blob: 5ec0665b3a3dd875e9e555def0bd4d2977f4a782 [file] [log] [blame]
/*
mvsas.c - Marvell 88SE6440 SAS/SATA support
Copyright 2007 Red Hat, Inc.
Copyright 2008 Marvell. <kewei@marvell.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2,
or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with this program; see the file COPYING. If not,
write to the Free Software Foundation, 675 Mass Ave, Cambridge,
MA 02139, USA.
---------------------------------------------------------------
Random notes:
* hardware supports controlling the endian-ness of data
structures. this permits elimination of all the le32_to_cpu()
and cpu_to_le32() conversions.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/ctype.h>
#include <scsi/libsas.h>
#include <asm/io.h>
#define DRV_NAME "mvsas"
#define DRV_VERSION "0.5.1"
#define _MV_DUMP 0
#define MVS_DISABLE_NVRAM
#define MVS_DISABLE_MSI
#define mr32(reg) readl(regs + MVS_##reg)
#define mw32(reg,val) writel((val), regs + MVS_##reg)
#define mw32_f(reg,val) do { \
writel((val), regs + MVS_##reg); \
readl(regs + MVS_##reg); \
} while (0)
#define MVS_ID_NOT_MAPPED 0xff
#define MVS_CHIP_SLOT_SZ (1U << mvi->chip->slot_width)
/* offset for D2H FIS in the Received FIS List Structure */
#define SATA_RECEIVED_D2H_FIS(reg_set) \
((void *) mvi->rx_fis + 0x400 + 0x100 * reg_set + 0x40)
#define SATA_RECEIVED_PIO_FIS(reg_set) \
((void *) mvi->rx_fis + 0x400 + 0x100 * reg_set + 0x20)
#define UNASSOC_D2H_FIS(id) \
((void *) mvi->rx_fis + 0x100 * id)
#define for_each_phy(__lseq_mask, __mc, __lseq, __rest) \
for ((__mc) = (__lseq_mask), (__lseq) = 0; \
(__mc) != 0 && __rest; \
(++__lseq), (__mc) >>= 1)
/* driver compile-time configuration */
enum driver_configuration {
MVS_TX_RING_SZ = 1024, /* TX ring size (12-bit) */
MVS_RX_RING_SZ = 1024, /* RX ring size (12-bit) */
/* software requires power-of-2
ring size */
MVS_SLOTS = 512, /* command slots */
MVS_SLOT_BUF_SZ = 8192, /* cmd tbl + IU + status + PRD */
MVS_SSP_CMD_SZ = 64, /* SSP command table buffer size */
MVS_ATA_CMD_SZ = 96, /* SATA command table buffer size */
MVS_OAF_SZ = 64, /* Open address frame buffer size */
MVS_RX_FIS_COUNT = 17, /* Optional rx'd FISs (max 17) */
MVS_QUEUE_SIZE = 30, /* Support Queue depth */
};
/* unchangeable hardware details */
enum hardware_details {
MVS_MAX_PHYS = 8, /* max. possible phys */
MVS_MAX_PORTS = 8, /* max. possible ports */
MVS_RX_FISL_SZ = 0x400 + (MVS_RX_FIS_COUNT * 0x100),
};
/* peripheral registers (BAR2) */
enum peripheral_registers {
SPI_CTL = 0x10, /* EEPROM control */
SPI_CMD = 0x14, /* EEPROM command */
SPI_DATA = 0x18, /* EEPROM data */
};
enum peripheral_register_bits {
TWSI_RDY = (1U << 7), /* EEPROM interface ready */
TWSI_RD = (1U << 4), /* EEPROM read access */
SPI_ADDR_MASK = 0x3ffff, /* bits 17:0 */
};
/* enhanced mode registers (BAR4) */
enum hw_registers {
MVS_GBL_CTL = 0x04, /* global control */
MVS_GBL_INT_STAT = 0x08, /* global irq status */
MVS_GBL_PI = 0x0C, /* ports implemented bitmask */
MVS_GBL_PORT_TYPE = 0xa0, /* port type */
MVS_CTL = 0x100, /* SAS/SATA port configuration */
MVS_PCS = 0x104, /* SAS/SATA port control/status */
MVS_CMD_LIST_LO = 0x108, /* cmd list addr */
MVS_CMD_LIST_HI = 0x10C,
MVS_RX_FIS_LO = 0x110, /* RX FIS list addr */
MVS_RX_FIS_HI = 0x114,
MVS_TX_CFG = 0x120, /* TX configuration */
MVS_TX_LO = 0x124, /* TX (delivery) ring addr */
MVS_TX_HI = 0x128,
MVS_TX_PROD_IDX = 0x12C, /* TX producer pointer */
MVS_TX_CONS_IDX = 0x130, /* TX consumer pointer (RO) */
MVS_RX_CFG = 0x134, /* RX configuration */
MVS_RX_LO = 0x138, /* RX (completion) ring addr */
MVS_RX_HI = 0x13C,
MVS_RX_CONS_IDX = 0x140, /* RX consumer pointer (RO) */
MVS_INT_COAL = 0x148, /* Int coalescing config */
MVS_INT_COAL_TMOUT = 0x14C, /* Int coalescing timeout */
MVS_INT_STAT = 0x150, /* Central int status */
MVS_INT_MASK = 0x154, /* Central int enable */
MVS_INT_STAT_SRS = 0x158, /* SATA register set status */
MVS_INT_MASK_SRS = 0x15C,
/* ports 1-3 follow after this */
MVS_P0_INT_STAT = 0x160, /* port0 interrupt status */
MVS_P0_INT_MASK = 0x164, /* port0 interrupt mask */
MVS_P4_INT_STAT = 0x200, /* Port 4 interrupt status */
MVS_P4_INT_MASK = 0x204, /* Port 4 interrupt enable mask */
/* ports 1-3 follow after this */
MVS_P0_SER_CTLSTAT = 0x180, /* port0 serial control/status */
MVS_P4_SER_CTLSTAT = 0x220, /* port4 serial control/status */
MVS_CMD_ADDR = 0x1B8, /* Command register port (addr) */
MVS_CMD_DATA = 0x1BC, /* Command register port (data) */
/* ports 1-3 follow after this */
MVS_P0_CFG_ADDR = 0x1C0, /* port0 phy register address */
MVS_P0_CFG_DATA = 0x1C4, /* port0 phy register data */
MVS_P4_CFG_ADDR = 0x230, /* Port 4 config address */
MVS_P4_CFG_DATA = 0x234, /* Port 4 config data */
/* ports 1-3 follow after this */
MVS_P0_VSR_ADDR = 0x1E0, /* port0 VSR address */
MVS_P0_VSR_DATA = 0x1E4, /* port0 VSR data */
MVS_P4_VSR_ADDR = 0x250, /* port 4 VSR addr */
MVS_P4_VSR_DATA = 0x254, /* port 4 VSR data */
};
enum hw_register_bits {
/* MVS_GBL_CTL */
INT_EN = (1U << 1), /* Global int enable */
HBA_RST = (1U << 0), /* HBA reset */
/* MVS_GBL_INT_STAT */
INT_XOR = (1U << 4), /* XOR engine event */
INT_SAS_SATA = (1U << 0), /* SAS/SATA event */
/* MVS_GBL_PORT_TYPE */ /* shl for ports 1-3 */
SATA_TARGET = (1U << 16), /* port0 SATA target enable */
MODE_AUTO_DET_PORT7 = (1U << 15), /* port0 SAS/SATA autodetect */
MODE_AUTO_DET_PORT6 = (1U << 14),
MODE_AUTO_DET_PORT5 = (1U << 13),
MODE_AUTO_DET_PORT4 = (1U << 12),
MODE_AUTO_DET_PORT3 = (1U << 11),
MODE_AUTO_DET_PORT2 = (1U << 10),
MODE_AUTO_DET_PORT1 = (1U << 9),
MODE_AUTO_DET_PORT0 = (1U << 8),
MODE_AUTO_DET_EN = MODE_AUTO_DET_PORT0 | MODE_AUTO_DET_PORT1 |
MODE_AUTO_DET_PORT2 | MODE_AUTO_DET_PORT3 |
MODE_AUTO_DET_PORT4 | MODE_AUTO_DET_PORT5 |
MODE_AUTO_DET_PORT6 | MODE_AUTO_DET_PORT7,
MODE_SAS_PORT7_MASK = (1U << 7), /* port0 SAS(1), SATA(0) mode */
MODE_SAS_PORT6_MASK = (1U << 6),
MODE_SAS_PORT5_MASK = (1U << 5),
MODE_SAS_PORT4_MASK = (1U << 4),
MODE_SAS_PORT3_MASK = (1U << 3),
MODE_SAS_PORT2_MASK = (1U << 2),
MODE_SAS_PORT1_MASK = (1U << 1),
MODE_SAS_PORT0_MASK = (1U << 0),
MODE_SAS_SATA = MODE_SAS_PORT0_MASK | MODE_SAS_PORT1_MASK |
MODE_SAS_PORT2_MASK | MODE_SAS_PORT3_MASK |
MODE_SAS_PORT4_MASK | MODE_SAS_PORT5_MASK |
MODE_SAS_PORT6_MASK | MODE_SAS_PORT7_MASK,
/* SAS_MODE value may be
* dictated (in hw) by values
* of SATA_TARGET & AUTO_DET
*/
/* MVS_TX_CFG */
TX_EN = (1U << 16), /* Enable TX */
TX_RING_SZ_MASK = 0xfff, /* TX ring size, bits 11:0 */
/* MVS_RX_CFG */
RX_EN = (1U << 16), /* Enable RX */
RX_RING_SZ_MASK = 0xfff, /* RX ring size, bits 11:0 */
/* MVS_INT_COAL */
COAL_EN = (1U << 16), /* Enable int coalescing */
/* MVS_INT_STAT, MVS_INT_MASK */
CINT_I2C = (1U << 31), /* I2C event */
CINT_SW0 = (1U << 30), /* software event 0 */
CINT_SW1 = (1U << 29), /* software event 1 */
CINT_PRD_BC = (1U << 28), /* PRD BC err for read cmd */
CINT_DMA_PCIE = (1U << 27), /* DMA to PCIE timeout */
CINT_MEM = (1U << 26), /* int mem parity err */
CINT_I2C_SLAVE = (1U << 25), /* slave I2C event */
CINT_SRS = (1U << 3), /* SRS event */
CINT_CI_STOP = (1U << 1), /* cmd issue stopped */
CINT_DONE = (1U << 0), /* cmd completion */
/* shl for ports 1-3 */
CINT_PORT_STOPPED = (1U << 16), /* port0 stopped */
CINT_PORT = (1U << 8), /* port0 event */
CINT_PORT_MASK_OFFSET = 8,
CINT_PORT_MASK = (0xFF << CINT_PORT_MASK_OFFSET),
/* TX (delivery) ring bits */
TXQ_CMD_SHIFT = 29,
TXQ_CMD_SSP = 1, /* SSP protocol */
TXQ_CMD_SMP = 2, /* SMP protocol */
TXQ_CMD_STP = 3, /* STP/SATA protocol */
TXQ_CMD_SSP_FREE_LIST = 4, /* add to SSP targ free list */
TXQ_CMD_SLOT_RESET = 7, /* reset command slot */
TXQ_MODE_I = (1U << 28), /* mode: 0=target,1=initiator */
TXQ_PRIO_HI = (1U << 27), /* priority: 0=normal, 1=high */
TXQ_SRS_SHIFT = 20, /* SATA register set */
TXQ_SRS_MASK = 0x7f,
TXQ_PHY_SHIFT = 12, /* PHY bitmap */
TXQ_PHY_MASK = 0xff,
TXQ_SLOT_MASK = 0xfff, /* slot number */
/* RX (completion) ring bits */
RXQ_GOOD = (1U << 23), /* Response good */
RXQ_SLOT_RESET = (1U << 21), /* Slot reset complete */
RXQ_CMD_RX = (1U << 20), /* target cmd received */
RXQ_ATTN = (1U << 19), /* attention */
RXQ_RSP = (1U << 18), /* response frame xfer'd */
RXQ_ERR = (1U << 17), /* err info rec xfer'd */
RXQ_DONE = (1U << 16), /* cmd complete */
RXQ_SLOT_MASK = 0xfff, /* slot number */
/* mvs_cmd_hdr bits */
MCH_PRD_LEN_SHIFT = 16, /* 16-bit PRD table len */
MCH_SSP_FR_TYPE_SHIFT = 13, /* SSP frame type */
/* SSP initiator only */
MCH_SSP_FR_CMD = 0x0, /* COMMAND frame */
/* SSP initiator or target */
MCH_SSP_FR_TASK = 0x1, /* TASK frame */
/* SSP target only */
MCH_SSP_FR_XFER_RDY = 0x4, /* XFER_RDY frame */
MCH_SSP_FR_RESP = 0x5, /* RESPONSE frame */
MCH_SSP_FR_READ = 0x6, /* Read DATA frame(s) */
MCH_SSP_FR_READ_RESP = 0x7, /* ditto, plus RESPONSE */
MCH_PASSTHRU = (1U << 12), /* pass-through (SSP) */
MCH_FBURST = (1U << 11), /* first burst (SSP) */
MCH_CHK_LEN = (1U << 10), /* chk xfer len (SSP) */
MCH_RETRY = (1U << 9), /* tport layer retry (SSP) */
MCH_PROTECTION = (1U << 8), /* protection info rec (SSP) */
MCH_RESET = (1U << 7), /* Reset (STP/SATA) */
MCH_FPDMA = (1U << 6), /* First party DMA (STP/SATA) */
MCH_ATAPI = (1U << 5), /* ATAPI (STP/SATA) */
MCH_BIST = (1U << 4), /* BIST activate (STP/SATA) */
MCH_PMP_MASK = 0xf, /* PMP from cmd FIS (STP/SATA)*/
CCTL_RST = (1U << 5), /* port logic reset */
/* 0(LSB first), 1(MSB first) */
CCTL_ENDIAN_DATA = (1U << 3), /* PRD data */
CCTL_ENDIAN_RSP = (1U << 2), /* response frame */
CCTL_ENDIAN_OPEN = (1U << 1), /* open address frame */
CCTL_ENDIAN_CMD = (1U << 0), /* command table */
/* MVS_Px_SER_CTLSTAT (per-phy control) */
PHY_SSP_RST = (1U << 3), /* reset SSP link layer */
PHY_BCAST_CHG = (1U << 2), /* broadcast(change) notif */
PHY_RST_HARD = (1U << 1), /* hard reset + phy reset */
PHY_RST = (1U << 0), /* phy reset */
PHY_MIN_SPP_PHYS_LINK_RATE_MASK = (0xF << 8),
PHY_MAX_SPP_PHYS_LINK_RATE_MASK = (0xF << 12),
PHY_NEG_SPP_PHYS_LINK_RATE_MASK_OFFSET = (16),
PHY_NEG_SPP_PHYS_LINK_RATE_MASK =
(0xF << PHY_NEG_SPP_PHYS_LINK_RATE_MASK_OFFSET),
PHY_READY_MASK = (1U << 20),
/* MVS_Px_INT_STAT, MVS_Px_INT_MASK (per-phy events) */
PHYEV_DEC_ERR = (1U << 24), /* Phy Decoding Error */
PHYEV_UNASSOC_FIS = (1U << 19), /* unassociated FIS rx'd */
PHYEV_AN = (1U << 18), /* SATA async notification */
PHYEV_BIST_ACT = (1U << 17), /* BIST activate FIS */
PHYEV_SIG_FIS = (1U << 16), /* signature FIS */
PHYEV_POOF = (1U << 12), /* phy ready from 1 -> 0 */
PHYEV_IU_BIG = (1U << 11), /* IU too long err */
PHYEV_IU_SMALL = (1U << 10), /* IU too short err */
PHYEV_UNK_TAG = (1U << 9), /* unknown tag */
PHYEV_BROAD_CH = (1U << 8), /* broadcast(CHANGE) */
PHYEV_COMWAKE = (1U << 7), /* COMWAKE rx'd */
PHYEV_PORT_SEL = (1U << 6), /* port selector present */
PHYEV_HARD_RST = (1U << 5), /* hard reset rx'd */
PHYEV_ID_TMOUT = (1U << 4), /* identify timeout */
PHYEV_ID_FAIL = (1U << 3), /* identify failed */
PHYEV_ID_DONE = (1U << 2), /* identify done */
PHYEV_HARD_RST_DONE = (1U << 1), /* hard reset done */
PHYEV_RDY_CH = (1U << 0), /* phy ready changed state */
/* MVS_PCS */
PCS_EN_SATA_REG_SHIFT = (16), /* Enable SATA Register Set */
PCS_EN_PORT_XMT_SHIFT = (12), /* Enable Port Transmit */
PCS_EN_PORT_XMT_SHIFT2 = (8), /* For 6480 */
PCS_SATA_RETRY = (1U << 8), /* retry ctl FIS on R_ERR */
PCS_RSP_RX_EN = (1U << 7), /* raw response rx */
PCS_SELF_CLEAR = (1U << 5), /* self-clearing int mode */
PCS_FIS_RX_EN = (1U << 4), /* FIS rx enable */
PCS_CMD_STOP_ERR = (1U << 3), /* cmd stop-on-err enable */
PCS_CMD_RST = (1U << 1), /* reset cmd issue */
PCS_CMD_EN = (1U << 0), /* enable cmd issue */
/* Port n Attached Device Info */
PORT_DEV_SSP_TRGT = (1U << 19),
PORT_DEV_SMP_TRGT = (1U << 18),
PORT_DEV_STP_TRGT = (1U << 17),
PORT_DEV_SSP_INIT = (1U << 11),
PORT_DEV_SMP_INIT = (1U << 10),
PORT_DEV_STP_INIT = (1U << 9),
PORT_PHY_ID_MASK = (0xFFU << 24),
PORT_DEV_TRGT_MASK = (0x7U << 17),
PORT_DEV_INIT_MASK = (0x7U << 9),
PORT_DEV_TYPE_MASK = (0x7U << 0),
/* Port n PHY Status */
PHY_RDY = (1U << 2),
PHY_DW_SYNC = (1U << 1),
PHY_OOB_DTCTD = (1U << 0),
/* VSR */
/* PHYMODE 6 (CDB) */
PHY_MODE6_DTL_SPEED = (1U << 27),
};
enum mvs_info_flags {
MVF_MSI = (1U << 0), /* MSI is enabled */
MVF_PHY_PWR_FIX = (1U << 1), /* bug workaround */
};
enum sas_cmd_port_registers {
CMD_CMRST_OOB_DET = 0x100, /* COMRESET OOB detect register */
CMD_CMWK_OOB_DET = 0x104, /* COMWAKE OOB detect register */
CMD_CMSAS_OOB_DET = 0x108, /* COMSAS OOB detect register */
CMD_BRST_OOB_DET = 0x10c, /* burst OOB detect register */
CMD_OOB_SPACE = 0x110, /* OOB space control register */
CMD_OOB_BURST = 0x114, /* OOB burst control register */
CMD_PHY_TIMER = 0x118, /* PHY timer control register */
CMD_PHY_CONFIG0 = 0x11c, /* PHY config register 0 */
CMD_PHY_CONFIG1 = 0x120, /* PHY config register 1 */
CMD_SAS_CTL0 = 0x124, /* SAS control register 0 */
CMD_SAS_CTL1 = 0x128, /* SAS control register 1 */
CMD_SAS_CTL2 = 0x12c, /* SAS control register 2 */
CMD_SAS_CTL3 = 0x130, /* SAS control register 3 */
CMD_ID_TEST = 0x134, /* ID test register */
CMD_PL_TIMER = 0x138, /* PL timer register */
CMD_WD_TIMER = 0x13c, /* WD timer register */
CMD_PORT_SEL_COUNT = 0x140, /* port selector count register */
CMD_APP_MEM_CTL = 0x144, /* Application Memory Control */
CMD_XOR_MEM_CTL = 0x148, /* XOR Block Memory Control */
CMD_DMA_MEM_CTL = 0x14c, /* DMA Block Memory Control */
CMD_PORT_MEM_CTL0 = 0x150, /* Port Memory Control 0 */
CMD_PORT_MEM_CTL1 = 0x154, /* Port Memory Control 1 */
CMD_SATA_PORT_MEM_CTL0 = 0x158, /* SATA Port Memory Control 0 */
CMD_SATA_PORT_MEM_CTL1 = 0x15c, /* SATA Port Memory Control 1 */
CMD_XOR_MEM_BIST_CTL = 0x160, /* XOR Memory BIST Control */
CMD_XOR_MEM_BIST_STAT = 0x164, /* XOR Memroy BIST Status */
CMD_DMA_MEM_BIST_CTL = 0x168, /* DMA Memory BIST Control */
CMD_DMA_MEM_BIST_STAT = 0x16c, /* DMA Memory BIST Status */
CMD_PORT_MEM_BIST_CTL = 0x170, /* Port Memory BIST Control */
CMD_PORT_MEM_BIST_STAT0 = 0x174, /* Port Memory BIST Status 0 */
CMD_PORT_MEM_BIST_STAT1 = 0x178, /* Port Memory BIST Status 1 */
CMD_STP_MEM_BIST_CTL = 0x17c, /* STP Memory BIST Control */
CMD_STP_MEM_BIST_STAT0 = 0x180, /* STP Memory BIST Status 0 */
CMD_STP_MEM_BIST_STAT1 = 0x184, /* STP Memory BIST Status 1 */
CMD_RESET_COUNT = 0x188, /* Reset Count */
CMD_MONTR_DATA_SEL = 0x18C, /* Monitor Data/Select */
CMD_PLL_PHY_CONFIG = 0x190, /* PLL/PHY Configuration */
CMD_PHY_CTL = 0x194, /* PHY Control and Status */
CMD_PHY_TEST_COUNT0 = 0x198, /* Phy Test Count 0 */
CMD_PHY_TEST_COUNT1 = 0x19C, /* Phy Test Count 1 */
CMD_PHY_TEST_COUNT2 = 0x1A0, /* Phy Test Count 2 */
CMD_APP_ERR_CONFIG = 0x1A4, /* Application Error Configuration */
CMD_PND_FIFO_CTL0 = 0x1A8, /* Pending FIFO Control 0 */
CMD_HOST_CTL = 0x1AC, /* Host Control Status */
CMD_HOST_WR_DATA = 0x1B0, /* Host Write Data */
CMD_HOST_RD_DATA = 0x1B4, /* Host Read Data */
CMD_PHY_MODE_21 = 0x1B8, /* Phy Mode 21 */
CMD_SL_MODE0 = 0x1BC, /* SL Mode 0 */
CMD_SL_MODE1 = 0x1C0, /* SL Mode 1 */
CMD_PND_FIFO_CTL1 = 0x1C4, /* Pending FIFO Control 1 */
};
/* SAS/SATA configuration port registers, aka phy registers */
enum sas_sata_config_port_regs {
PHYR_IDENTIFY = 0x00, /* info for IDENTIFY frame */
PHYR_ADDR_LO = 0x04, /* my SAS address (low) */
PHYR_ADDR_HI = 0x08, /* my SAS address (high) */
PHYR_ATT_DEV_INFO = 0x0C, /* attached device info */
PHYR_ATT_ADDR_LO = 0x10, /* attached dev SAS addr (low) */
PHYR_ATT_ADDR_HI = 0x14, /* attached dev SAS addr (high) */
PHYR_SATA_CTL = 0x18, /* SATA control */
PHYR_PHY_STAT = 0x1C, /* PHY status */
PHYR_SATA_SIG0 = 0x20, /*port SATA signature FIS(Byte 0-3) */
PHYR_SATA_SIG1 = 0x24, /*port SATA signature FIS(Byte 4-7) */
PHYR_SATA_SIG2 = 0x28, /*port SATA signature FIS(Byte 8-11) */
PHYR_SATA_SIG3 = 0x2c, /*port SATA signature FIS(Byte 12-15) */
PHYR_R_ERR_COUNT = 0x30, /* port R_ERR count register */
PHYR_CRC_ERR_COUNT = 0x34, /* port CRC error count register */
PHYR_WIDE_PORT = 0x38, /* wide port participating */
PHYR_CURRENT0 = 0x80, /* current connection info 0 */
PHYR_CURRENT1 = 0x84, /* current connection info 1 */
PHYR_CURRENT2 = 0x88, /* current connection info 2 */
};
/* SAS/SATA Vendor Specific Port Registers */
enum sas_sata_vsp_regs {
VSR_PHY_STAT = 0x00, /* Phy Status */
VSR_PHY_MODE1 = 0x01, /* phy tx */
VSR_PHY_MODE2 = 0x02, /* tx scc */
VSR_PHY_MODE3 = 0x03, /* pll */
VSR_PHY_MODE4 = 0x04, /* VCO */
VSR_PHY_MODE5 = 0x05, /* Rx */
VSR_PHY_MODE6 = 0x06, /* CDR */
VSR_PHY_MODE7 = 0x07, /* Impedance */
VSR_PHY_MODE8 = 0x08, /* Voltage */
VSR_PHY_MODE9 = 0x09, /* Test */
VSR_PHY_MODE10 = 0x0A, /* Power */
VSR_PHY_MODE11 = 0x0B, /* Phy Mode */
VSR_PHY_VS0 = 0x0C, /* Vednor Specific 0 */
VSR_PHY_VS1 = 0x0D, /* Vednor Specific 1 */
};
enum pci_cfg_registers {
PCR_PHY_CTL = 0x40,
PCR_PHY_CTL2 = 0x90,
PCR_DEV_CTRL = 0xE8,
};
enum pci_cfg_register_bits {
PCTL_PWR_ON = (0xFU << 24),
PCTL_OFF = (0xFU << 12),
PRD_REQ_SIZE = (0x4000),
PRD_REQ_MASK = (0x00007000),
};
enum nvram_layout_offsets {
NVR_SIG = 0x00, /* 0xAA, 0x55 */
NVR_SAS_ADDR = 0x02, /* 8-byte SAS address */
};
enum chip_flavors {
chip_6320,
chip_6440,
chip_6480,
};
enum port_type {
PORT_TYPE_SAS = (1L << 1),
PORT_TYPE_SATA = (1L << 0),
};
/* Command Table Format */
enum ct_format {
/* SSP */
SSP_F_H = 0x00,
SSP_F_IU = 0x18,
SSP_F_MAX = 0x4D,
/* STP */
STP_CMD_FIS = 0x00,
STP_ATAPI_CMD = 0x40,
STP_F_MAX = 0x10,
/* SMP */
SMP_F_T = 0x00,
SMP_F_DEP = 0x01,
SMP_F_MAX = 0x101,
};
enum status_buffer {
SB_EIR_OFF = 0x00, /* Error Information Record */
SB_RFB_OFF = 0x08, /* Response Frame Buffer */
SB_RFB_MAX = 0x400, /* RFB size*/
};
enum error_info_rec {
CMD_ISS_STPD = (1U << 31), /* Cmd Issue Stopped */
};
struct mvs_chip_info {
u32 n_phy;
u32 srs_sz;
u32 slot_width;
};
struct mvs_err_info {
__le32 flags;
__le32 flags2;
};
struct mvs_prd {
__le64 addr; /* 64-bit buffer address */
__le32 reserved;
__le32 len; /* 16-bit length */
};
struct mvs_cmd_hdr {
__le32 flags; /* PRD tbl len; SAS, SATA ctl */
__le32 lens; /* cmd, max resp frame len */
__le32 tags; /* targ port xfer tag; tag */
__le32 data_len; /* data xfer len */
__le64 cmd_tbl; /* command table address */
__le64 open_frame; /* open addr frame address */
__le64 status_buf; /* status buffer address */
__le64 prd_tbl; /* PRD tbl address */
__le32 reserved[4];
};
struct mvs_slot_info {
struct sas_task *task;
u32 n_elem;
u32 tx;
/* DMA buffer for storing cmd tbl, open addr frame, status buffer,
* and PRD table
*/
void *buf;
dma_addr_t buf_dma;
#if _MV_DUMP
u32 cmd_size;
#endif
void *response;
};
struct mvs_port {
struct asd_sas_port sas_port;
u8 port_attached;
u8 taskfileset;
u8 wide_port_phymap;
};
struct mvs_phy {
struct mvs_port *port;
struct asd_sas_phy sas_phy;
struct sas_identify identify;
struct scsi_device *sdev;
u64 dev_sas_addr;
u64 att_dev_sas_addr;
u32 att_dev_info;
u32 dev_info;
u32 phy_type;
u32 phy_status;
u32 irq_status;
u32 frame_rcvd_size;
u8 frame_rcvd[32];
u8 phy_attached;
};
struct mvs_info {
unsigned long flags;
spinlock_t lock; /* host-wide lock */
struct pci_dev *pdev; /* our device */
void __iomem *regs; /* enhanced mode registers */
void __iomem *peri_regs; /* peripheral registers */
u8 sas_addr[SAS_ADDR_SIZE];
struct sas_ha_struct sas; /* SCSI/SAS glue */
struct Scsi_Host *shost;
__le32 *tx; /* TX (delivery) DMA ring */
dma_addr_t tx_dma;
u32 tx_prod; /* cached next-producer idx */
__le32 *rx; /* RX (completion) DMA ring */
dma_addr_t rx_dma;
u32 rx_cons; /* RX consumer idx */
__le32 *rx_fis; /* RX'd FIS area */
dma_addr_t rx_fis_dma;
struct mvs_cmd_hdr *slot; /* DMA command header slots */
dma_addr_t slot_dma;
const struct mvs_chip_info *chip;
unsigned long tags[MVS_SLOTS];
struct mvs_slot_info slot_info[MVS_SLOTS];
/* further per-slot information */
struct mvs_phy phy[MVS_MAX_PHYS];
struct mvs_port port[MVS_MAX_PHYS];
u32 can_queue; /* per adapter */
u32 tag_out; /*Get*/
u32 tag_in; /*Give*/
};
struct mvs_queue_task {
struct list_head list;
void *uldd_task;
};
static int mvs_phy_control(struct asd_sas_phy *sas_phy, enum phy_func func,
void *funcdata);
static u32 mvs_read_phy_ctl(struct mvs_info *mvi, u32 port);
static void mvs_write_phy_ctl(struct mvs_info *mvi, u32 port, u32 val);
static u32 mvs_read_port_irq_stat(struct mvs_info *mvi, u32 port);
static void mvs_write_port_irq_stat(struct mvs_info *mvi, u32 port, u32 val);
static void mvs_write_port_irq_mask(struct mvs_info *mvi, u32 port, u32 val);
static u32 mvs_read_port_irq_mask(struct mvs_info *mvi, u32 port);
static u32 mvs_is_phy_ready(struct mvs_info *mvi, int i);
static void mvs_detect_porttype(struct mvs_info *mvi, int i);
static void mvs_update_phyinfo(struct mvs_info *mvi, int i, int get_st);
static int mvs_scan_finished(struct Scsi_Host *, unsigned long);
static void mvs_scan_start(struct Scsi_Host *);
static int mvs_sas_slave_alloc(struct scsi_device *scsi_dev);
static struct scsi_transport_template *mvs_stt;
static const struct mvs_chip_info mvs_chips[] = {
[chip_6320] = { 2, 16, 9 },
[chip_6440] = { 4, 16, 9 },
[chip_6480] = { 8, 32, 10 },
};
static struct scsi_host_template mvs_sht = {
.module = THIS_MODULE,
.name = DRV_NAME,
.queuecommand = sas_queuecommand,
.target_alloc = sas_target_alloc,
.slave_configure = sas_slave_configure,
.slave_destroy = sas_slave_destroy,
.scan_finished = mvs_scan_finished,
.scan_start = mvs_scan_start,
.change_queue_depth = sas_change_queue_depth,
.change_queue_type = sas_change_queue_type,
.bios_param = sas_bios_param,
.can_queue = 1,
.cmd_per_lun = 1,
.this_id = -1,
.sg_tablesize = SG_ALL,
.max_sectors = SCSI_DEFAULT_MAX_SECTORS,
.use_clustering = ENABLE_CLUSTERING,
.eh_device_reset_handler = sas_eh_device_reset_handler,
.eh_bus_reset_handler = sas_eh_bus_reset_handler,
.slave_alloc = mvs_sas_slave_alloc,
.target_destroy = sas_target_destroy,
.ioctl = sas_ioctl,
};
static void mvs_hexdump(u32 size, u8 *data, u32 baseaddr)
{
u32 i;
u32 run;
u32 offset;
offset = 0;
while (size) {
printk("%08X : ", baseaddr + offset);
if (size >= 16)
run = 16;
else
run = size;
size -= run;
for (i = 0; i < 16; i++) {
if (i < run)
printk("%02X ", (u32)data[i]);
else
printk(" ");
}
printk(": ");
for (i = 0; i < run; i++)
printk("%c", isalnum(data[i]) ? data[i] : '.');
printk("\n");
data = &data[16];
offset += run;
}
printk("\n");
}
static void mvs_hba_sb_dump(struct mvs_info *mvi, u32 tag,
enum sas_protocol proto)
{
#if _MV_DUMP
u32 offset;
struct pci_dev *pdev = mvi->pdev;
struct mvs_slot_info *slot = &mvi->slot_info[tag];
offset = slot->cmd_size + MVS_OAF_SZ +
sizeof(struct mvs_prd) * slot->n_elem;
dev_printk(KERN_DEBUG, &pdev->dev, "+---->Status buffer[%d] :\n",
tag);
mvs_hexdump(32, (u8 *) slot->response,
(u32) slot->buf_dma + offset);
#endif
}
static void mvs_hba_memory_dump(struct mvs_info *mvi, u32 tag,
enum sas_protocol proto)
{
#if _MV_DUMP
u32 sz, w_ptr, r_ptr;
u64 addr;
void __iomem *regs = mvi->regs;
struct pci_dev *pdev = mvi->pdev;
struct mvs_slot_info *slot = &mvi->slot_info[tag];
/*Delivery Queue */
sz = mr32(TX_CFG) & TX_RING_SZ_MASK;
w_ptr = mr32(TX_PROD_IDX) & TX_RING_SZ_MASK;
r_ptr = mr32(TX_CONS_IDX) & TX_RING_SZ_MASK;
addr = mr32(TX_HI) << 16 << 16 | mr32(TX_LO);
dev_printk(KERN_DEBUG, &pdev->dev,
"Delivery Queue Size=%04d , WRT_PTR=%04X , RD_PTR=%04X\n",
sz, w_ptr, r_ptr);
dev_printk(KERN_DEBUG, &pdev->dev,
"Delivery Queue Base Address=0x%llX (PA)"
"(tx_dma=0x%llX), Entry=%04d\n",
addr, mvi->tx_dma, w_ptr);
mvs_hexdump(sizeof(u32), (u8 *)(&mvi->tx[mvi->tx_prod]),
(u32) mvi->tx_dma + sizeof(u32) * w_ptr);
/*Command List */
addr = mr32(CMD_LIST_HI) << 16 << 16 | mr32(CMD_LIST_LO);
dev_printk(KERN_DEBUG, &pdev->dev,
"Command List Base Address=0x%llX (PA)"
"(slot_dma=0x%llX), Header=%03d\n",
addr, mvi->slot_dma, tag);
dev_printk(KERN_DEBUG, &pdev->dev, "Command Header[%03d]:\n", tag);
/*mvs_cmd_hdr */
mvs_hexdump(sizeof(struct mvs_cmd_hdr), (u8 *)(&mvi->slot[tag]),
(u32) mvi->slot_dma + tag * sizeof(struct mvs_cmd_hdr));
/*1.command table area */
dev_printk(KERN_DEBUG, &pdev->dev, "+---->Command Table :\n");
mvs_hexdump(slot->cmd_size, (u8 *) slot->buf, (u32) slot->buf_dma);
/*2.open address frame area */
dev_printk(KERN_DEBUG, &pdev->dev, "+---->Open Address Frame :\n");
mvs_hexdump(MVS_OAF_SZ, (u8 *) slot->buf + slot->cmd_size,
(u32) slot->buf_dma + slot->cmd_size);
/*3.status buffer */
mvs_hba_sb_dump(mvi, tag, proto);
/*4.PRD table */
dev_printk(KERN_DEBUG, &pdev->dev, "+---->PRD table :\n");
mvs_hexdump(sizeof(struct mvs_prd) * slot->n_elem,
(u8 *) slot->buf + slot->cmd_size + MVS_OAF_SZ,
(u32) slot->buf_dma + slot->cmd_size + MVS_OAF_SZ);
#endif
}
static void mvs_hba_cq_dump(struct mvs_info *mvi)
{
#if _MV_DUMP
u64 addr;
void __iomem *regs = mvi->regs;
struct pci_dev *pdev = mvi->pdev;
u32 entry = mvi->rx_cons + 1;
u32 rx_desc = le32_to_cpu(mvi->rx[entry]);
/*Completion Queue */
addr = mr32(RX_HI) << 16 << 16 | mr32(RX_LO);
dev_printk(KERN_DEBUG, &pdev->dev, "Completion Task = 0x%08X\n",
(u32) mvi->slot_info[rx_desc & RXQ_SLOT_MASK].task);
dev_printk(KERN_DEBUG, &pdev->dev,
"Completion List Base Address=0x%llX (PA), "
"CQ_Entry=%04d, CQ_WP=0x%08X\n",
addr, entry - 1, mvi->rx[0]);
mvs_hexdump(sizeof(u32), (u8 *)(&rx_desc),
mvi->rx_dma + sizeof(u32) * entry);
#endif
}
static void mvs_hba_interrupt_enable(struct mvs_info *mvi)
{
void __iomem *regs = mvi->regs;
u32 tmp;
tmp = mr32(GBL_CTL);
mw32(GBL_CTL, tmp | INT_EN);
}
static void mvs_hba_interrupt_disable(struct mvs_info *mvi)
{
void __iomem *regs = mvi->regs;
u32 tmp;
tmp = mr32(GBL_CTL);
mw32(GBL_CTL, tmp & ~INT_EN);
}
static int mvs_int_rx(struct mvs_info *mvi, bool self_clear);
/* move to PCI layer or libata core? */
static int pci_go_64(struct pci_dev *pdev)
{
int rc;
if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
if (rc) {
rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
if (rc) {
dev_printk(KERN_ERR, &pdev->dev,
"64-bit DMA enable failed\n");
return rc;
}
}
} else {
rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
if (rc) {
dev_printk(KERN_ERR, &pdev->dev,
"32-bit DMA enable failed\n");
return rc;
}
rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
if (rc) {
dev_printk(KERN_ERR, &pdev->dev,
"32-bit consistent DMA enable failed\n");
return rc;
}
}
return rc;
}
static void mvs_tag_clear(struct mvs_info *mvi, u32 tag)
{
mvi->tag_in = (mvi->tag_in + 1) & (MVS_SLOTS - 1);
mvi->tags[mvi->tag_in] = tag;
}
static void mvs_tag_free(struct mvs_info *mvi, u32 tag)
{
mvi->tag_out = (mvi->tag_out - 1) & (MVS_SLOTS - 1);
}
static int mvs_tag_alloc(struct mvs_info *mvi, u32 *tag_out)
{
if (mvi->tag_out != mvi->tag_in) {
*tag_out = mvi->tags[mvi->tag_out];
mvi->tag_out = (mvi->tag_out + 1) & (MVS_SLOTS - 1);
return 0;
}
return -EBUSY;
}
static void mvs_tag_init(struct mvs_info *mvi)
{
int i;
for (i = 0; i < MVS_SLOTS; ++i)
mvi->tags[i] = i;
mvi->tag_out = 0;
mvi->tag_in = MVS_SLOTS - 1;
}
#ifndef MVS_DISABLE_NVRAM
static int mvs_eep_read(void __iomem *regs, u32 addr, u32 *data)
{
int timeout = 1000;
if (addr & ~SPI_ADDR_MASK)
return -EINVAL;
writel(addr, regs + SPI_CMD);
writel(TWSI_RD, regs + SPI_CTL);
while (timeout-- > 0) {
if (readl(regs + SPI_CTL) & TWSI_RDY) {
*data = readl(regs + SPI_DATA);
return 0;
}
udelay(10);
}
return -EBUSY;
}
static int mvs_eep_read_buf(void __iomem *regs, u32 addr,
void *buf, u32 buflen)
{
u32 addr_end, tmp_addr, i, j;
u32 tmp = 0;
int rc;
u8 *tmp8, *buf8 = buf;
addr_end = addr + buflen;
tmp_addr = ALIGN(addr, 4);
if (addr > 0xff)
return -EINVAL;
j = addr & 0x3;
if (j) {
rc = mvs_eep_read(regs, tmp_addr, &tmp);
if (rc)
return rc;
tmp8 = (u8 *)&tmp;
for (i = j; i < 4; i++)
*buf8++ = tmp8[i];
tmp_addr += 4;
}
for (j = ALIGN(addr_end, 4); tmp_addr < j; tmp_addr += 4) {
rc = mvs_eep_read(regs, tmp_addr, &tmp);
if (rc)
return rc;
memcpy(buf8, &tmp, 4);
buf8 += 4;
}
if (tmp_addr < addr_end) {
rc = mvs_eep_read(regs, tmp_addr, &tmp);
if (rc)
return rc;
tmp8 = (u8 *)&tmp;
j = addr_end - tmp_addr;
for (i = 0; i < j; i++)
*buf8++ = tmp8[i];
tmp_addr += 4;
}
return 0;
}
#endif
static int mvs_nvram_read(struct mvs_info *mvi, u32 addr,
void *buf, u32 buflen)
{
#ifndef MVS_DISABLE_NVRAM
void __iomem *regs = mvi->regs;
int rc, i;
u32 sum;
u8 hdr[2], *tmp;
const char *msg;
rc = mvs_eep_read_buf(regs, addr, &hdr, 2);
if (rc) {
msg = "nvram hdr read failed";
goto err_out;
}
rc = mvs_eep_read_buf(regs, addr + 2, buf, buflen);
if (rc) {
msg = "nvram read failed";
goto err_out;
}
if (hdr[0] != 0x5A) {
/* entry id */
msg = "invalid nvram entry id";
rc = -ENOENT;
goto err_out;
}
tmp = buf;
sum = ((u32)hdr[0]) + ((u32)hdr[1]);
for (i = 0; i < buflen; i++)
sum += ((u32)tmp[i]);
if (sum) {
msg = "nvram checksum failure";
rc = -EILSEQ;
goto err_out;
}
return 0;
err_out:
dev_printk(KERN_ERR, &mvi->pdev->dev, "%s", msg);
return rc;
#else
/* FIXME , For SAS target mode */
memcpy(buf, "\x50\x05\x04\x30\x11\xab\x00\x00", 8);
return 0;
#endif
}
static void mvs_bytes_dmaed(struct mvs_info *mvi, int i)
{
struct mvs_phy *phy = &mvi->phy[i];
if (!phy->phy_attached)
return;
if (phy->phy_type & PORT_TYPE_SAS) {
struct sas_identify_frame *id;
id = (struct sas_identify_frame *)phy->frame_rcvd;
id->dev_type = phy->identify.device_type;
id->initiator_bits = SAS_PROTOCOL_ALL;
id->target_bits = phy->identify.target_port_protocols;
} else if (phy->phy_type & PORT_TYPE_SATA) {
/* TODO */
}
mvi->sas.sas_phy[i]->frame_rcvd_size = phy->frame_rcvd_size;
mvi->sas.notify_port_event(mvi->sas.sas_phy[i],
PORTE_BYTES_DMAED);
}
static int mvs_scan_finished(struct Scsi_Host *shost, unsigned long time)
{
/* give the phy enabling interrupt event time to come in (1s
* is empirically about all it takes) */
if (time < HZ)
return 0;
/* Wait for discovery to finish */
scsi_flush_work(shost);
return 1;
}
static void mvs_scan_start(struct Scsi_Host *shost)
{
int i;
struct mvs_info *mvi = SHOST_TO_SAS_HA(shost)->lldd_ha;
for (i = 0; i < mvi->chip->n_phy; ++i) {
mvs_bytes_dmaed(mvi, i);
}
}
static int mvs_sas_slave_alloc(struct scsi_device *scsi_dev)
{
int rc;
rc = sas_slave_alloc(scsi_dev);
return rc;
}
static void mvs_int_port(struct mvs_info *mvi, int port_no, u32 events)
{
struct pci_dev *pdev = mvi->pdev;
struct sas_ha_struct *sas_ha = &mvi->sas;
struct mvs_phy *phy = &mvi->phy[port_no];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
phy->irq_status = mvs_read_port_irq_stat(mvi, port_no);
/*
* events is port event now ,
* we need check the interrupt status which belongs to per port.
*/
dev_printk(KERN_DEBUG, &pdev->dev,
"Port %d Event = %X\n",
port_no, phy->irq_status);
if (phy->irq_status & (PHYEV_POOF | PHYEV_DEC_ERR)) {
if (!mvs_is_phy_ready(mvi, port_no)) {
sas_phy_disconnected(sas_phy);
sas_ha->notify_phy_event(sas_phy, PHYE_LOSS_OF_SIGNAL);
} else
mvs_phy_control(sas_phy, PHY_FUNC_LINK_RESET, NULL);
}
if (!(phy->irq_status & PHYEV_DEC_ERR)) {
if (phy->irq_status & PHYEV_COMWAKE) {
u32 tmp = mvs_read_port_irq_mask(mvi, port_no);
mvs_write_port_irq_mask(mvi, port_no,
tmp | PHYEV_SIG_FIS);
}
if (phy->irq_status & (PHYEV_SIG_FIS | PHYEV_ID_DONE)) {
phy->phy_status = mvs_is_phy_ready(mvi, port_no);
if (phy->phy_status) {
mvs_detect_porttype(mvi, port_no);
if (phy->phy_type & PORT_TYPE_SATA) {
u32 tmp = mvs_read_port_irq_mask(mvi,
port_no);
tmp &= ~PHYEV_SIG_FIS;
mvs_write_port_irq_mask(mvi,
port_no, tmp);
}
mvs_update_phyinfo(mvi, port_no, 0);
sas_ha->notify_phy_event(sas_phy,
PHYE_OOB_DONE);
mvs_bytes_dmaed(mvi, port_no);
} else {
dev_printk(KERN_DEBUG, &pdev->dev,
"plugin interrupt but phy is gone\n");
mvs_phy_control(sas_phy, PHY_FUNC_LINK_RESET,
NULL);
}
} else if (phy->irq_status & PHYEV_BROAD_CH)
sas_ha->notify_port_event(sas_phy,
PORTE_BROADCAST_RCVD);
}
mvs_write_port_irq_stat(mvi, port_no, phy->irq_status);
}
static void mvs_int_sata(struct mvs_info *mvi)
{
/* FIXME */
}
static void mvs_slot_free(struct mvs_info *mvi, struct sas_task *task,
struct mvs_slot_info *slot, u32 slot_idx)
{
if (!sas_protocol_ata(task->task_proto))
if (slot->n_elem)
pci_unmap_sg(mvi->pdev, task->scatter,
slot->n_elem, task->data_dir);
switch (task->task_proto) {
case SAS_PROTOCOL_SMP:
pci_unmap_sg(mvi->pdev, &task->smp_task.smp_resp, 1,
PCI_DMA_FROMDEVICE);
pci_unmap_sg(mvi->pdev, &task->smp_task.smp_req, 1,
PCI_DMA_TODEVICE);
break;
case SAS_PROTOCOL_SATA:
case SAS_PROTOCOL_STP:
case SAS_PROTOCOL_SSP:
default:
/* do nothing */
break;
}
slot->task = NULL;
mvs_tag_clear(mvi, slot_idx);
}
static void mvs_slot_err(struct mvs_info *mvi, struct sas_task *task,
u32 slot_idx)
{
struct mvs_slot_info *slot = &mvi->slot_info[slot_idx];
u64 err_dw0 = *(u32 *) slot->response;
void __iomem *regs = mvi->regs;
u32 tmp;
if (err_dw0 & CMD_ISS_STPD)
if (sas_protocol_ata(task->task_proto)) {
tmp = mr32(INT_STAT_SRS);
mw32(INT_STAT_SRS, tmp & 0xFFFF);
}
mvs_hba_sb_dump(mvi, slot_idx, task->task_proto);
}
static int mvs_slot_complete(struct mvs_info *mvi, u32 rx_desc)
{
u32 slot_idx = rx_desc & RXQ_SLOT_MASK;
struct mvs_slot_info *slot = &mvi->slot_info[slot_idx];
struct sas_task *task = slot->task;
struct task_status_struct *tstat = &task->task_status;
struct mvs_port *port = &mvi->port[task->dev->port->id];
bool aborted;
void *to;
spin_lock(&task->task_state_lock);
aborted = task->task_state_flags & SAS_TASK_STATE_ABORTED;
if (!aborted) {
task->task_state_flags &=
~(SAS_TASK_STATE_PENDING | SAS_TASK_AT_INITIATOR);
task->task_state_flags |= SAS_TASK_STATE_DONE;
}
spin_unlock(&task->task_state_lock);
if (aborted)
return -1;
memset(tstat, 0, sizeof(*tstat));
tstat->resp = SAS_TASK_COMPLETE;
if (unlikely(!port->port_attached)) {
tstat->stat = SAS_PHY_DOWN;
goto out;
}
/* error info record present */
if ((rx_desc & RXQ_ERR) && (*(u64 *) slot->response)) {
tstat->stat = SAM_CHECK_COND;
mvs_slot_err(mvi, task, slot_idx);
goto out;
}
switch (task->task_proto) {
case SAS_PROTOCOL_SSP:
/* hw says status == 0, datapres == 0 */
if (rx_desc & RXQ_GOOD) {
tstat->stat = SAM_GOOD;
tstat->resp = SAS_TASK_COMPLETE;
}
/* response frame present */
else if (rx_desc & RXQ_RSP) {
struct ssp_response_iu *iu =
slot->response + sizeof(struct mvs_err_info);
sas_ssp_task_response(&mvi->pdev->dev, task, iu);
}
/* should never happen? */
else
tstat->stat = SAM_CHECK_COND;
break;
case SAS_PROTOCOL_SMP: {
struct scatterlist *sg_resp = &task->smp_task.smp_resp;
tstat->stat = SAM_GOOD;
to = kmap_atomic(sg_page(sg_resp), KM_IRQ0);
memcpy(to + sg_resp->offset,
slot->response + sizeof(struct mvs_err_info),
sg_dma_len(sg_resp));
kunmap_atomic(to, KM_IRQ0);
break;
}
case SAS_PROTOCOL_SATA:
case SAS_PROTOCOL_STP:
case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: {
struct ata_task_resp *resp =
(struct ata_task_resp *)tstat->buf;
if ((rx_desc & (RXQ_DONE | RXQ_ERR | RXQ_ATTN)) ==
RXQ_DONE)
tstat->stat = SAM_GOOD;
else
tstat->stat = SAM_CHECK_COND;
resp->frame_len = sizeof(struct dev_to_host_fis);
memcpy(&resp->ending_fis[0],
SATA_RECEIVED_D2H_FIS(port->taskfileset),
sizeof(struct dev_to_host_fis));
if (resp->ending_fis[2] & ATA_ERR)
mvs_hexdump(16, resp->ending_fis, 0);
break;
}
default:
tstat->stat = SAM_CHECK_COND;
break;
}
out:
mvs_slot_free(mvi, task, slot, slot_idx);
task->task_done(task);
return tstat->stat;
}
static void mvs_int_full(struct mvs_info *mvi)
{
void __iomem *regs = mvi->regs;
u32 tmp, stat;
int i;
stat = mr32(INT_STAT);
mvs_int_rx(mvi, false);
for (i = 0; i < MVS_MAX_PORTS; i++) {
tmp = (stat >> i) & (CINT_PORT | CINT_PORT_STOPPED);
if (tmp)
mvs_int_port(mvi, i, tmp);
}
if (stat & CINT_SRS)
mvs_int_sata(mvi);
mw32(INT_STAT, stat);
}
static int mvs_int_rx(struct mvs_info *mvi, bool self_clear)
{
void __iomem *regs = mvi->regs;
u32 rx_prod_idx, rx_desc;
bool attn = false;
struct pci_dev *pdev = mvi->pdev;
/* the first dword in the RX ring is special: it contains
* a mirror of the hardware's RX producer index, so that
* we don't have to stall the CPU reading that register.
* The actual RX ring is offset by one dword, due to this.
*/
rx_prod_idx = mr32(RX_CONS_IDX) & RX_RING_SZ_MASK;
if (rx_prod_idx == 0xfff) { /* h/w hasn't touched RX ring yet */
mvi->rx_cons = 0xfff;
return 0;
}
/* The CMPL_Q may come late, read from register and try again
* note: if coalescing is enabled,
* it will need to read from register every time for sure
*/
if (mvi->rx_cons == rx_prod_idx)
return 0;
if (mvi->rx_cons == 0xfff)
mvi->rx_cons = MVS_RX_RING_SZ - 1;
while (mvi->rx_cons != rx_prod_idx) {
/* increment our internal RX consumer pointer */
mvi->rx_cons = (mvi->rx_cons + 1) & (MVS_RX_RING_SZ - 1);
rx_desc = le32_to_cpu(mvi->rx[mvi->rx_cons + 1]);
mvs_hba_cq_dump(mvi);
if (likely(rx_desc & RXQ_DONE))
mvs_slot_complete(mvi, rx_desc);
if (rx_desc & RXQ_ATTN) {
attn = true;
dev_printk(KERN_DEBUG, &pdev->dev, "ATTN %X\n",
rx_desc);
} else if (rx_desc & RXQ_ERR) {
dev_printk(KERN_DEBUG, &pdev->dev, "RXQ_ERR %X\n",
rx_desc);
}
}
if (attn && self_clear)
mvs_int_full(mvi);
return 0;
}
static irqreturn_t mvs_interrupt(int irq, void *opaque)
{
struct mvs_info *mvi = opaque;
void __iomem *regs = mvi->regs;
u32 stat;
stat = mr32(GBL_INT_STAT);
/* clear CMD_CMPLT ASAP */
mw32_f(INT_STAT, CINT_DONE);
if (stat == 0 || stat == 0xffffffff)
return IRQ_NONE;
spin_lock(&mvi->lock);
mvs_int_full(mvi);
spin_unlock(&mvi->lock);
return IRQ_HANDLED;
}
#ifndef MVS_DISABLE_MSI
static irqreturn_t mvs_msi_interrupt(int irq, void *opaque)
{
struct mvs_info *mvi = opaque;
spin_lock(&mvi->lock);
mvs_int_rx(mvi, true);
spin_unlock(&mvi->lock);
return IRQ_HANDLED;
}
#endif
struct mvs_task_exec_info {
struct sas_task *task;
struct mvs_cmd_hdr *hdr;
struct mvs_port *port;
u32 tag;
int n_elem;
};
static int mvs_task_prep_smp(struct mvs_info *mvi,
struct mvs_task_exec_info *tei)
{
int elem, rc, i;
struct sas_task *task = tei->task;
struct mvs_cmd_hdr *hdr = tei->hdr;
struct scatterlist *sg_req, *sg_resp;
u32 req_len, resp_len, tag = tei->tag;
void *buf_tmp;
u8 *buf_oaf;
dma_addr_t buf_tmp_dma;
struct mvs_prd *buf_prd;
struct scatterlist *sg;
struct mvs_slot_info *slot = &mvi->slot_info[tag];
struct asd_sas_port *sas_port = task->dev->port;
u32 flags = (tei->n_elem << MCH_PRD_LEN_SHIFT);
#if _MV_DUMP
u8 *buf_cmd;
void *from;
#endif
/*
* DMA-map SMP request, response buffers
*/
sg_req = &task->smp_task.smp_req;
elem = pci_map_sg(mvi->pdev, sg_req, 1, PCI_DMA_TODEVICE);
if (!elem)
return -ENOMEM;
req_len = sg_dma_len(sg_req);
sg_resp = &task->smp_task.smp_resp;
elem = pci_map_sg(mvi->pdev, sg_resp, 1, PCI_DMA_FROMDEVICE);
if (!elem) {
rc = -ENOMEM;
goto err_out;
}
resp_len = sg_dma_len(sg_resp);
/* must be in dwords */
if ((req_len & 0x3) || (resp_len & 0x3)) {
rc = -EINVAL;
goto err_out_2;
}
/*
* arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
*/
/* region 1: command table area (MVS_SSP_CMD_SZ bytes) ************** */
buf_tmp = slot->buf;
buf_tmp_dma = slot->buf_dma;
#if _MV_DUMP
buf_cmd = buf_tmp;
hdr->cmd_tbl = cpu_to_le64(buf_tmp_dma);
buf_tmp += req_len;
buf_tmp_dma += req_len;
slot->cmd_size = req_len;
#else
hdr->cmd_tbl = cpu_to_le64(sg_dma_address(sg_req));
#endif
/* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
buf_oaf = buf_tmp;
hdr->open_frame = cpu_to_le64(buf_tmp_dma);
buf_tmp += MVS_OAF_SZ;
buf_tmp_dma += MVS_OAF_SZ;
/* region 3: PRD table ********************************************* */
buf_prd = buf_tmp;
if (tei->n_elem)
hdr->prd_tbl = cpu_to_le64(buf_tmp_dma);
else
hdr->prd_tbl = 0;
i = sizeof(struct mvs_prd) * tei->n_elem;
buf_tmp += i;
buf_tmp_dma += i;
/* region 4: status buffer (larger the PRD, smaller this buf) ****** */
slot->response = buf_tmp;
hdr->status_buf = cpu_to_le64(buf_tmp_dma);
/*
* Fill in TX ring and command slot header
*/
slot->tx = mvi->tx_prod;
mvi->tx[mvi->tx_prod] = cpu_to_le32((TXQ_CMD_SMP << TXQ_CMD_SHIFT) |
TXQ_MODE_I | tag |
(sas_port->phy_mask << TXQ_PHY_SHIFT));
hdr->flags |= flags;
hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | ((req_len - 4) / 4));
hdr->tags = cpu_to_le32(tag);
hdr->data_len = 0;
/* generate open address frame hdr (first 12 bytes) */
buf_oaf[0] = (1 << 7) | (0 << 4) | 0x01; /* initiator, SMP, ftype 1h */
buf_oaf[1] = task->dev->linkrate & 0xf;
*(u16 *)(buf_oaf + 2) = 0xFFFF; /* SAS SPEC */
memcpy(buf_oaf + 4, task->dev->sas_addr, SAS_ADDR_SIZE);
/* fill in PRD (scatter/gather) table, if any */
for_each_sg(task->scatter, sg, tei->n_elem, i) {
buf_prd->addr = cpu_to_le64(sg_dma_address(sg));
buf_prd->len = cpu_to_le32(sg_dma_len(sg));
buf_prd++;
}
#if _MV_DUMP
/* copy cmd table */
from = kmap_atomic(sg_page(sg_req), KM_IRQ0);
memcpy(buf_cmd, from + sg_req->offset, req_len);
kunmap_atomic(from, KM_IRQ0);
#endif
return 0;
err_out_2:
pci_unmap_sg(mvi->pdev, &tei->task->smp_task.smp_resp, 1,
PCI_DMA_FROMDEVICE);
err_out:
pci_unmap_sg(mvi->pdev, &tei->task->smp_task.smp_req, 1,
PCI_DMA_TODEVICE);
return rc;
}
static void mvs_free_reg_set(struct mvs_info *mvi, struct mvs_port *port)
{
void __iomem *regs = mvi->regs;
u32 tmp, offs;
u8 *tfs = &port->taskfileset;
if (*tfs == MVS_ID_NOT_MAPPED)
return;
offs = 1U << ((*tfs & 0x0f) + PCS_EN_SATA_REG_SHIFT);
if (*tfs < 16) {
tmp = mr32(PCS);
mw32(PCS, tmp & ~offs);
} else {
tmp = mr32(CTL);
mw32(CTL, tmp & ~offs);
}
tmp = mr32(INT_STAT_SRS) & (1U << *tfs);
if (tmp)
mw32(INT_STAT_SRS, tmp);
*tfs = MVS_ID_NOT_MAPPED;
}
static u8 mvs_assign_reg_set(struct mvs_info *mvi, struct mvs_port *port)
{
int i;
u32 tmp, offs;
void __iomem *regs = mvi->regs;
if (port->taskfileset != MVS_ID_NOT_MAPPED)
return 0;
tmp = mr32(PCS);
for (i = 0; i < mvi->chip->srs_sz; i++) {
if (i == 16)
tmp = mr32(CTL);
offs = 1U << ((i & 0x0f) + PCS_EN_SATA_REG_SHIFT);
if (!(tmp & offs)) {
port->taskfileset = i;
if (i < 16)
mw32(PCS, tmp | offs);
else
mw32(CTL, tmp | offs);
tmp = mr32(INT_STAT_SRS) & (1U << i);
if (tmp)
mw32(INT_STAT_SRS, tmp);
return 0;
}
}
return MVS_ID_NOT_MAPPED;
}
static u32 mvs_get_ncq_tag(struct sas_task *task)
{
u32 tag = 0;
struct ata_queued_cmd *qc = task->uldd_task;
if (qc)
tag = qc->tag;
return tag;
}
static int mvs_task_prep_ata(struct mvs_info *mvi,
struct mvs_task_exec_info *tei)
{
struct sas_task *task = tei->task;
struct domain_device *dev = task->dev;
struct mvs_cmd_hdr *hdr = tei->hdr;
struct asd_sas_port *sas_port = dev->port;
struct mvs_slot_info *slot;
struct scatterlist *sg;
struct mvs_prd *buf_prd;
struct mvs_port *port = tei->port;
u32 tag = tei->tag;
u32 flags = (tei->n_elem << MCH_PRD_LEN_SHIFT);
void *buf_tmp;
u8 *buf_cmd, *buf_oaf;
dma_addr_t buf_tmp_dma;
u32 i, req_len, resp_len;
const u32 max_resp_len = SB_RFB_MAX;
if (mvs_assign_reg_set(mvi, port) == MVS_ID_NOT_MAPPED)
return -EBUSY;
slot = &mvi->slot_info[tag];
slot->tx = mvi->tx_prod;
mvi->tx[mvi->tx_prod] = cpu_to_le32(TXQ_MODE_I | tag |
(TXQ_CMD_STP << TXQ_CMD_SHIFT) |
(sas_port->phy_mask << TXQ_PHY_SHIFT) |
(port->taskfileset << TXQ_SRS_SHIFT));
if (task->ata_task.use_ncq)
flags |= MCH_FPDMA;
if (dev->sata_dev.command_set == ATAPI_COMMAND_SET) {
if (task->ata_task.fis.command != ATA_CMD_ID_ATAPI)
flags |= MCH_ATAPI;
}
/* FIXME: fill in port multiplier number */
hdr->flags = cpu_to_le32(flags);
/* FIXME: the low order order 5 bits for the TAG if enable NCQ */
if (task->ata_task.use_ncq) {
hdr->tags = cpu_to_le32(mvs_get_ncq_tag(task));
/*Fill in task file */
task->ata_task.fis.sector_count = hdr->tags << 3;
} else
hdr->tags = cpu_to_le32(tag);
hdr->data_len = cpu_to_le32(task->total_xfer_len);
/*
* arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
*/
/* region 1: command table area (MVS_ATA_CMD_SZ bytes) ************** */
buf_cmd = buf_tmp = slot->buf;
buf_tmp_dma = slot->buf_dma;
hdr->cmd_tbl = cpu_to_le64(buf_tmp_dma);
buf_tmp += MVS_ATA_CMD_SZ;
buf_tmp_dma += MVS_ATA_CMD_SZ;
#if _MV_DUMP
slot->cmd_size = MVS_ATA_CMD_SZ;
#endif
/* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
/* used for STP. unused for SATA? */
buf_oaf = buf_tmp;
hdr->open_frame = cpu_to_le64(buf_tmp_dma);
buf_tmp += MVS_OAF_SZ;
buf_tmp_dma += MVS_OAF_SZ;
/* region 3: PRD table ********************************************* */
buf_prd = buf_tmp;
if (tei->n_elem)
hdr->prd_tbl = cpu_to_le64(buf_tmp_dma);
else
hdr->prd_tbl = 0;
i = sizeof(struct mvs_prd) * tei->n_elem;
buf_tmp += i;
buf_tmp_dma += i;
/* region 4: status buffer (larger the PRD, smaller this buf) ****** */
/* FIXME: probably unused, for SATA. kept here just in case
* we get a STP/SATA error information record
*/
slot->response = buf_tmp;
hdr->status_buf = cpu_to_le64(buf_tmp_dma);
req_len = sizeof(struct host_to_dev_fis);
resp_len = MVS_SLOT_BUF_SZ - MVS_ATA_CMD_SZ -
sizeof(struct mvs_err_info) - i;
/* request, response lengths */
resp_len = min(resp_len, max_resp_len);
hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | (req_len / 4));
task->ata_task.fis.flags |= 0x80; /* C=1: update ATA cmd reg */
/* fill in command FIS and ATAPI CDB */
memcpy(buf_cmd, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
if (dev->sata_dev.command_set == ATAPI_COMMAND_SET)
memcpy(buf_cmd + STP_ATAPI_CMD,
task->ata_task.atapi_packet, 16);
/* generate open address frame hdr (first 12 bytes) */
buf_oaf[0] = (1 << 7) | (2 << 4) | 0x1; /* initiator, STP, ftype 1h */
buf_oaf[1] = task->dev->linkrate & 0xf;
*(u16 *)(buf_oaf + 2) = cpu_to_be16(tag);
memcpy(buf_oaf + 4, task->dev->sas_addr, SAS_ADDR_SIZE);
/* fill in PRD (scatter/gather) table, if any */
for_each_sg(task->scatter, sg, tei->n_elem, i) {
buf_prd->addr = cpu_to_le64(sg_dma_address(sg));
buf_prd->len = cpu_to_le32(sg_dma_len(sg));
buf_prd++;
}
return 0;
}
static int mvs_task_prep_ssp(struct mvs_info *mvi,
struct mvs_task_exec_info *tei)
{
struct sas_task *task = tei->task;
struct mvs_cmd_hdr *hdr = tei->hdr;
struct mvs_port *port = tei->port;
struct mvs_slot_info *slot;
struct scatterlist *sg;
struct mvs_prd *buf_prd;
struct ssp_frame_hdr *ssp_hdr;
void *buf_tmp;
u8 *buf_cmd, *buf_oaf, fburst = 0;
dma_addr_t buf_tmp_dma;
u32 flags;
u32 resp_len, req_len, i, tag = tei->tag;
const u32 max_resp_len = SB_RFB_MAX;
slot = &mvi->slot_info[tag];
slot->tx = mvi->tx_prod;
mvi->tx[mvi->tx_prod] = cpu_to_le32(TXQ_MODE_I | tag |
(TXQ_CMD_SSP << TXQ_CMD_SHIFT) |
(port->wide_port_phymap << TXQ_PHY_SHIFT));
flags = MCH_RETRY;
if (task->ssp_task.enable_first_burst) {
flags |= MCH_FBURST;
fburst = (1 << 7);
}
hdr->flags = cpu_to_le32(flags |
(tei->n_elem << MCH_PRD_LEN_SHIFT) |
(MCH_SSP_FR_CMD << MCH_SSP_FR_TYPE_SHIFT));
hdr->tags = cpu_to_le32(tag);
hdr->data_len = cpu_to_le32(task->total_xfer_len);
/*
* arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
*/
/* region 1: command table area (MVS_SSP_CMD_SZ bytes) ************** */
buf_cmd = buf_tmp = slot->buf;
buf_tmp_dma = slot->buf_dma;
hdr->cmd_tbl = cpu_to_le64(buf_tmp_dma);
buf_tmp += MVS_SSP_CMD_SZ;
buf_tmp_dma += MVS_SSP_CMD_SZ;
#if _MV_DUMP
slot->cmd_size = MVS_SSP_CMD_SZ;
#endif
/* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
buf_oaf = buf_tmp;
hdr->open_frame = cpu_to_le64(buf_tmp_dma);
buf_tmp += MVS_OAF_SZ;
buf_tmp_dma += MVS_OAF_SZ;
/* region 3: PRD table ********************************************* */
buf_prd = buf_tmp;
if (tei->n_elem)
hdr->prd_tbl = cpu_to_le64(buf_tmp_dma);
else
hdr->prd_tbl = 0;
i = sizeof(struct mvs_prd) * tei->n_elem;
buf_tmp += i;
buf_tmp_dma += i;
/* region 4: status buffer (larger the PRD, smaller this buf) ****** */
slot->response = buf_tmp;
hdr->status_buf = cpu_to_le64(buf_tmp_dma);
resp_len = MVS_SLOT_BUF_SZ - MVS_SSP_CMD_SZ - MVS_OAF_SZ -
sizeof(struct mvs_err_info) - i;
resp_len = min(resp_len, max_resp_len);
req_len = sizeof(struct ssp_frame_hdr) + 28;
/* request, response lengths */
hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | (req_len / 4));
/* generate open address frame hdr (first 12 bytes) */
buf_oaf[0] = (1 << 7) | (1 << 4) | 0x1; /* initiator, SSP, ftype 1h */
buf_oaf[1] = task->dev->linkrate & 0xf;
*(u16 *)(buf_oaf + 2) = cpu_to_be16(tag);
memcpy(buf_oaf + 4, task->dev->sas_addr, SAS_ADDR_SIZE);
/* fill in SSP frame header (Command Table.SSP frame header) */
ssp_hdr = (struct ssp_frame_hdr *)buf_cmd;
ssp_hdr->frame_type = SSP_COMMAND;
memcpy(ssp_hdr->hashed_dest_addr, task->dev->hashed_sas_addr,
HASHED_SAS_ADDR_SIZE);
memcpy(ssp_hdr->hashed_src_addr,
task->dev->port->ha->hashed_sas_addr, HASHED_SAS_ADDR_SIZE);
ssp_hdr->tag = cpu_to_be16(tag);
/* fill in command frame IU */
buf_cmd += sizeof(*ssp_hdr);
memcpy(buf_cmd, &task->ssp_task.LUN, 8);
buf_cmd[9] = fburst | task->ssp_task.task_attr |
(task->ssp_task.task_prio << 3);
memcpy(buf_cmd + 12, &task->ssp_task.cdb, 16);
/* fill in PRD (scatter/gather) table, if any */
for_each_sg(task->scatter, sg, tei->n_elem, i) {
buf_prd->addr = cpu_to_le64(sg_dma_address(sg));
buf_prd->len = cpu_to_le32(sg_dma_len(sg));
buf_prd++;
}
return 0;
}
static int mvs_task_exec(struct sas_task *task, const int num, gfp_t gfp_flags)
{
struct domain_device *dev = task->dev;
struct mvs_info *mvi = dev->port->ha->lldd_ha;
struct pci_dev *pdev = mvi->pdev;
void __iomem *regs = mvi->regs;
struct mvs_task_exec_info tei;
struct sas_task *t = task;
u32 tag = 0xdeadbeef, rc, n_elem = 0;
unsigned long flags;
u32 n = num, pass = 0;
spin_lock_irqsave(&mvi->lock, flags);
do {
tei.port = &mvi->port[dev->port->id];
if (!tei.port->port_attached) {
struct task_status_struct *ts = &t->task_status;
ts->stat = SAS_PHY_DOWN;
t->task_done(t);
rc = 0;
goto exec_exit;
}
if (!sas_protocol_ata(t->task_proto)) {
if (t->num_scatter) {
n_elem = pci_map_sg(mvi->pdev, t->scatter,
t->num_scatter,
t->data_dir);
if (!n_elem) {
rc = -ENOMEM;
goto err_out;
}
}
} else {
n_elem = t->num_scatter;
}
rc = mvs_tag_alloc(mvi, &tag);
if (rc)
goto err_out;
mvi->slot_info[tag].task = t;
mvi->slot_info[tag].n_elem = n_elem;
memset(mvi->slot_info[tag].buf, 0, MVS_SLOT_BUF_SZ);
tei.task = t;
tei.hdr = &mvi->slot[tag];
tei.tag = tag;
tei.n_elem = n_elem;
switch (t->task_proto) {
case SAS_PROTOCOL_SMP:
rc = mvs_task_prep_smp(mvi, &tei);
break;
case SAS_PROTOCOL_SSP:
rc = mvs_task_prep_ssp(mvi, &tei);
break;
case SAS_PROTOCOL_SATA:
case SAS_PROTOCOL_STP:
case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
rc = mvs_task_prep_ata(mvi, &tei);
break;
default:
dev_printk(KERN_ERR, &pdev->dev,
"unknown sas_task proto: 0x%x\n",
t->task_proto);
rc = -EINVAL;
break;
}
if (rc)
goto err_out_tag;
/* TODO: select normal or high priority */
spin_lock(&t->task_state_lock);
t->task_state_flags |= SAS_TASK_AT_INITIATOR;
spin_unlock(&t->task_state_lock);
if (n == 1) {
spin_unlock_irqrestore(&mvi->lock, flags);
mw32(TX_PROD_IDX, mvi->tx_prod);
}
mvs_hba_memory_dump(mvi, tag, t->task_proto);
++pass;
mvi->tx_prod = (mvi->tx_prod + 1) & (MVS_CHIP_SLOT_SZ - 1);
if (n == 1)
break;
t = list_entry(t->list.next, struct sas_task, list);
} while (--n);
return 0;
err_out_tag:
mvs_tag_free(mvi, tag);
err_out:
dev_printk(KERN_ERR, &pdev->dev, "mvsas exec failed[%d]!\n", rc);
if (!sas_protocol_ata(t->task_proto))
if (n_elem)
pci_unmap_sg(mvi->pdev, t->scatter, n_elem,
t->data_dir);
exec_exit:
if (pass)
mw32(TX_PROD_IDX, (mvi->tx_prod - 1) & (MVS_CHIP_SLOT_SZ - 1));
spin_unlock_irqrestore(&mvi->lock, flags);
return rc;
}
static int mvs_task_abort(struct sas_task *task)
{
int rc = 1;
unsigned long flags;
struct mvs_info *mvi = task->dev->port->ha->lldd_ha;
struct pci_dev *pdev = mvi->pdev;
spin_lock_irqsave(&task->task_state_lock, flags);
if (task->task_state_flags & SAS_TASK_STATE_DONE) {
rc = TMF_RESP_FUNC_COMPLETE;
goto out_done;
}
spin_unlock_irqrestore(&task->task_state_lock, flags);
/*FIXME*/
rc = TMF_RESP_FUNC_COMPLETE;
switch (task->task_proto) {
case SAS_PROTOCOL_SMP:
dev_printk(KERN_DEBUG, &pdev->dev, "SMP Abort! ");
break;
case SAS_PROTOCOL_SSP:
dev_printk(KERN_DEBUG, &pdev->dev, "SSP Abort! ");
break;
case SAS_PROTOCOL_SATA:
case SAS_PROTOCOL_STP:
case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:{
dev_printk(KERN_DEBUG, &pdev->dev, "STP Abort! "
"Dump D2H FIS: \n");
mvs_hexdump(sizeof(struct host_to_dev_fis),
(void *)&task->ata_task.fis, 0);
dev_printk(KERN_DEBUG, &pdev->dev, "Dump ATAPI Cmd : \n");
mvs_hexdump(16, task->ata_task.atapi_packet, 0);
break;
}
default:
break;
}
out_done:
return rc;
}
static void mvs_free(struct mvs_info *mvi)
{
int i;
if (!mvi)
return;
for (i = 0; i < MVS_SLOTS; i++) {
struct mvs_slot_info *slot = &mvi->slot_info[i];
if (slot->buf)
dma_free_coherent(&mvi->pdev->dev, MVS_SLOT_BUF_SZ,
slot->buf, slot->buf_dma);
}
if (mvi->tx)
dma_free_coherent(&mvi->pdev->dev,
sizeof(*mvi->tx) * MVS_CHIP_SLOT_SZ,
mvi->tx, mvi->tx_dma);
if (mvi->rx_fis)
dma_free_coherent(&mvi->pdev->dev, MVS_RX_FISL_SZ,
mvi->rx_fis, mvi->rx_fis_dma);
if (mvi->rx)
dma_free_coherent(&mvi->pdev->dev,
sizeof(*mvi->rx) * MVS_RX_RING_SZ,
mvi->rx, mvi->rx_dma);
if (mvi->slot)
dma_free_coherent(&mvi->pdev->dev,
sizeof(*mvi->slot) * MVS_SLOTS,
mvi->slot, mvi->slot_dma);
#ifdef MVS_ENABLE_PERI
if (mvi->peri_regs)
iounmap(mvi->peri_regs);
#endif
if (mvi->regs)
iounmap(mvi->regs);
if (mvi->shost)
scsi_host_put(mvi->shost);
kfree(mvi->sas.sas_port);
kfree(mvi->sas.sas_phy);
kfree(mvi);
}
/* FIXME: locking? */
static int mvs_phy_control(struct asd_sas_phy *sas_phy, enum phy_func func,
void *funcdata)
{
struct mvs_info *mvi = sas_phy->ha->lldd_ha;
int rc = 0, phy_id = sas_phy->id;
u32 tmp;
tmp = mvs_read_phy_ctl(mvi, phy_id);
switch (func) {
case PHY_FUNC_SET_LINK_RATE:{
struct sas_phy_linkrates *rates = funcdata;
u32 lrmin = 0, lrmax = 0;
lrmin = (rates->minimum_linkrate << 8);
lrmax = (rates->maximum_linkrate << 12);
if (lrmin) {
tmp &= ~(0xf << 8);
tmp |= lrmin;
}
if (lrmax) {
tmp &= ~(0xf << 12);
tmp |= lrmax;
}
mvs_write_phy_ctl(mvi, phy_id, tmp);
break;
}
case PHY_FUNC_HARD_RESET:
if (tmp & PHY_RST_HARD)
break;
mvs_write_phy_ctl(mvi, phy_id, tmp | PHY_RST_HARD);
break;
case PHY_FUNC_LINK_RESET:
mvs_write_phy_ctl(mvi, phy_id, tmp | PHY_RST);
break;
case PHY_FUNC_DISABLE:
case PHY_FUNC_RELEASE_SPINUP_HOLD:
default:
rc = -EOPNOTSUPP;
}
return rc;
}
static void __devinit mvs_phy_init(struct mvs_info *mvi, int phy_id)
{
struct mvs_phy *phy = &mvi->phy[phy_id];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
sas_phy->enabled = (phy_id < mvi->chip->n_phy) ? 1 : 0;
sas_phy->class = SAS;
sas_phy->iproto = SAS_PROTOCOL_ALL;
sas_phy->tproto = 0;
sas_phy->type = PHY_TYPE_PHYSICAL;
sas_phy->role = PHY_ROLE_INITIATOR;
sas_phy->oob_mode = OOB_NOT_CONNECTED;
sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;
sas_phy->id = phy_id;
sas_phy->sas_addr = &mvi->sas_addr[0];
sas_phy->frame_rcvd = &phy->frame_rcvd[0];
sas_phy->ha = &mvi->sas;
sas_phy->lldd_phy = phy;
}
static struct mvs_info *__devinit mvs_alloc(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct mvs_info *mvi;
unsigned long res_start, res_len, res_flag;
struct asd_sas_phy **arr_phy;
struct asd_sas_port **arr_port;
const struct mvs_chip_info *chip = &mvs_chips[ent->driver_data];
int i;
/*
* alloc and init our per-HBA mvs_info struct
*/
mvi = kzalloc(sizeof(*mvi), GFP_KERNEL);
if (!mvi)
return NULL;
spin_lock_init(&mvi->lock);
mvi->pdev = pdev;
mvi->chip = chip;
if (pdev->device == 0x6440 && pdev->revision == 0)
mvi->flags |= MVF_PHY_PWR_FIX;
/*
* alloc and init SCSI, SAS glue
*/
mvi->shost = scsi_host_alloc(&mvs_sht, sizeof(void *));
if (!mvi->shost)
goto err_out;
arr_phy = kcalloc(MVS_MAX_PHYS, sizeof(void *), GFP_KERNEL);
arr_port = kcalloc(MVS_MAX_PHYS, sizeof(void *), GFP_KERNEL);
if (!arr_phy || !arr_port)
goto err_out;
for (i = 0; i < MVS_MAX_PHYS; i++) {
mvs_phy_init(mvi, i);
arr_phy[i] = &mvi->phy[i].sas_phy;
arr_port[i] = &mvi->port[i].sas_port;
}
SHOST_TO_SAS_HA(mvi->shost) = &mvi->sas;
mvi->shost->transportt = mvs_stt;
mvi->shost->max_id = 21;
mvi->shost->max_lun = ~0;
mvi->shost->max_channel = 0;
mvi->shost->max_cmd_len = 16;
mvi->sas.sas_ha_name = DRV_NAME;
mvi->sas.dev = &pdev->dev;
mvi->sas.lldd_module = THIS_MODULE;
mvi->sas.sas_addr = &mvi->sas_addr[0];
mvi->sas.sas_phy = arr_phy;
mvi->sas.sas_port = arr_port;
mvi->sas.num_phys = chip->n_phy;
mvi->sas.lldd_max_execute_num = MVS_CHIP_SLOT_SZ - 1;
mvi->sas.lldd_queue_size = MVS_QUEUE_SIZE;
mvi->can_queue = (MVS_CHIP_SLOT_SZ >> 1) - 1;
mvi->sas.lldd_ha = mvi;
mvi->sas.core.shost = mvi->shost;
mvs_tag_init(mvi);
/*
* ioremap main and peripheral registers
*/
#ifdef MVS_ENABLE_PERI
res_start = pci_resource_start(pdev, 2);
res_len = pci_resource_len(pdev, 2);
if (!res_start || !res_len)
goto err_out;
mvi->peri_regs = ioremap_nocache(res_start, res_len);
if (!mvi->peri_regs)
goto err_out;
#endif
res_start = pci_resource_start(pdev, 4);
res_len = pci_resource_len(pdev, 4);
if (!res_start || !res_len)
goto err_out;
res_flag = pci_resource_flags(pdev, 4);
if (res_flag & IORESOURCE_CACHEABLE)
mvi->regs = ioremap(res_start, res_len);
else
mvi->regs = ioremap_nocache(res_start, res_len);
if (!mvi->regs)
goto err_out;
/*
* alloc and init our DMA areas
*/
mvi->tx = dma_alloc_coherent(&pdev->dev,
sizeof(*mvi->tx) * MVS_CHIP_SLOT_SZ,
&mvi->tx_dma, GFP_KERNEL);
if (!mvi->tx)
goto err_out;
memset(mvi->tx, 0, sizeof(*mvi->tx) * MVS_CHIP_SLOT_SZ);
mvi->rx_fis = dma_alloc_coherent(&pdev->dev, MVS_RX_FISL_SZ,
&mvi->rx_fis_dma, GFP_KERNEL);
if (!mvi->rx_fis)
goto err_out;
memset(mvi->rx_fis, 0, MVS_RX_FISL_SZ);
mvi->rx = dma_alloc_coherent(&pdev->dev,
sizeof(*mvi->rx) * MVS_RX_RING_SZ,
&mvi->rx_dma, GFP_KERNEL);
if (!mvi->rx)
goto err_out;
memset(mvi->rx, 0, sizeof(*mvi->rx) * MVS_RX_RING_SZ);
mvi->rx[0] = cpu_to_le32(0xfff);
mvi->rx_cons = 0xfff;
mvi->slot = dma_alloc_coherent(&pdev->dev,
sizeof(*mvi->slot) * MVS_SLOTS,
&mvi->slot_dma, GFP_KERNEL);
if (!mvi->slot)
goto err_out;
memset(mvi->slot, 0, sizeof(*mvi->slot) * MVS_SLOTS);
for (i = 0; i < MVS_SLOTS; i++) {
struct mvs_slot_info *slot = &mvi->slot_info[i];
slot->buf = dma_alloc_coherent(&pdev->dev, MVS_SLOT_BUF_SZ,
&slot->buf_dma, GFP_KERNEL);
if (!slot->buf)
goto err_out;
memset(slot->buf, 0, MVS_SLOT_BUF_SZ);
}
/* finally, read NVRAM to get our SAS address */
if (mvs_nvram_read(mvi, NVR_SAS_ADDR, &mvi->sas_addr, 8))
goto err_out;
return mvi;
err_out:
mvs_free(mvi);
return NULL;
}
static u32 mvs_cr32(void __iomem *regs, u32 addr)
{
mw32(CMD_ADDR, addr);
return mr32(CMD_DATA);
}
static void mvs_cw32(void __iomem *regs, u32 addr, u32 val)
{
mw32(CMD_ADDR, addr);
mw32(CMD_DATA, val);
}
static u32 mvs_read_phy_ctl(struct mvs_info *mvi, u32 port)
{
void __iomem *regs = mvi->regs;
return (port < 4)?mr32(P0_SER_CTLSTAT + port * 4):
mr32(P4_SER_CTLSTAT + (port - 4) * 4);
}
static void mvs_write_phy_ctl(struct mvs_info *mvi, u32 port, u32 val)
{
void __iomem *regs = mvi->regs;
if (port < 4)
mw32(P0_SER_CTLSTAT + port * 4, val);
else
mw32(P4_SER_CTLSTAT + (port - 4) * 4, val);
}
static u32 mvs_read_port(struct mvs_info *mvi, u32 off, u32 off2, u32 port)
{
void __iomem *regs = mvi->regs + off;
void __iomem *regs2 = mvi->regs + off2;
return (port < 4)?readl(regs + port * 8):
readl(regs2 + (port - 4) * 8);
}
static void mvs_write_port(struct mvs_info *mvi, u32 off, u32 off2,
u32 port, u32 val)
{
void __iomem *regs = mvi->regs + off;
void __iomem *regs2 = mvi->regs + off2;
if (port < 4)
writel(val, regs + port * 8);
else
writel(val, regs2 + (port - 4) * 8);
}
static u32 mvs_read_port_cfg_data(struct mvs_info *mvi, u32 port)
{
return mvs_read_port(mvi, MVS_P0_CFG_DATA, MVS_P4_CFG_DATA, port);
}
static void mvs_write_port_cfg_data(struct mvs_info *mvi, u32 port, u32 val)
{
mvs_write_port(mvi, MVS_P0_CFG_DATA, MVS_P4_CFG_DATA, port, val);
}
static void mvs_write_port_cfg_addr(struct mvs_info *mvi, u32 port, u32 addr)
{
mvs_write_port(mvi, MVS_P0_CFG_ADDR, MVS_P4_CFG_ADDR, port, addr);
}
static u32 mvs_read_port_vsr_data(struct mvs_info *mvi, u32 port)
{
return mvs_read_port(mvi, MVS_P0_VSR_DATA, MVS_P4_VSR_DATA, port);
}
static void mvs_write_port_vsr_data(struct mvs_info *mvi, u32 port, u32 val)
{
mvs_write_port(mvi, MVS_P0_VSR_DATA, MVS_P4_VSR_DATA, port, val);
}
static void mvs_write_port_vsr_addr(struct mvs_info *mvi, u32 port, u32 addr)
{
mvs_write_port(mvi, MVS_P0_VSR_ADDR, MVS_P4_VSR_ADDR, port, addr);
}
static u32 mvs_read_port_irq_stat(struct mvs_info *mvi, u32 port)
{
return mvs_read_port(mvi, MVS_P0_INT_STAT, MVS_P4_INT_STAT, port);
}
static void mvs_write_port_irq_stat(struct mvs_info *mvi, u32 port, u32 val)
{
mvs_write_port(mvi, MVS_P0_INT_STAT, MVS_P4_INT_STAT, port, val);
}
static u32 mvs_read_port_irq_mask(struct mvs_info *mvi, u32 port)
{
return mvs_read_port(mvi, MVS_P0_INT_MASK, MVS_P4_INT_MASK, port);
}
static void mvs_write_port_irq_mask(struct mvs_info *mvi, u32 port, u32 val)
{
mvs_write_port(mvi, MVS_P0_INT_MASK, MVS_P4_INT_MASK, port, val);
}
static void __devinit mvs_phy_hacks(struct mvs_info *mvi)
{
void __iomem *regs = mvi->regs;
u32 tmp;
/* workaround for SATA R-ERR, to ignore phy glitch */
tmp = mvs_cr32(regs, CMD_PHY_TIMER);
tmp &= ~(1 << 9);
tmp |= (1 << 10);
mvs_cw32(regs, CMD_PHY_TIMER, tmp);
/* enable retry 127 times */
mvs_cw32(regs, CMD_SAS_CTL1, 0x7f7f);
/* extend open frame timeout to max */
tmp = mvs_cr32(regs, CMD_SAS_CTL0);
tmp &= ~0xffff;
tmp |= 0x3fff;
mvs_cw32(regs, CMD_SAS_CTL0, tmp);
/* workaround for WDTIMEOUT , set to 550 ms */
mvs_cw32(regs, CMD_WD_TIMER, 0xffffff);
/* not to halt for different port op during wideport link change */
mvs_cw32(regs, CMD_APP_ERR_CONFIG, 0xffefbf7d);
/* workaround for Seagate disk not-found OOB sequence, recv
* COMINIT before sending out COMWAKE */
tmp = mvs_cr32(regs, CMD_PHY_MODE_21);
tmp &= 0x0000ffff;
tmp |= 0x00fa0000;
mvs_cw32(regs, CMD_PHY_MODE_21, tmp);
tmp = mvs_cr32(regs, CMD_PHY_TIMER);
tmp &= 0x1fffffff;
tmp |= (2U << 29); /* 8 ms retry */
mvs_cw32(regs, CMD_PHY_TIMER, tmp);
/* TEST - for phy decoding error, adjust voltage levels */
mw32(P0_VSR_ADDR + 0, 0x8);
mw32(P0_VSR_DATA + 0, 0x2F0);
mw32(P0_VSR_ADDR + 8, 0x8);
mw32(P0_VSR_DATA + 8, 0x2F0);
mw32(P0_VSR_ADDR + 16, 0x8);
mw32(P0_VSR_DATA + 16, 0x2F0);
mw32(P0_VSR_ADDR + 24, 0x8);
mw32(P0_VSR_DATA + 24, 0x2F0);
}
static void mvs_enable_xmt(struct mvs_info *mvi, int PhyId)
{
void __iomem *regs = mvi->regs;
u32 tmp;
tmp = mr32(PCS);
if (mvi->chip->n_phy <= 4)
tmp |= 1 << (PhyId + PCS_EN_PORT_XMT_SHIFT);
else
tmp |= 1 << (PhyId + PCS_EN_PORT_XMT_SHIFT2);
mw32(PCS, tmp);
}
static void mvs_detect_porttype(struct mvs_info *mvi, int i)
{
void __iomem *regs = mvi->regs;
u32 reg;
struct mvs_phy *phy = &mvi->phy[i];
/* TODO check & save device type */
reg = mr32(GBL_PORT_TYPE);
if (reg & MODE_SAS_SATA & (1 << i))
phy->phy_type |= PORT_TYPE_SAS;
else
phy->phy_type |= PORT_TYPE_SATA;
}
static void *mvs_get_d2h_reg(struct mvs_info *mvi, int i, void *buf)
{
u32 *s = (u32 *) buf;
if (!s)
return NULL;
mvs_write_port_cfg_addr(mvi, i, PHYR_SATA_SIG3);
s[3] = mvs_read_port_cfg_data(mvi, i);
mvs_write_port_cfg_addr(mvi, i, PHYR_SATA_SIG2);
s[2] = mvs_read_port_cfg_data(mvi, i);
mvs_write_port_cfg_addr(mvi, i, PHYR_SATA_SIG1);
s[1] = mvs_read_port_cfg_data(mvi, i);
mvs_write_port_cfg_addr(mvi, i, PHYR_SATA_SIG0);
s[0] = mvs_read_port_cfg_data(mvi, i);
return (void *)s;
}
static u32 mvs_is_sig_fis_received(u32 irq_status)
{
return irq_status & PHYEV_SIG_FIS;
}
static void mvs_update_wideport(struct mvs_info *mvi, int i)
{
struct mvs_phy *phy = &mvi->phy[i];
struct mvs_port *port = phy->port;
int j, no;
for_each_phy(port->wide_port_phymap, no, j, mvi->chip->n_phy)
if (no & 1) {
mvs_write_port_cfg_addr(mvi, no, PHYR_WIDE_PORT);
mvs_write_port_cfg_data(mvi, no,
port->wide_port_phymap);
} else {
mvs_write_port_cfg_addr(mvi, no, PHYR_WIDE_PORT);
mvs_write_port_cfg_data(mvi, no, 0);
}
}
static u32 mvs_is_phy_ready(struct mvs_info *mvi, int i)
{
u32 tmp;
struct mvs_phy *phy = &mvi->phy[i];
struct mvs_port *port;
tmp = mvs_read_phy_ctl(mvi, i);
if ((tmp & PHY_READY_MASK) && !(phy->irq_status & PHYEV_POOF)) {
if (!phy->port)
phy->phy_attached = 1;
return tmp;
}
port = phy->port;
if (port) {
if (phy->phy_type & PORT_TYPE_SAS) {
port->wide_port_phymap &= ~(1U << i);
if (!port->wide_port_phymap)
port->port_attached = 0;
mvs_update_wideport(mvi, i);
} else if (phy->phy_type & PORT_TYPE_SATA)
port->port_attached = 0;
mvs_free_reg_set(mvi, phy->port);
phy->port = NULL;
phy->phy_attached = 0;
phy->phy_type &= ~(PORT_TYPE_SAS | PORT_TYPE_SATA);
}
return 0;
}
static void mvs_update_phyinfo(struct mvs_info *mvi, int i,
int get_st)
{
struct mvs_phy *phy = &mvi->phy[i];
struct pci_dev *pdev = mvi->pdev;
u32 tmp, j;
u64 tmp64;
mvs_write_port_cfg_addr(mvi, i, PHYR_IDENTIFY);
phy->dev_info = mvs_read_port_cfg_data(mvi, i);
mvs_write_port_cfg_addr(mvi, i, PHYR_ADDR_HI);
phy->dev_sas_addr = (u64) mvs_read_port_cfg_data(mvi, i) << 32;
mvs_write_port_cfg_addr(mvi, i, PHYR_ADDR_LO);
phy->dev_sas_addr |= mvs_read_port_cfg_data(mvi, i);
if (get_st) {
phy->irq_status = mvs_read_port_irq_stat(mvi, i);
phy->phy_status = mvs_is_phy_ready(mvi, i);
}
if (phy->phy_status) {
u32 phy_st;
struct asd_sas_phy *sas_phy = mvi->sas.sas_phy[i];
mvs_write_port_cfg_addr(mvi, i, PHYR_PHY_STAT);
phy_st = mvs_read_port_cfg_data(mvi, i);
sas_phy->linkrate =
(phy->phy_status & PHY_NEG_SPP_PHYS_LINK_RATE_MASK) >>
PHY_NEG_SPP_PHYS_LINK_RATE_MASK_OFFSET;
/* Updated attached_sas_addr */
mvs_write_port_cfg_addr(mvi, i, PHYR_ATT_ADDR_HI);
phy->att_dev_sas_addr =
(u64) mvs_read_port_cfg_data(mvi, i) << 32;
mvs_write_port_cfg_addr(mvi, i, PHYR_ATT_ADDR_LO);
phy->att_dev_sas_addr |= mvs_read_port_cfg_data(mvi, i);
dev_printk(KERN_DEBUG, &pdev->dev,
"phy[%d] Get Attached Address 0x%llX ,"
" SAS Address 0x%llX\n",
i, phy->att_dev_sas_addr, phy->dev_sas_addr);
dev_printk(KERN_DEBUG, &pdev->dev,
"Rate = %x , type = %d\n",
sas_phy->linkrate, phy->phy_type);
#if 1
/*
* If the device is capable of supporting a wide port
* on its phys, it may configure the phys as a wide port.
*/
if (phy->phy_type & PORT_TYPE_SAS)
for (j = 0; j < mvi->chip->n_phy && j != i; ++j) {
if ((mvi->phy[j].phy_attached) &&
(mvi->phy[j].phy_type & PORT_TYPE_SAS))
if (phy->att_dev_sas_addr ==
mvi->phy[j].att_dev_sas_addr - 1) {
phy->att_dev_sas_addr =
mvi->phy[j].att_dev_sas_addr;
break;
}
}
#endif
tmp64 = cpu_to_be64(phy->att_dev_sas_addr);
memcpy(sas_phy->attached_sas_addr, &tmp64, SAS_ADDR_SIZE);
if (phy->phy_type & PORT_TYPE_SAS) {
mvs_write_port_cfg_addr(mvi, i, PHYR_ATT_DEV_INFO);
phy->att_dev_info = mvs_read_port_cfg_data(mvi, i);
phy->identify.device_type =
phy->att_dev_info & PORT_DEV_TYPE_MASK;
if (phy->identify.device_type == SAS_END_DEV)
phy->identify.target_port_protocols =
SAS_PROTOCOL_SSP;
else if (phy->identify.device_type != NO_DEVICE)
phy->identify.target_port_protocols =
SAS_PROTOCOL_SMP;
if (phy_st & PHY_OOB_DTCTD)
sas_phy->oob_mode = SAS_OOB_MODE;
phy->frame_rcvd_size =
sizeof(struct sas_identify_frame);
} else if (phy->phy_type & PORT_TYPE_SATA) {
phy->identify.target_port_protocols = SAS_PROTOCOL_STP;
if (mvs_is_sig_fis_received(phy->irq_status)) {
if (phy_st & PHY_OOB_DTCTD)
sas_phy->oob_mode = SATA_OOB_MODE;
phy->frame_rcvd_size =
sizeof(struct dev_to_host_fis);
mvs_get_d2h_reg(mvi, i,
(void *)sas_phy->frame_rcvd);
} else {
dev_printk(KERN_DEBUG, &pdev->dev,
"No sig fis\n");
}
}
/* workaround for HW phy decoding error on 1.5g disk drive */
mvs_write_port_vsr_addr(mvi, i, VSR_PHY_MODE6);
tmp = mvs_read_port_vsr_data(mvi, i);
if (((phy->phy_status & PHY_NEG_SPP_PHYS_LINK_RATE_MASK) >>
PHY_NEG_SPP_PHYS_LINK_RATE_MASK_OFFSET) ==
SAS_LINK_RATE_1_5_GBPS)
tmp &= ~PHY_MODE6_DTL_SPEED;
else
tmp |= PHY_MODE6_DTL_SPEED;
mvs_write_port_vsr_data(mvi, i, tmp);
}
if (get_st)
mvs_write_port_irq_stat(mvi, i, phy->irq_status);
}
static void mvs_port_formed(struct asd_sas_phy *sas_phy)
{
struct sas_ha_struct *sas_ha = sas_phy->ha;
struct mvs_info *mvi = sas_ha->lldd_ha;
struct asd_sas_port *sas_port = sas_phy->port;
struct mvs_phy *phy = sas_phy->lldd_phy;
struct mvs_port *port = &mvi->port[sas_port->id];
unsigned long flags;
spin_lock_irqsave(&mvi->lock, flags);
port->port_attached = 1;
phy->port = port;
port->taskfileset = MVS_ID_NOT_MAPPED;
if (phy->phy_type & PORT_TYPE_SAS) {
port->wide_port_phymap = sas_port->phy_mask;
mvs_update_wideport(mvi, sas_phy->id);
}
spin_unlock_irqrestore(&mvi->lock, flags);
}
static int __devinit mvs_hw_init(struct mvs_info *mvi)
{
void __iomem *regs = mvi->regs;
int i;
u32 tmp, cctl;
/* make sure interrupts are masked immediately (paranoia) */
mw32(GBL_CTL, 0);
tmp = mr32(GBL_CTL);
/* Reset Controller */
if (!(tmp & HBA_RST)) {
if (mvi->flags & MVF_PHY_PWR_FIX) {
pci_read_config_dword(mvi->pdev, PCR_PHY_CTL, &tmp);
tmp &= ~PCTL_PWR_ON;
tmp |= PCTL_OFF;
pci_write_config_dword(mvi->pdev, PCR_PHY_CTL, tmp);
pci_read_config_dword(mvi->pdev, PCR_PHY_CTL2, &tmp);
tmp &= ~PCTL_PWR_ON;
tmp |= PCTL_OFF;
pci_write_config_dword(mvi->pdev, PCR_PHY_CTL2, tmp);
}
/* global reset, incl. COMRESET/H_RESET_N (self-clearing) */
mw32_f(GBL_CTL, HBA_RST);
}
/* wait for reset to finish; timeout is just a guess */
i = 1000;
while (i-- > 0) {
msleep(10);
if (!(mr32(GBL_CTL) & HBA_RST))
break;
}
if (mr32(GBL_CTL) & HBA_RST) {
dev_printk(KERN_ERR, &mvi->pdev->dev, "HBA reset failed\n");
return -EBUSY;
}
/* Init Chip */
/* make sure RST is set; HBA_RST /should/ have done that for us */
cctl = mr32(CTL);
if (cctl & CCTL_RST)
cctl &= ~CCTL_RST;
else
mw32_f(CTL, cctl | CCTL_RST);
/* write to device control _AND_ device status register? - A.C. */
pci_read_config_dword(mvi->pdev, PCR_DEV_CTRL, &tmp);
tmp &= ~PRD_REQ_MASK;
tmp |= PRD_REQ_SIZE;
pci_write_config_dword(mvi->pdev, PCR_DEV_CTRL, tmp);
pci_read_config_dword(mvi->pdev, PCR_PHY_CTL, &tmp);
tmp |= PCTL_PWR_ON;
tmp &= ~PCTL_OFF;
pci_write_config_dword(mvi->pdev, PCR_PHY_CTL, tmp);
pci_read_config_dword(mvi->pdev, PCR_PHY_CTL2, &tmp);
tmp |= PCTL_PWR_ON;
tmp &= ~PCTL_OFF;
pci_write_config_dword(mvi->pdev, PCR_PHY_CTL2, tmp);
mw32_f(CTL, cctl);
/* reset control */
mw32(PCS, 0); /*MVS_PCS */
mvs_phy_hacks(mvi);
mw32(CMD_LIST_LO, mvi->slot_dma);
mw32(CMD_LIST_HI, (mvi->slot_dma >> 16) >> 16);
mw32(RX_FIS_LO, mvi->rx_fis_dma);
mw32(RX_FIS_HI, (mvi->rx_fis_dma >> 16) >> 16);
mw32(TX_CFG, MVS_CHIP_SLOT_SZ);
mw32(TX_LO, mvi->tx_dma);
mw32(TX_HI, (mvi->tx_dma >> 16) >> 16);
mw32(RX_CFG, MVS_RX_RING_SZ);
mw32(RX_LO, mvi->rx_dma);
mw32(RX_HI, (mvi->rx_dma >> 16) >> 16);
/* enable auto port detection */
mw32(GBL_PORT_TYPE, MODE_AUTO_DET_EN);
msleep(100);
/* init and reset phys */
for (i = 0; i < mvi->chip->n_phy; i++) {
u32 lo = be32_to_cpu(*(u32 *)&mvi->sas_addr[4]);
u32 hi = be32_to_cpu(*(u32 *)&mvi->sas_addr[0]);
mvs_detect_porttype(mvi, i);
/* set phy local SAS address */
mvs_write_port_cfg_addr(mvi, i, PHYR_ADDR_LO);
mvs_write_port_cfg_data(mvi, i, lo);
mvs_write_port_cfg_addr(mvi, i, PHYR_ADDR_HI);
mvs_write_port_cfg_data(mvi, i, hi);
/* reset phy */
tmp = mvs_read_phy_ctl(mvi, i);
tmp |= PHY_RST;
mvs_write_phy_ctl(mvi, i, tmp);
}
msleep(100);
for (i = 0; i < mvi->chip->n_phy; i++) {
/* clear phy int status */
tmp = mvs_read_port_irq_stat(mvi, i);
tmp &= ~PHYEV_SIG_FIS;
mvs_write_port_irq_stat(mvi, i, tmp);
/* set phy int mask */
tmp = PHYEV_RDY_CH | PHYEV_BROAD_CH | PHYEV_UNASSOC_FIS |
PHYEV_ID_DONE | PHYEV_DEC_ERR;
mvs_write_port_irq_mask(mvi, i, tmp);
msleep(100);
mvs_update_phyinfo(mvi, i, 1);
mvs_enable_xmt(mvi, i);
}
/* FIXME: update wide port bitmaps */
/* little endian for open address and command table, etc. */
/* A.C.
* it seems that ( from the spec ) turning on big-endian won't
* do us any good on big-endian machines, need further confirmation
*/
cctl = mr32(CTL);
cctl |= CCTL_ENDIAN_CMD;
cctl |= CCTL_ENDIAN_DATA;
cctl &= ~CCTL_ENDIAN_OPEN;
cctl |= CCTL_ENDIAN_RSP;
mw32_f(CTL, cctl);
/* reset CMD queue */
tmp = mr32(PCS);
tmp |= PCS_CMD_RST;
mw32(PCS, tmp);
/* interrupt coalescing may cause missing HW interrput in some case,
* and the max count is 0x1ff, while our max slot is 0x200,
* it will make count 0.
*/
tmp = 0;
mw32(INT_COAL, tmp);
tmp = 0x100;
mw32(INT_COAL_TMOUT, tmp);
/* ladies and gentlemen, start your engines */
mw32(TX_CFG, 0);
mw32(TX_CFG, MVS_CHIP_SLOT_SZ | TX_EN);
mw32(RX_CFG, MVS_RX_RING_SZ | RX_EN);
/* enable CMD/CMPL_Q/RESP mode */
mw32(PCS, PCS_SATA_RETRY | PCS_FIS_RX_EN | PCS_CMD_EN);
/* re-enable interrupts globally */
mvs_hba_interrupt_enable(mvi);
/* enable completion queue interrupt */
tmp = (CINT_PORT_MASK | CINT_DONE | CINT_MEM);
mw32(INT_MASK, tmp);
return 0;
}
static void __devinit mvs_print_info(struct mvs_info *mvi)
{
struct pci_dev *pdev = mvi->pdev;
static int printed_version;
if (!printed_version++)
dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
dev_printk(KERN_INFO, &pdev->dev, "%u phys, addr %llx\n",
mvi->chip->n_phy, SAS_ADDR(mvi->sas_addr));
}
static int __devinit mvs_pci_init(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int rc;
struct mvs_info *mvi;
irq_handler_t irq_handler = mvs_interrupt;
rc = pci_enable_device(pdev);
if (rc)
return rc;
pci_set_master(pdev);
rc = pci_request_regions(pdev, DRV_NAME);
if (rc)
goto err_out_disable;
rc = pci_go_64(pdev);
if (rc)
goto err_out_regions;
mvi = mvs_alloc(pdev, ent);
if (!mvi) {
rc = -ENOMEM;
goto err_out_regions;
}
rc = mvs_hw_init(mvi);
if (rc)
goto err_out_mvi;
#ifndef MVS_DISABLE_MSI
if (!pci_enable_msi(pdev)) {
u32 tmp;
void __iomem *regs = mvi->regs;
mvi->flags |= MVF_MSI;
irq_handler = mvs_msi_interrupt;
tmp = mr32(PCS);
mw32(PCS, tmp | PCS_SELF_CLEAR);
}
#endif
rc = request_irq(pdev->irq, irq_handler, IRQF_SHARED, DRV_NAME, mvi);
if (rc)
goto err_out_msi;
rc = scsi_add_host(mvi->shost, &pdev->dev);
if (rc)
goto err_out_irq;
rc = sas_register_ha(&mvi->sas);
if (rc)
goto err_out_shost;
pci_set_drvdata(pdev, mvi);
mvs_print_info(mvi);
scsi_scan_host(mvi->shost);
return 0;
err_out_shost:
scsi_remove_host(mvi->shost);
err_out_irq:
free_irq(pdev->irq, mvi);
err_out_msi:
if (mvi->flags |= MVF_MSI)
pci_disable_msi(pdev);
err_out_mvi:
mvs_free(mvi);
err_out_regions:
pci_release_regions(pdev);
err_out_disable:
pci_disable_device(pdev);
return rc;
}
static void __devexit mvs_pci_remove(struct pci_dev *pdev)
{
struct mvs_info *mvi = pci_get_drvdata(pdev);
pci_set_drvdata(pdev, NULL);
if (mvi) {
sas_unregister_ha(&mvi->sas);
mvs_hba_interrupt_disable(mvi);
sas_remove_host(mvi->shost);
scsi_remove_host(mvi->shost);
free_irq(pdev->irq, mvi);
if (mvi->flags & MVF_MSI)
pci_disable_msi(pdev);
mvs_free(mvi);
pci_release_regions(pdev);
}
pci_disable_device(pdev);
}
static struct sas_domain_function_template mvs_transport_ops = {
.lldd_execute_task = mvs_task_exec,
.lldd_control_phy = mvs_phy_control,
.lldd_abort_task = mvs_task_abort,
.lldd_port_formed = mvs_port_formed
};
static struct pci_device_id __devinitdata mvs_pci_table[] = {
{ PCI_VDEVICE(MARVELL, 0x6320), chip_6320 },
{ PCI_VDEVICE(MARVELL, 0x6340), chip_6440 },
{ PCI_VDEVICE(MARVELL, 0x6440), chip_6440 },
{ PCI_VDEVICE(MARVELL, 0x6480), chip_6480 },
{ } /* terminate list */
};
static struct pci_driver mvs_pci_driver = {
.name = DRV_NAME,
.id_table = mvs_pci_table,
.probe = mvs_pci_init,
.remove = __devexit_p(mvs_pci_remove),
};
static int __init mvs_init(void)
{
int rc;
mvs_stt = sas_domain_attach_transport(&mvs_transport_ops);
if (!mvs_stt)
return -ENOMEM;
rc = pci_register_driver(&mvs_pci_driver);
if (rc)
goto err_out;
return 0;
err_out:
sas_release_transport(mvs_stt);
return rc;
}
static void __exit mvs_exit(void)
{
pci_unregister_driver(&mvs_pci_driver);
sas_release_transport(mvs_stt);
}
module_init(mvs_init);
module_exit(mvs_exit);
MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
MODULE_DESCRIPTION("Marvell 88SE6440 SAS/SATA controller driver");
MODULE_VERSION(DRV_VERSION);
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, mvs_pci_table);