perf/x86: Fix NMI measurements

OK, so what I'm actually seeing on my WSM is that sched/clock.c is
'broken' for the purpose we're using it for.

What triggered it is that my WSM-EP is broken :-(

  [    0.001000] tsc: Fast TSC calibration using PIT
  [    0.002000] tsc: Detected 2533.715 MHz processor
  [    0.500180] TSC synchronization [CPU#0 -> CPU#6]:
  [    0.505197] Measured 3 cycles TSC warp between CPUs, turning off TSC clock.
  [    0.004000] tsc: Marking TSC unstable due to check_tsc_sync_source failed

For some reason it consistently detects TSC skew, even though NHM+
should have a single clock domain for 'reasonable' systems.

This marks sched_clock_stable=0, which means that we do fancy stuff to
try and get a 'sane' clock. Part of this fancy stuff relies on the tick,
clearly that's gone when NOHZ=y. So for idle cpus time gets stuck, until
it either wakes up or gets kicked by another cpu.

While this is perfectly fine for the scheduler -- it only cares about
actually running stuff, and when we're running stuff we're obviously not
idle. This does somewhat break down for perf which can trigger events
just fine on an otherwise idle cpu.

So I've got NMIs get get 'measured' as taking ~1ms, which actually
don't last nearly that long:

          <idle>-0     [013] d.h.   886.311970: rcu_nmi_enter <-do_nmi
          <idle>-0     [013] d.h.   886.311997: perf_sample_event_took: HERE!!! : 1040990

So ftrace (which uses sched_clock(), not the fancy bits) only sees
~27us, but we measure ~1ms !!

Now since all this measurement stuff lives in x86 code, we can actually
fix it.

Signed-off-by: Peter Zijlstra <>
Cc: Don Zickus <>
Signed-off-by: Ingo Molnar <>
2 files changed