvbios_outp_match(bios, outp->info.hasht,
outp->info.hashm,
ver, hdr, cnt, len, info);
if (!*data)
return NULL;
return outp;
}
}
return NULL;
}
static struct nvkm_output *
exec_script(struct nv50_disp_priv *priv, int head, int id)
{
struct nouveau_bios *bios = nouveau_bios(priv);
struct nvkm_output *outp;
struct nvbios_outp info;
u8 ver, hdr, cnt, len;
u32 data, ctrl = 0;
u32 reg;
int i;
/* DAC */
for (i = 0; !(ctrl & (1 << head)) && i < priv->dac.nr; i++)
ctrl = nv_rd32(priv, 0x610b5c + (i * 8));
/* SOR */
if (!(ctrl & (1 << head))) {
if (nv_device(priv)->chipset < 0x90 ||
nv_device(priv)->chipset == 0x92 ||
nv_device(priv)->chipset == 0xa0) {
reg = 0x610b74;
} else {
reg = 0x610798;
}
for (i = 0; !(ctrl & (1 << head)) && i < priv->sor.nr; i++)
ctrl = nv_rd32(priv, reg + (i * 8));
i += 4;
}
/* PIOR */
if (!(ctrl & (1 << head))) {
for (i = 0; !(ctrl & (1 << head)) && i < priv->pior.nr; i++)
ctrl = nv_rd32(priv, 0x610b84 + (i * 8));
i += 8;
}
if (!(ctrl & (1 << head)))
return NULL;
i--;
outp = exec_lookup(priv, head, i, ctrl, &data, &ver, &hdr, &cnt, &len, &info);
if (outp) {
struct nvbios_init init = {
.subdev = nv_subdev(priv),
.bios = bios,
.offset = info.script[id],
.outp = &outp->info,
.crtc = head,
.execute = 1,
};
nvbios_exec(&init);
}
return outp;
}
static struct nvkm_output *
exec_clkcmp(struct nv50_disp_priv *priv, int head, int id, u32 pclk, u32 *conf)
{
struct nouveau_bios *bios = nouveau_bios(priv);
struct nvkm_output *outp;
struct nvbios_outp info1;
struct nvbios_ocfg info2;
u8 ver, hdr, cnt, len;
u32 data, ctrl = 0;
u32 reg;
int i;
/* DAC */
for (i = 0; !(ctrl & (1 << head)) && i < priv->dac.nr; i++)
ctrl = nv_rd32(priv, 0x610b58 + (i * 8));
/* SOR */
if (!(ctrl & (1 << head))) {
if (nv_device(priv)->chipset < 0x90 ||
nv_device(priv)->chipset == 0x92 ||
nv_device(priv)->chipset == 0xa0) {
reg = 0x610b70;
} else {
reg = 0x610794;
}
for (i = 0; !(ctrl & (1 << head)) && i < priv->sor.nr; i++)
ctrl = nv_rd32(priv, reg + (i * 8));
i += 4;
}
/* PIOR */
if (!(ctrl & (1 << head))) {
for (i = 0; !(ctrl & (1 << head)) && i < priv->pior.nr; i++)
ctrl = nv_rd32(priv, 0x610b80 + (i * 8));
i += 8;
}
if (!(ctrl & (1 << head)))
return NULL;
i--;
outp = exec_lookup(priv, head, i, ctrl, &data, &ver, &hdr, &cnt, &len, &info1);
if (!outp)
return NULL;
if (outp->info.location == 0) {
switch (outp->info.type) {
case DCB_OUTPUT_TMDS:
*conf = (ctrl & 0x00000f00) >> 8;
if (pclk >= 165000)
*conf |= 0x0100;
break;
case DCB_OUTPUT_LVDS:
*conf = priv->sor.lvdsconf;
break;
case DCB_OUTPUT_DP:
*conf = (ctrl & 0x00000f00) >> 8;
break;
case DCB_OUTPUT_ANALOG:
default:
*conf = 0x00ff;
break;
}
} else {
*conf = (ctrl & 0x00000f00) >> 8;
pclk = pclk / 2;
}
data = nvbios_ocfg_match(bios, data, *conf, &ver, &hdr, &cnt, &len, &info2);
if (data && id < 0xff) {
data = nvbios_oclk_match(bios, info2.clkcmp[id], pclk);
if (data) {
struct nvbios_init init = {
.subdev = nv_subdev(priv),
.bios = bios,
.offset = data,
.outp = &outp->info,
.crtc = head,
.execute = 1,
};
nvbios_exec(&init);
}
}
return outp;
}
static void
nv50_disp_intr_unk10_0(struct nv50_disp_priv *priv, int head)
{
exec_script(priv, head, 1);
}
static void
nv50_disp_intr_unk20_0(struct nv50_disp_priv *priv, int head)
{
struct nvkm_output *outp = exec_script(priv, head, 2);
/* the binary driver does this outside of the supervisor handling
* (after the third supervisor from a detach). we (currently?)
* allow both detach/attach to happen in the same set of
* supervisor interrupts, so it would make sense to execute this
* (full power down?) script after all the detach phases of the
* supervisor handling. like with training if needed from the
* second supervisor, nvidia doesn't do this, so who knows if it's
* entirely safe, but it does appear to work..
*
* without this script being run, on some configurations i've
* seen, switching from DP to TMDS on a DP connector may result
* in a blank screen (SOR_PWR off/on can restore it)
*/
if (outp && outp->info.type == DCB_OUTPUT_DP) {
struct nvkm_output_dp *outpdp = (void *)outp;
struct nvbios_init init = {
.subdev = nv_subdev(priv),
.bios = nouveau_bios(priv),
.outp = &outp->info,
.crtc = head,
.offset = outpdp->info.script[4],
.execute = 1,
};
nvbios_exec(&init);
atomic_set(&outpdp->lt.done, 0);
}
}
static void
nv50_disp_intr_unk20_1(struct nv50_disp_priv *priv, int head)
{
struct nouveau_devinit *devinit = nouveau_devinit(priv);
u32 pclk = nv_rd32(priv, 0x610ad0 + (head * 0x540)) & 0x3fffff;
if (pclk)
devinit->pll_set(devinit, PLL_VPLL0 + head, pclk);
}
static void
nv50_disp_intr_unk20_2_dp(struct nv50_disp_priv *priv,
struct dcb_output *outp, u32 pclk)
{
const int link = !(outp->sorconf.link & 1);
const int or = ffs(outp->or) - 1;
const u32 soff = ( or * 0x800);
const u32 loff = (link * 0x080) + soff;
const u32 ctrl = nv_rd32(priv, 0x610794 + (or * 8));
const u32 symbol = 100000;
u32 dpctrl = nv_rd32(priv, 0x61c10c + loff) & 0x0000f0000;
u32 clksor = nv_rd32(priv, 0x614300 + soff);
int bestTU = 0, bestVTUi = 0, bestVTUf = 0, bestVTUa = 0;
int TU, VTUi, VTUf, VTUa;
u64 link_data_rate, link_ratio, unk;
u32 best_diff = 64 * symbol;
u32 link_nr, link_bw, bits;
/* calculate packed data rate for each lane */
if (dpctrl > 0x00030000) link_nr = 4;
else if (dpctrl > 0x00010000) link_nr = 2;
else link_nr = 1;
if (clksor & 0x000c0000)
link_bw = 270000;
else
link_bw = 162000;
if ((ctrl & 0xf0000) == 0x60000) bits = 30;
else if ((ctrl & 0xf0000) == 0x50000) bits = 24;
else bits = 18;
link_data_rate = (pclk * bits / 8) / link_nr;
/* calculate ratio of packed data rate to link symbol rate */
link_ratio = link_data_rate * symbol;
do_div(link_ratio, link_bw);
for (TU = 64; TU >= 32; TU--) {
/* calculate average number of valid symbols in each TU */
u32 tu_valid = link_ratio * TU;
u32 calc, diff;
/* find a hw representation for the fraction.. */
VTUi = tu_valid / symbol;
calc = VTUi * symbol;
diff = tu_valid - calc;
if (diff) {
if (diff >= (symbol / 2)) {
VTUf = symbol / (symbol - diff);
if (symbol - (VTUf * diff))
VTUf++;
if (VTUf <= 15) {
VTUa = 1;
calc += symbol - (symbol / VTUf);
} else {
VTUa = 0;
VTUf = 1;
calc += symbol;
}
} else {
VTUa = 0;
VTUf = min((int)(symbol / diff), 15);
calc += symbol / VTUf;
}
diff = calc - tu_valid;
} else {
/* no remainder, but the hw doesn't like the fractional
* part to be zero. decrement the integer part and
* have the fraction add a whole symbol back
*/
VTUa = 0;
VTUf = 1;
VTUi--;
}
if (diff < best_diff) {
best_diff = diff;
bestTU = TU;
bestVTUa = VTUa;
bestVTUf = VTUf;
bestVTUi = VTUi;
if (diff == 0)
break;
}
}
if (!bestTU) {
nv_error(priv, "unable to find suitable dp config\n");
return;
}
/* XXX close to vbios numbers, but not right */
unk = (symbol - link_ratio) * bestTU;
unk *= link_ratio;
do_div(unk, symbol);
do_div(unk, symbol);
unk += 6;
nv_mask(priv, 0x61c10c + loff, 0x000001fc, bestTU << 2);
nv_mask(priv, 0x61c128 + loff, 0x010f7f3f, bestVTUa << 24 |
bestVTUf << 16 |
bestVTUi << 8 | unk);
}
static void
nv50_disp_intr_unk20_2(struct nv50_disp_priv *priv, int head)
{
struct nvkm_output *outp;
u32 pclk = nv_rd32(priv, 0x610ad0 + (head * 0x540)) & 0x3fffff;
u32 hval, hreg = 0x614200 + (head * 0x800);
u32 oval, oreg;
u32 mask, conf;
outp = exec_clkcmp(priv, head, 0xff, pclk, &conf);
if (!outp)
return;
/* we allow both encoder attach and detach operations to occur
* within a single supervisor (ie. modeset) sequence. the
* encoder detach scripts quite often switch off power to the
* lanes, which requires the link to be re-trained.
*
* this is not generally an issue as the sink "must" (heh)
* signal an irq when it's lost sync so the driver can
* re-train.
*
* however, on some boards, if one does not configure at least
* the gpu side of the link *before* attaching, then various
* things can go horribly wrong (PDISP disappearing from mmio,
* third supervisor never happens, etc).
*
* the solution is simply to retrain here, if necessary. last
* i checked, the binary driver userspace does not appear to
* trigger this situation (it forces an UPDATE between steps).
*/
if (outp->info.type == DCB_OUTPUT_DP) {
u32 soff = (ffs(outp->info.or) - 1) * 0x08;
u32 ctrl, datarate;
if (outp->info.location == 0) {
ctrl = nv_rd32(priv, 0x610794 + soff);
soff = 1;
} else {
ctrl = nv_rd32(priv, 0x610b80 + soff);
soff = 2;
}
switch ((ctrl & 0x000f0000) >> 16) {
case 6: datarate = pclk * 30; break;
case 5: datarate = pclk * 24; break;
case 2:
default:
datarate = pclk * 18;
break;
}
if (nvkm_output_dp_train(outp, datarate / soff, true))
ERR("link not trained before attach\n");
}
exec_clkcmp(priv, head, 0, pclk, &conf);
if (!outp->info.location && outp->info.type == DCB_OUTPUT_ANALOG) {
oreg = 0x614280 + (ffs(outp->info.or) - 1) * 0x800;
oval = 0x00000000;
hval = 0x00000000;
mask = 0xffffffff;
} else
if (!outp->info.location) {
if (outp->info.type == DCB_OUTPUT_DP)
nv50_disp_intr_unk20_2_dp(priv, &outp->info, pclk);
oreg = 0x614300 + (ffs(outp->info.or) - 1) * 0x800;
oval = (conf & 0x0100) ? 0x00000101 : 0x00000000;
hval = 0x00000000;
mask = 0x00000707;
} else {
oreg = 0x614380 + (ffs(outp->info.or) - 1) * 0x800;
oval = 0x00000001;
hval = 0x00000001;
mask = 0x00000707;
}
nv_mask(priv, hreg, 0x0000000f, hval);
nv_mask(priv, oreg, mask, oval);
}
/* If programming a TMDS output on a SOR that can also be configured for
* DisplayPort, make sure NV50_SOR_DP_CTRL_ENABLE is forced off.
*
* It looks like the VBIOS TMDS scripts make an attempt at this, however,
* the VBIOS scripts on at least one board I have only switch it off on
* link 0, causing a blank display if the output has previously been
* programmed for DisplayPort.
*/
static void
nv50_disp_intr_unk40_0_tmds(struct nv50_disp_priv *priv, struct dcb_output *outp)
{
struct nouveau_bios *bios = nouveau_bios(priv);
const int link = !(outp->sorconf.link & 1);
const int or = ffs(outp->or) - 1;
const u32 loff = (or * 0x800) + (link * 0x80);
const u16 mask = (outp->sorconf.link << 6) | outp->or;
struct dcb_output match;
u8 ver, hdr;
if (dcb_outp_match(bios, DCB_OUTPUT_DP, mask, &ver, &hdr, &match))
nv_mask(priv, 0x61c10c + loff, 0x00000001, 0x00000000);
}
static void
nv50_disp_intr_unk40_0(struct nv50_disp_priv *priv, int head)
{
struct nvkm_output *outp;
u32 pclk = nv_rd32(priv, 0x610ad0 + (head * 0x540)) & 0x3fffff;
u32 conf;
outp = exec_clkcmp(priv, head, 1, pclk, &conf);
if (!outp)
return;
if (outp->info.location == 0 && outp->info.type == DCB_OUTPUT_TMDS)
nv50_disp_intr_unk40_0_tmds(priv, &outp->info);
}
void
nv50_disp_intr_supervisor(struct work_struct *work)
{
struct nv50_disp_priv *priv =
container_of(work, struct nv50_disp_priv, supervisor);
struct nv50_disp_impl *impl = (void *)nv_object(priv)->oclass;
u32 super = nv_rd32(priv, 0x610030);
int head;
nv_debug(priv, "supervisor 0x%08x 0x%08x\n", priv->super, super);
if (priv->super & 0x00000010) {
nv50_disp_mthd_chan(priv, NV_DBG_DEBUG, 0, impl->mthd.core);
for (head = 0; head < priv->head.nr; head++) {
if (!(super & (0x00000020 << head)))
continue;
if (!(super & (0x00000080 << head)))
continue;
nv50_disp_intr_unk10_0(priv, head);
}
} else
if (priv->super & 0x00000020) {
for (head = 0; head < priv->head.nr; head++) {
if (!(super & (0x00000080 << head)))
continue;
nv50_disp_intr_unk20_0(priv, head);
}
for (head = 0; head < priv->head.nr; head++) {
if (!(super & (0x00000200 << head)))
continue;
nv50_disp_intr_unk20_1(priv, head);
}
for (head = 0; head < priv->head.nr; head++) {
if (!(super & (0x00000080 << head)))
continue;
nv50_disp_intr_unk20_2(priv, head);
}
} else
if (priv->super & 0x00000040) {
for (head = 0; head < priv->head.nr; head++) {
if (!(super & (0x00000080 << head)))
continue;
nv50_disp_intr_unk40_0(priv, head);
}
}
nv_wr32(priv, 0x610030, 0x80000000);
}
void
nv50_disp_intr(struct nouveau_subdev *subdev)
{
struct nv50_disp_priv *priv = (void *)subdev;
u32 intr0 = nv_rd32(priv, 0x610020);
u32 intr1 = nv_rd32(priv, 0x610024);
while (intr0 & 0x001f0000) {
u32 chid = __ffs(intr0 & 0x001f0000) - 16;
nv50_disp_intr_error(priv, chid);
intr0 &= ~(0x00010000 << chid);
}
if (intr1 & 0x00000004) {
nouveau_disp_vblank(&priv->base, 0);
nv_wr32(priv, 0x610024, 0x00000004);
intr1 &= ~0x00000004;
}
if (intr1 & 0x00000008) {
nouveau_disp_vblank(&priv->base, 1);
nv_wr32(priv, 0x610024, 0x00000008);
intr1 &= ~0x00000008;
}
if (intr1 & 0x00000070) {
priv->super = (intr1 & 0x00000070);
schedule_work(&priv->supervisor);
nv_wr32(priv, 0x610024, priv->super);
intr1 &= ~0x00000070;
}
}
static int
nv50_disp_ctor(struct nouveau_object *parent, struct nouveau_object *engine,
struct nouveau_oclass *oclass, void *data, u32 size,
struct nouveau_object **pobject)
{
struct nv50_disp_priv *priv;
int ret;
ret = nouveau_disp_create(parent, engine, oclass, 2, "PDISP",
"display", &priv);
*pobject = nv_object(priv);
if (ret)
return ret;
nv_engine(priv)->sclass = nv50_disp_base_oclass;
nv_engine(priv)->cclass = &nv50_disp_cclass;
nv_subdev(priv)->intr = nv50_disp_intr;
INIT_WORK(&priv->supervisor, nv50_disp_intr_supervisor);
priv->sclass = nv50_disp_sclass;
priv->head.nr = 2;
priv->dac.nr = 3;
priv->sor.nr = 2;
priv->pior.nr = 3;
priv->dac.power = nv50_dac_power;
priv->dac.sense = nv50_dac_sense;
priv->sor.power = nv50_sor_power;
priv->pior.power = nv50_pior_power;
return 0;
}
struct nouveau_oclass *
nv50_disp_outp_sclass[] = {
&nv50_pior_dp_impl.base.base,
NULL
};
struct nouveau_oclass *
nv50_disp_oclass = &(struct nv50_disp_impl) {
.base.base.handle = NV_ENGINE(DISP, 0x50),
.base.base.ofuncs = &(struct nouveau_ofuncs) {
.ctor = nv50_disp_ctor,
.dtor = _nouveau_disp_dtor,
.init = _nouveau_disp_init,
.fini = _nouveau_disp_fini,
},
.base.vblank = &nv50_disp_vblank_func,
.base.outp = nv50_disp_outp_sclass,
.mthd.core = &nv50_disp_mast_mthd_chan,
.mthd.base = &nv50_disp_sync_mthd_chan,
.mthd.ovly = &nv50_disp_ovly_mthd_chan,
.mthd.prev = 0x000004,
.head.scanoutpos = nv50_disp_base_scanoutpos,
}.base.base;