blob: 22a6f18a5313648b31e241cf2540876732abb5c9 [file] [log] [blame]
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1992 - 1997, 2000-2005 Silicon Graphics, Inc. All rights reserved.
*/
#ifndef _ASM_IA64_SN_SHUBIO_H
#define _ASM_IA64_SN_SHUBIO_H
#define HUB_WIDGET_ID_MAX 0xf
#define IIO_NUM_ITTES 7
#define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1)
#define IIO_WID 0x00400000 /* Crosstalk Widget Identification */
/* This register is also accessible from
* Crosstalk at address 0x0. */
#define IIO_WSTAT 0x00400008 /* Crosstalk Widget Status */
#define IIO_WCR 0x00400020 /* Crosstalk Widget Control Register */
#define IIO_ILAPR 0x00400100 /* IO Local Access Protection Register */
#define IIO_ILAPO 0x00400108 /* IO Local Access Protection Override */
#define IIO_IOWA 0x00400110 /* IO Outbound Widget Access */
#define IIO_IIWA 0x00400118 /* IO Inbound Widget Access */
#define IIO_IIDEM 0x00400120 /* IO Inbound Device Error Mask */
#define IIO_ILCSR 0x00400128 /* IO LLP Control and Status Register */
#define IIO_ILLR 0x00400130 /* IO LLP Log Register */
#define IIO_IIDSR 0x00400138 /* IO Interrupt Destination */
#define IIO_IGFX0 0x00400140 /* IO Graphics Node-Widget Map 0 */
#define IIO_IGFX1 0x00400148 /* IO Graphics Node-Widget Map 1 */
#define IIO_ISCR0 0x00400150 /* IO Scratch Register 0 */
#define IIO_ISCR1 0x00400158 /* IO Scratch Register 1 */
#define IIO_ITTE1 0x00400160 /* IO Translation Table Entry 1 */
#define IIO_ITTE2 0x00400168 /* IO Translation Table Entry 2 */
#define IIO_ITTE3 0x00400170 /* IO Translation Table Entry 3 */
#define IIO_ITTE4 0x00400178 /* IO Translation Table Entry 4 */
#define IIO_ITTE5 0x00400180 /* IO Translation Table Entry 5 */
#define IIO_ITTE6 0x00400188 /* IO Translation Table Entry 6 */
#define IIO_ITTE7 0x00400190 /* IO Translation Table Entry 7 */
#define IIO_IPRB0 0x00400198 /* IO PRB Entry 0 */
#define IIO_IPRB8 0x004001A0 /* IO PRB Entry 8 */
#define IIO_IPRB9 0x004001A8 /* IO PRB Entry 9 */
#define IIO_IPRBA 0x004001B0 /* IO PRB Entry A */
#define IIO_IPRBB 0x004001B8 /* IO PRB Entry B */
#define IIO_IPRBC 0x004001C0 /* IO PRB Entry C */
#define IIO_IPRBD 0x004001C8 /* IO PRB Entry D */
#define IIO_IPRBE 0x004001D0 /* IO PRB Entry E */
#define IIO_IPRBF 0x004001D8 /* IO PRB Entry F */
#define IIO_IXCC 0x004001E0 /* IO Crosstalk Credit Count Timeout */
#define IIO_IMEM 0x004001E8 /* IO Miscellaneous Error Mask */
#define IIO_IXTT 0x004001F0 /* IO Crosstalk Timeout Threshold */
#define IIO_IECLR 0x004001F8 /* IO Error Clear Register */
#define IIO_IBCR 0x00400200 /* IO BTE Control Register */
#define IIO_IXSM 0x00400208 /* IO Crosstalk Spurious Message */
#define IIO_IXSS 0x00400210 /* IO Crosstalk Spurious Sideband */
#define IIO_ILCT 0x00400218 /* IO LLP Channel Test */
#define IIO_IIEPH1 0x00400220 /* IO Incoming Error Packet Header, Part 1 */
#define IIO_IIEPH2 0x00400228 /* IO Incoming Error Packet Header, Part 2 */
#define IIO_ISLAPR 0x00400230 /* IO SXB Local Access Protection Regster */
#define IIO_ISLAPO 0x00400238 /* IO SXB Local Access Protection Override */
#define IIO_IWI 0x00400240 /* IO Wrapper Interrupt Register */
#define IIO_IWEL 0x00400248 /* IO Wrapper Error Log Register */
#define IIO_IWC 0x00400250 /* IO Wrapper Control Register */
#define IIO_IWS 0x00400258 /* IO Wrapper Status Register */
#define IIO_IWEIM 0x00400260 /* IO Wrapper Error Interrupt Masking Register */
#define IIO_IPCA 0x00400300 /* IO PRB Counter Adjust */
#define IIO_IPRTE0_A 0x00400308 /* IO PIO Read Address Table Entry 0, Part A */
#define IIO_IPRTE1_A 0x00400310 /* IO PIO Read Address Table Entry 1, Part A */
#define IIO_IPRTE2_A 0x00400318 /* IO PIO Read Address Table Entry 2, Part A */
#define IIO_IPRTE3_A 0x00400320 /* IO PIO Read Address Table Entry 3, Part A */
#define IIO_IPRTE4_A 0x00400328 /* IO PIO Read Address Table Entry 4, Part A */
#define IIO_IPRTE5_A 0x00400330 /* IO PIO Read Address Table Entry 5, Part A */
#define IIO_IPRTE6_A 0x00400338 /* IO PIO Read Address Table Entry 6, Part A */
#define IIO_IPRTE7_A 0x00400340 /* IO PIO Read Address Table Entry 7, Part A */
#define IIO_IPRTE0_B 0x00400348 /* IO PIO Read Address Table Entry 0, Part B */
#define IIO_IPRTE1_B 0x00400350 /* IO PIO Read Address Table Entry 1, Part B */
#define IIO_IPRTE2_B 0x00400358 /* IO PIO Read Address Table Entry 2, Part B */
#define IIO_IPRTE3_B 0x00400360 /* IO PIO Read Address Table Entry 3, Part B */
#define IIO_IPRTE4_B 0x00400368 /* IO PIO Read Address Table Entry 4, Part B */
#define IIO_IPRTE5_B 0x00400370 /* IO PIO Read Address Table Entry 5, Part B */
#define IIO_IPRTE6_B 0x00400378 /* IO PIO Read Address Table Entry 6, Part B */
#define IIO_IPRTE7_B 0x00400380 /* IO PIO Read Address Table Entry 7, Part B */
#define IIO_IPDR 0x00400388 /* IO PIO Deallocation Register */
#define IIO_ICDR 0x00400390 /* IO CRB Entry Deallocation Register */
#define IIO_IFDR 0x00400398 /* IO IOQ FIFO Depth Register */
#define IIO_IIAP 0x004003A0 /* IO IIQ Arbitration Parameters */
#define IIO_ICMR 0x004003A8 /* IO CRB Management Register */
#define IIO_ICCR 0x004003B0 /* IO CRB Control Register */
#define IIO_ICTO 0x004003B8 /* IO CRB Timeout */
#define IIO_ICTP 0x004003C0 /* IO CRB Timeout Prescalar */
#define IIO_ICRB0_A 0x00400400 /* IO CRB Entry 0_A */
#define IIO_ICRB0_B 0x00400408 /* IO CRB Entry 0_B */
#define IIO_ICRB0_C 0x00400410 /* IO CRB Entry 0_C */
#define IIO_ICRB0_D 0x00400418 /* IO CRB Entry 0_D */
#define IIO_ICRB0_E 0x00400420 /* IO CRB Entry 0_E */
#define IIO_ICRB1_A 0x00400430 /* IO CRB Entry 1_A */
#define IIO_ICRB1_B 0x00400438 /* IO CRB Entry 1_B */
#define IIO_ICRB1_C 0x00400440 /* IO CRB Entry 1_C */
#define IIO_ICRB1_D 0x00400448 /* IO CRB Entry 1_D */
#define IIO_ICRB1_E 0x00400450 /* IO CRB Entry 1_E */
#define IIO_ICRB2_A 0x00400460 /* IO CRB Entry 2_A */
#define IIO_ICRB2_B 0x00400468 /* IO CRB Entry 2_B */
#define IIO_ICRB2_C 0x00400470 /* IO CRB Entry 2_C */
#define IIO_ICRB2_D 0x00400478 /* IO CRB Entry 2_D */
#define IIO_ICRB2_E 0x00400480 /* IO CRB Entry 2_E */
#define IIO_ICRB3_A 0x00400490 /* IO CRB Entry 3_A */
#define IIO_ICRB3_B 0x00400498 /* IO CRB Entry 3_B */
#define IIO_ICRB3_C 0x004004a0 /* IO CRB Entry 3_C */
#define IIO_ICRB3_D 0x004004a8 /* IO CRB Entry 3_D */
#define IIO_ICRB3_E 0x004004b0 /* IO CRB Entry 3_E */
#define IIO_ICRB4_A 0x004004c0 /* IO CRB Entry 4_A */
#define IIO_ICRB4_B 0x004004c8 /* IO CRB Entry 4_B */
#define IIO_ICRB4_C 0x004004d0 /* IO CRB Entry 4_C */
#define IIO_ICRB4_D 0x004004d8 /* IO CRB Entry 4_D */
#define IIO_ICRB4_E 0x004004e0 /* IO CRB Entry 4_E */
#define IIO_ICRB5_A 0x004004f0 /* IO CRB Entry 5_A */
#define IIO_ICRB5_B 0x004004f8 /* IO CRB Entry 5_B */
#define IIO_ICRB5_C 0x00400500 /* IO CRB Entry 5_C */
#define IIO_ICRB5_D 0x00400508 /* IO CRB Entry 5_D */
#define IIO_ICRB5_E 0x00400510 /* IO CRB Entry 5_E */
#define IIO_ICRB6_A 0x00400520 /* IO CRB Entry 6_A */
#define IIO_ICRB6_B 0x00400528 /* IO CRB Entry 6_B */
#define IIO_ICRB6_C 0x00400530 /* IO CRB Entry 6_C */
#define IIO_ICRB6_D 0x00400538 /* IO CRB Entry 6_D */
#define IIO_ICRB6_E 0x00400540 /* IO CRB Entry 6_E */
#define IIO_ICRB7_A 0x00400550 /* IO CRB Entry 7_A */
#define IIO_ICRB7_B 0x00400558 /* IO CRB Entry 7_B */
#define IIO_ICRB7_C 0x00400560 /* IO CRB Entry 7_C */
#define IIO_ICRB7_D 0x00400568 /* IO CRB Entry 7_D */
#define IIO_ICRB7_E 0x00400570 /* IO CRB Entry 7_E */
#define IIO_ICRB8_A 0x00400580 /* IO CRB Entry 8_A */
#define IIO_ICRB8_B 0x00400588 /* IO CRB Entry 8_B */
#define IIO_ICRB8_C 0x00400590 /* IO CRB Entry 8_C */
#define IIO_ICRB8_D 0x00400598 /* IO CRB Entry 8_D */
#define IIO_ICRB8_E 0x004005a0 /* IO CRB Entry 8_E */
#define IIO_ICRB9_A 0x004005b0 /* IO CRB Entry 9_A */
#define IIO_ICRB9_B 0x004005b8 /* IO CRB Entry 9_B */
#define IIO_ICRB9_C 0x004005c0 /* IO CRB Entry 9_C */
#define IIO_ICRB9_D 0x004005c8 /* IO CRB Entry 9_D */
#define IIO_ICRB9_E 0x004005d0 /* IO CRB Entry 9_E */
#define IIO_ICRBA_A 0x004005e0 /* IO CRB Entry A_A */
#define IIO_ICRBA_B 0x004005e8 /* IO CRB Entry A_B */
#define IIO_ICRBA_C 0x004005f0 /* IO CRB Entry A_C */
#define IIO_ICRBA_D 0x004005f8 /* IO CRB Entry A_D */
#define IIO_ICRBA_E 0x00400600 /* IO CRB Entry A_E */
#define IIO_ICRBB_A 0x00400610 /* IO CRB Entry B_A */
#define IIO_ICRBB_B 0x00400618 /* IO CRB Entry B_B */
#define IIO_ICRBB_C 0x00400620 /* IO CRB Entry B_C */
#define IIO_ICRBB_D 0x00400628 /* IO CRB Entry B_D */
#define IIO_ICRBB_E 0x00400630 /* IO CRB Entry B_E */
#define IIO_ICRBC_A 0x00400640 /* IO CRB Entry C_A */
#define IIO_ICRBC_B 0x00400648 /* IO CRB Entry C_B */
#define IIO_ICRBC_C 0x00400650 /* IO CRB Entry C_C */
#define IIO_ICRBC_D 0x00400658 /* IO CRB Entry C_D */
#define IIO_ICRBC_E 0x00400660 /* IO CRB Entry C_E */
#define IIO_ICRBD_A 0x00400670 /* IO CRB Entry D_A */
#define IIO_ICRBD_B 0x00400678 /* IO CRB Entry D_B */
#define IIO_ICRBD_C 0x00400680 /* IO CRB Entry D_C */
#define IIO_ICRBD_D 0x00400688 /* IO CRB Entry D_D */
#define IIO_ICRBD_E 0x00400690 /* IO CRB Entry D_E */
#define IIO_ICRBE_A 0x004006a0 /* IO CRB Entry E_A */
#define IIO_ICRBE_B 0x004006a8 /* IO CRB Entry E_B */
#define IIO_ICRBE_C 0x004006b0 /* IO CRB Entry E_C */
#define IIO_ICRBE_D 0x004006b8 /* IO CRB Entry E_D */
#define IIO_ICRBE_E 0x004006c0 /* IO CRB Entry E_E */
#define IIO_ICSML 0x00400700 /* IO CRB Spurious Message Low */
#define IIO_ICSMM 0x00400708 /* IO CRB Spurious Message Middle */
#define IIO_ICSMH 0x00400710 /* IO CRB Spurious Message High */
#define IIO_IDBSS 0x00400718 /* IO Debug Submenu Select */
#define IIO_IBLS0 0x00410000 /* IO BTE Length Status 0 */
#define IIO_IBSA0 0x00410008 /* IO BTE Source Address 0 */
#define IIO_IBDA0 0x00410010 /* IO BTE Destination Address 0 */
#define IIO_IBCT0 0x00410018 /* IO BTE Control Terminate 0 */
#define IIO_IBNA0 0x00410020 /* IO BTE Notification Address 0 */
#define IIO_IBIA0 0x00410028 /* IO BTE Interrupt Address 0 */
#define IIO_IBLS1 0x00420000 /* IO BTE Length Status 1 */
#define IIO_IBSA1 0x00420008 /* IO BTE Source Address 1 */
#define IIO_IBDA1 0x00420010 /* IO BTE Destination Address 1 */
#define IIO_IBCT1 0x00420018 /* IO BTE Control Terminate 1 */
#define IIO_IBNA1 0x00420020 /* IO BTE Notification Address 1 */
#define IIO_IBIA1 0x00420028 /* IO BTE Interrupt Address 1 */
#define IIO_IPCR 0x00430000 /* IO Performance Control */
#define IIO_IPPR 0x00430008 /* IO Performance Profiling */
/************************************************************************
* *
* Description: This register echoes some information from the *
* LB_REV_ID register. It is available through Crosstalk as described *
* above. The REV_NUM and MFG_NUM fields receive their values from *
* the REVISION and MANUFACTURER fields in the LB_REV_ID register. *
* The PART_NUM field's value is the Crosstalk device ID number that *
* Steve Miller assigned to the SHub chip. *
* *
************************************************************************/
typedef union ii_wid_u {
u64 ii_wid_regval;
struct {
u64 w_rsvd_1:1;
u64 w_mfg_num:11;
u64 w_part_num:16;
u64 w_rev_num:4;
u64 w_rsvd:32;
} ii_wid_fld_s;
} ii_wid_u_t;
/************************************************************************
* *
* The fields in this register are set upon detection of an error *
* and cleared by various mechanisms, as explained in the *
* description. *
* *
************************************************************************/
typedef union ii_wstat_u {
u64 ii_wstat_regval;
struct {
u64 w_pending:4;
u64 w_xt_crd_to:1;
u64 w_xt_tail_to:1;
u64 w_rsvd_3:3;
u64 w_tx_mx_rty:1;
u64 w_rsvd_2:6;
u64 w_llp_tx_cnt:8;
u64 w_rsvd_1:8;
u64 w_crazy:1;
u64 w_rsvd:31;
} ii_wstat_fld_s;
} ii_wstat_u_t;
/************************************************************************
* *
* Description: This is a read-write enabled register. It controls *
* various aspects of the Crosstalk flow control. *
* *
************************************************************************/
typedef union ii_wcr_u {
u64 ii_wcr_regval;
struct {
u64 w_wid:4;
u64 w_tag:1;
u64 w_rsvd_1:8;
u64 w_dst_crd:3;
u64 w_f_bad_pkt:1;
u64 w_dir_con:1;
u64 w_e_thresh:5;
u64 w_rsvd:41;
} ii_wcr_fld_s;
} ii_wcr_u_t;
/************************************************************************
* *
* Description: This register's value is a bit vector that guards *
* access to local registers within the II as well as to external *
* Crosstalk widgets. Each bit in the register corresponds to a *
* particular region in the system; a region consists of one, two or *
* four nodes (depending on the value of the REGION_SIZE field in the *
* LB_REV_ID register, which is documented in Section 8.3.1.1). The *
* protection provided by this register applies to PIO read *
* operations as well as PIO write operations. The II will perform a *
* PIO read or write request only if the bit for the requestor's *
* region is set; otherwise, the II will not perform the requested *
* operation and will return an error response. When a PIO read or *
* write request targets an external Crosstalk widget, then not only *
* must the bit for the requestor's region be set in the ILAPR, but *
* also the target widget's bit in the IOWA register must be set in *
* order for the II to perform the requested operation; otherwise, *
* the II will return an error response. Hence, the protection *
* provided by the IOWA register supplements the protection provided *
* by the ILAPR for requests that target external Crosstalk widgets. *
* This register itself can be accessed only by the nodes whose *
* region ID bits are enabled in this same register. It can also be *
* accessed through the IAlias space by the local processors. *
* The reset value of this register allows access by all nodes. *
* *
************************************************************************/
typedef union ii_ilapr_u {
u64 ii_ilapr_regval;
struct {
u64 i_region:64;
} ii_ilapr_fld_s;
} ii_ilapr_u_t;
/************************************************************************
* *
* Description: A write to this register of the 64-bit value *
* "SGIrules" in ASCII, will cause the bit in the ILAPR register *
* corresponding to the region of the requestor to be set (allow *
* access). A write of any other value will be ignored. Access *
* protection for this register is "SGIrules". *
* This register can also be accessed through the IAlias space. *
* However, this access will not change the access permissions in the *
* ILAPR. *
* *
************************************************************************/
typedef union ii_ilapo_u {
u64 ii_ilapo_regval;
struct {
u64 i_io_ovrride:64;
} ii_ilapo_fld_s;
} ii_ilapo_u_t;
/************************************************************************
* *
* This register qualifies all the PIO and Graphics writes launched *
* from the SHUB towards a widget. *
* *
************************************************************************/
typedef union ii_iowa_u {
u64 ii_iowa_regval;
struct {
u64 i_w0_oac:1;
u64 i_rsvd_1:7;
u64 i_wx_oac:8;
u64 i_rsvd:48;
} ii_iowa_fld_s;
} ii_iowa_u_t;
/************************************************************************
* *
* Description: This register qualifies all the requests launched *
* from a widget towards the Shub. This register is intended to be *
* used by software in case of misbehaving widgets. *
* *
* *
************************************************************************/
typedef union ii_iiwa_u {
u64 ii_iiwa_regval;
struct {
u64 i_w0_iac:1;
u64 i_rsvd_1:7;
u64 i_wx_iac:8;
u64 i_rsvd:48;
} ii_iiwa_fld_s;
} ii_iiwa_u_t;
/************************************************************************
* *
* Description: This register qualifies all the operations launched *
* from a widget towards the SHub. It allows individual access *
* control for up to 8 devices per widget. A device refers to *
* individual DMA master hosted by a widget. *
* The bits in each field of this register are cleared by the Shub *
* upon detection of an error which requires the device to be *
* disabled. These fields assume that 0=TNUM=7 (i.e., Bridge-centric *
* Crosstalk). Whether or not a device has access rights to this *
* Shub is determined by an AND of the device enable bit in the *
* appropriate field of this register and the corresponding bit in *
* the Wx_IAC field (for the widget which this device belongs to). *
* The bits in this field are set by writing a 1 to them. Incoming *
* replies from Crosstalk are not subject to this access control *
* mechanism. *
* *
************************************************************************/
typedef union ii_iidem_u {
u64 ii_iidem_regval;
struct {
u64 i_w8_dxs:8;
u64 i_w9_dxs:8;
u64 i_wa_dxs:8;
u64 i_wb_dxs:8;
u64 i_wc_dxs:8;
u64 i_wd_dxs:8;
u64 i_we_dxs:8;
u64 i_wf_dxs:8;
} ii_iidem_fld_s;
} ii_iidem_u_t;
/************************************************************************
* *
* This register contains the various programmable fields necessary *
* for controlling and observing the LLP signals. *
* *
************************************************************************/
typedef union ii_ilcsr_u {
u64 ii_ilcsr_regval;
struct {
u64 i_nullto:6;
u64 i_rsvd_4:2;
u64 i_wrmrst:1;
u64 i_rsvd_3:1;
u64 i_llp_en:1;
u64 i_bm8:1;
u64 i_llp_stat:2;
u64 i_remote_power:1;
u64 i_rsvd_2:1;
u64 i_maxrtry:10;
u64 i_d_avail_sel:2;
u64 i_rsvd_1:4;
u64 i_maxbrst:10;
u64 i_rsvd:22;
} ii_ilcsr_fld_s;
} ii_ilcsr_u_t;
/************************************************************************
* *
* This is simply a status registers that monitors the LLP error *
* rate. *
* *
************************************************************************/
typedef union ii_illr_u {
u64 ii_illr_regval;
struct {
u64 i_sn_cnt:16;
u64 i_cb_cnt:16;
u64 i_rsvd:32;
} ii_illr_fld_s;
} ii_illr_u_t;
/************************************************************************
* *
* Description: All II-detected non-BTE error interrupts are *
* specified via this register. *
* NOTE: The PI interrupt register address is hardcoded in the II. If *
* PI_ID==0, then the II sends an interrupt request (Duplonet PWRI *
* packet) to address offset 0x0180_0090 within the local register *
* address space of PI0 on the node specified by the NODE field. If *
* PI_ID==1, then the II sends the interrupt request to address *
* offset 0x01A0_0090 within the local register address space of PI1 *
* on the node specified by the NODE field. *
* *
************************************************************************/
typedef union ii_iidsr_u {
u64 ii_iidsr_regval;
struct {
u64 i_level:8;
u64 i_pi_id:1;
u64 i_node:11;
u64 i_rsvd_3:4;
u64 i_enable:1;
u64 i_rsvd_2:3;
u64 i_int_sent:2;
u64 i_rsvd_1:2;
u64 i_pi0_forward_int:1;
u64 i_pi1_forward_int:1;
u64 i_rsvd:30;
} ii_iidsr_fld_s;
} ii_iidsr_u_t;
/************************************************************************
* *
* There are two instances of this register. This register is used *
* for matching up the incoming responses from the graphics widget to *
* the processor that initiated the graphics operation. The *
* write-responses are converted to graphics credits and returned to *
* the processor so that the processor interface can manage the flow *
* control. *
* *
************************************************************************/
typedef union ii_igfx0_u {
u64 ii_igfx0_regval;
struct {
u64 i_w_num:4;
u64 i_pi_id:1;
u64 i_n_num:12;
u64 i_p_num:1;
u64 i_rsvd:46;
} ii_igfx0_fld_s;
} ii_igfx0_u_t;
/************************************************************************
* *
* There are two instances of this register. This register is used *
* for matching up the incoming responses from the graphics widget to *
* the processor that initiated the graphics operation. The *
* write-responses are converted to graphics credits and returned to *
* the processor so that the processor interface can manage the flow *
* control. *
* *
************************************************************************/
typedef union ii_igfx1_u {
u64 ii_igfx1_regval;
struct {
u64 i_w_num:4;
u64 i_pi_id:1;
u64 i_n_num:12;
u64 i_p_num:1;
u64 i_rsvd:46;
} ii_igfx1_fld_s;
} ii_igfx1_u_t;
/************************************************************************
* *
* There are two instances of this registers. These registers are *
* used as scratch registers for software use. *
* *
************************************************************************/
typedef union ii_iscr0_u {
u64 ii_iscr0_regval;
struct {
u64 i_scratch:64;
} ii_iscr0_fld_s;
} ii_iscr0_u_t;
/************************************************************************
* *
* There are two instances of this registers. These registers are *
* used as scratch registers for software use. *
* *
************************************************************************/
typedef union ii_iscr1_u {
u64 ii_iscr1_regval;
struct {
u64 i_scratch:64;
} ii_iscr1_fld_s;
} ii_iscr1_u_t;
/************************************************************************
* *
* Description: There are seven instances of translation table entry *
* registers. Each register maps a Shub Big Window to a 48-bit *
* address on Crosstalk. *
* For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
* number) are used to select one of these 7 registers. The Widget *
* number field is then derived from the W_NUM field for synthesizing *
* a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
* SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
* are padded with zeros. Although the maximum Crosstalk space *
* addressable by the SHub is thus the lower 16 GBytes per widget *
* (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
* space can be accessed. *
* For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
* Window number) are used to select one of these 7 registers. The *
* Widget number field is then derived from the W_NUM field for *
* synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
* concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
* field is used as Crosstalk[47], and remainder of the Crosstalk *
* address bits (Crosstalk[46:34]) are always zero. While the maximum *
* Crosstalk space addressable by the Shub is thus the lower *
* 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
* of this space can be accessed. *
* *
************************************************************************/
typedef union ii_itte1_u {
u64 ii_itte1_regval;
struct {
u64 i_offset:5;
u64 i_rsvd_1:3;
u64 i_w_num:4;
u64 i_iosp:1;
u64 i_rsvd:51;
} ii_itte1_fld_s;
} ii_itte1_u_t;
/************************************************************************
* *
* Description: There are seven instances of translation table entry *
* registers. Each register maps a Shub Big Window to a 48-bit *
* address on Crosstalk. *
* For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
* number) are used to select one of these 7 registers. The Widget *
* number field is then derived from the W_NUM field for synthesizing *
* a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
* SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
* are padded with zeros. Although the maximum Crosstalk space *
* addressable by the Shub is thus the lower 16 GBytes per widget *
* (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
* space can be accessed. *
* For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
* Window number) are used to select one of these 7 registers. The *
* Widget number field is then derived from the W_NUM field for *
* synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
* concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
* field is used as Crosstalk[47], and remainder of the Crosstalk *
* address bits (Crosstalk[46:34]) are always zero. While the maximum *
* Crosstalk space addressable by the Shub is thus the lower *
* 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
* of this space can be accessed. *
* *
************************************************************************/
typedef union ii_itte2_u {
u64 ii_itte2_regval;
struct {
u64 i_offset:5;
u64 i_rsvd_1:3;
u64 i_w_num:4;
u64 i_iosp:1;
u64 i_rsvd:51;
} ii_itte2_fld_s;
} ii_itte2_u_t;
/************************************************************************
* *
* Description: There are seven instances of translation table entry *
* registers. Each register maps a Shub Big Window to a 48-bit *
* address on Crosstalk. *
* For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
* number) are used to select one of these 7 registers. The Widget *
* number field is then derived from the W_NUM field for synthesizing *
* a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
* SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
* are padded with zeros. Although the maximum Crosstalk space *
* addressable by the Shub is thus the lower 16 GBytes per widget *
* (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
* space can be accessed. *
* For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
* Window number) are used to select one of these 7 registers. The *
* Widget number field is then derived from the W_NUM field for *
* synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
* concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
* field is used as Crosstalk[47], and remainder of the Crosstalk *
* address bits (Crosstalk[46:34]) are always zero. While the maximum *
* Crosstalk space addressable by the SHub is thus the lower *
* 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
* of this space can be accessed. *
* *
************************************************************************/
typedef union ii_itte3_u {
u64 ii_itte3_regval;
struct {
u64 i_offset:5;
u64 i_rsvd_1:3;
u64 i_w_num:4;
u64 i_iosp:1;
u64 i_rsvd:51;
} ii_itte3_fld_s;
} ii_itte3_u_t;
/************************************************************************
* *
* Description: There are seven instances of translation table entry *
* registers. Each register maps a SHub Big Window to a 48-bit *
* address on Crosstalk. *
* For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
* number) are used to select one of these 7 registers. The Widget *
* number field is then derived from the W_NUM field for synthesizing *
* a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
* SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
* are padded with zeros. Although the maximum Crosstalk space *
* addressable by the SHub is thus the lower 16 GBytes per widget *
* (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
* space can be accessed. *
* For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
* Window number) are used to select one of these 7 registers. The *
* Widget number field is then derived from the W_NUM field for *
* synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
* concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
* field is used as Crosstalk[47], and remainder of the Crosstalk *
* address bits (Crosstalk[46:34]) are always zero. While the maximum *
* Crosstalk space addressable by the SHub is thus the lower *
* 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
* of this space can be accessed. *
* *
************************************************************************/
typedef union ii_itte4_u {
u64 ii_itte4_regval;
struct {
u64 i_offset:5;
u64 i_rsvd_1:3;
u64 i_w_num:4;
u64 i_iosp:1;
u64 i_rsvd:51;
} ii_itte4_fld_s;
} ii_itte4_u_t;
/************************************************************************
* *
* Description: There are seven instances of translation table entry *
* registers. Each register maps a SHub Big Window to a 48-bit *
* address on Crosstalk. *
* For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
* number) are used to select one of these 7 registers. The Widget *
* number field is then derived from the W_NUM field for synthesizing *
* a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
* SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
* are padded with zeros. Although the maximum Crosstalk space *
* addressable by the Shub is thus the lower 16 GBytes per widget *
* (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
* space can be accessed. *
* For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
* Window number) are used to select one of these 7 registers. The *
* Widget number field is then derived from the W_NUM field for *
* synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
* concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
* field is used as Crosstalk[47], and remainder of the Crosstalk *
* address bits (Crosstalk[46:34]) are always zero. While the maximum *
* Crosstalk space addressable by the Shub is thus the lower *
* 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
* of this space can be accessed. *
* *
************************************************************************/
typedef union ii_itte5_u {
u64 ii_itte5_regval;
struct {
u64 i_offset:5;
u64 i_rsvd_1:3;
u64 i_w_num:4;
u64 i_iosp:1;
u64 i_rsvd:51;
} ii_itte5_fld_s;
} ii_itte5_u_t;
/************************************************************************
* *
* Description: There are seven instances of translation table entry *
* registers. Each register maps a Shub Big Window to a 48-bit *
* address on Crosstalk. *
* For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
* number) are used to select one of these 7 registers. The Widget *
* number field is then derived from the W_NUM field for synthesizing *
* a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
* SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
* are padded with zeros. Although the maximum Crosstalk space *
* addressable by the Shub is thus the lower 16 GBytes per widget *
* (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
* space can be accessed. *
* For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
* Window number) are used to select one of these 7 registers. The *
* Widget number field is then derived from the W_NUM field for *
* synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
* concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
* field is used as Crosstalk[47], and remainder of the Crosstalk *
* address bits (Crosstalk[46:34]) are always zero. While the maximum *
* Crosstalk space addressable by the Shub is thus the lower *
* 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
* of this space can be accessed. *
* *
************************************************************************/
typedef union ii_itte6_u {
u64 ii_itte6_regval;
struct {
u64 i_offset:5;
u64 i_rsvd_1:3;
u64 i_w_num:4;
u64 i_iosp:1;
u64 i_rsvd:51;
} ii_itte6_fld_s;
} ii_itte6_u_t;
/************************************************************************
* *
* Description: There are seven instances of translation table entry *
* registers. Each register maps a Shub Big Window to a 48-bit *
* address on Crosstalk. *
* For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
* number) are used to select one of these 7 registers. The Widget *
* number field is then derived from the W_NUM field for synthesizing *
* a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
* SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
* are padded with zeros. Although the maximum Crosstalk space *
* addressable by the Shub is thus the lower 16 GBytes per widget *
* (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
* space can be accessed. *
* For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
* Window number) are used to select one of these 7 registers. The *
* Widget number field is then derived from the W_NUM field for *
* synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
* concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
* field is used as Crosstalk[47], and remainder of the Crosstalk *
* address bits (Crosstalk[46:34]) are always zero. While the maximum *
* Crosstalk space addressable by the SHub is thus the lower *
* 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
* of this space can be accessed. *
* *
************************************************************************/
typedef union ii_itte7_u {
u64 ii_itte7_regval;
struct {
u64 i_offset:5;
u64 i_rsvd_1:3;
u64 i_w_num:4;
u64 i_iosp:1;
u64 i_rsvd:51;
} ii_itte7_fld_s;
} ii_itte7_u_t;
/************************************************************************
* *
* Description: There are 9 instances of this register, one per *
* actual widget in this implementation of SHub and Crossbow. *
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
* refers to Crossbow's internal space. *
* This register contains the state elements per widget that are *
* necessary to manage the PIO flow control on Crosstalk and on the *
* Router Network. See the PIO Flow Control chapter for a complete *
* description of this register *
* The SPUR_WR bit requires some explanation. When this register is *
* written, the new value of the C field is captured in an internal *
* register so the hardware can remember what the programmer wrote *
* into the credit counter. The SPUR_WR bit sets whenever the C field *
* increments above this stored value, which indicates that there *
* have been more responses received than requests sent. The SPUR_WR *
* bit cannot be cleared until a value is written to the IPRBx *
* register; the write will correct the C field and capture its new *
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
* . *
* *
************************************************************************/
typedef union ii_iprb0_u {
u64 ii_iprb0_regval;
struct {
u64 i_c:8;
u64 i_na:14;
u64 i_rsvd_2:2;
u64 i_nb:14;
u64 i_rsvd_1:2;
u64 i_m:2;
u64 i_f:1;
u64 i_of_cnt:5;
u64 i_error:1;
u64 i_rd_to:1;
u64 i_spur_wr:1;
u64 i_spur_rd:1;
u64 i_rsvd:11;
u64 i_mult_err:1;
} ii_iprb0_fld_s;
} ii_iprb0_u_t;
/************************************************************************
* *
* Description: There are 9 instances of this register, one per *
* actual widget in this implementation of SHub and Crossbow. *
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
* refers to Crossbow's internal space. *
* This register contains the state elements per widget that are *
* necessary to manage the PIO flow control on Crosstalk and on the *
* Router Network. See the PIO Flow Control chapter for a complete *
* description of this register *
* The SPUR_WR bit requires some explanation. When this register is *
* written, the new value of the C field is captured in an internal *
* register so the hardware can remember what the programmer wrote *
* into the credit counter. The SPUR_WR bit sets whenever the C field *
* increments above this stored value, which indicates that there *
* have been more responses received than requests sent. The SPUR_WR *
* bit cannot be cleared until a value is written to the IPRBx *
* register; the write will correct the C field and capture its new *
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
* . *
* *
************************************************************************/
typedef union ii_iprb8_u {
u64 ii_iprb8_regval;
struct {
u64 i_c:8;
u64 i_na:14;
u64 i_rsvd_2:2;
u64 i_nb:14;
u64 i_rsvd_1:2;
u64 i_m:2;
u64 i_f:1;
u64 i_of_cnt:5;
u64 i_error:1;
u64 i_rd_to:1;
u64 i_spur_wr:1;
u64 i_spur_rd:1;
u64 i_rsvd:11;
u64 i_mult_err:1;
} ii_iprb8_fld_s;
} ii_iprb8_u_t;
/************************************************************************
* *
* Description: There are 9 instances of this register, one per *
* actual widget in this implementation of SHub and Crossbow. *
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
* refers to Crossbow's internal space. *
* This register contains the state elements per widget that are *
* necessary to manage the PIO flow control on Crosstalk and on the *
* Router Network. See the PIO Flow Control chapter for a complete *
* description of this register *
* The SPUR_WR bit requires some explanation. When this register is *
* written, the new value of the C field is captured in an internal *
* register so the hardware can remember what the programmer wrote *
* into the credit counter. The SPUR_WR bit sets whenever the C field *
* increments above this stored value, which indicates that there *
* have been more responses received than requests sent. The SPUR_WR *
* bit cannot be cleared until a value is written to the IPRBx *
* register; the write will correct the C field and capture its new *
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
* . *
* *
************************************************************************/
typedef union ii_iprb9_u {
u64 ii_iprb9_regval;
struct {
u64 i_c:8;
u64 i_na:14;
u64 i_rsvd_2:2;
u64 i_nb:14;
u64 i_rsvd_1:2;
u64 i_m:2;
u64 i_f:1;
u64 i_of_cnt:5;
u64 i_error:1;
u64 i_rd_to:1;
u64 i_spur_wr:1;
u64 i_spur_rd:1;
u64 i_rsvd:11;
u64 i_mult_err:1;
} ii_iprb9_fld_s;
} ii_iprb9_u_t;
/************************************************************************
* *
* Description: There are 9 instances of this register, one per *
* actual widget in this implementation of SHub and Crossbow. *
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
* refers to Crossbow's internal space. *
* This register contains the state elements per widget that are *
* necessary to manage the PIO flow control on Crosstalk and on the *
* Router Network. See the PIO Flow Control chapter for a complete *
* description of this register *
* The SPUR_WR bit requires some explanation. When this register is *
* written, the new value of the C field is captured in an internal *
* register so the hardware can remember what the programmer wrote *
* into the credit counter. The SPUR_WR bit sets whenever the C field *
* increments above this stored value, which indicates that there *
* have been more responses received than requests sent. The SPUR_WR *
* bit cannot be cleared until a value is written to the IPRBx *
* register; the write will correct the C field and capture its new *
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
* *
* *
************************************************************************/
typedef union ii_iprba_u {
u64 ii_iprba_regval;
struct {
u64 i_c:8;
u64 i_na:14;
u64 i_rsvd_2:2;
u64 i_nb:14;
u64 i_rsvd_1:2;
u64 i_m:2;
u64 i_f:1;
u64 i_of_cnt:5;
u64 i_error:1;
u64 i_rd_to:1;
u64 i_spur_wr:1;
u64 i_spur_rd:1;
u64 i_rsvd:11;
u64 i_mult_err:1;
} ii_iprba_fld_s;
} ii_iprba_u_t;
/************************************************************************
* *
* Description: There are 9 instances of this register, one per *
* actual widget in this implementation of SHub and Crossbow. *
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
* refers to Crossbow's internal space. *
* This register contains the state elements per widget that are *
* necessary to manage the PIO flow control on Crosstalk and on the *
* Router Network. See the PIO Flow Control chapter for a complete *
* description of this register *
* The SPUR_WR bit requires some explanation. When this register is *
* written, the new value of the C field is captured in an internal *
* register so the hardware can remember what the programmer wrote *
* into the credit counter. The SPUR_WR bit sets whenever the C field *
* increments above this stored value, which indicates that there *
* have been more responses received than requests sent. The SPUR_WR *
* bit cannot be cleared until a value is written to the IPRBx *
* register; the write will correct the C field and capture its new *
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
* . *
* *
************************************************************************/
typedef union ii_iprbb_u {
u64 ii_iprbb_regval;
struct {
u64 i_c:8;
u64 i_na:14;
u64 i_rsvd_2:2;
u64 i_nb:14;
u64 i_rsvd_1:2;
u64 i_m:2;
u64 i_f:1;
u64 i_of_cnt:5;
u64 i_error:1;
u64 i_rd_to:1;
u64 i_spur_wr:1;
u64 i_spur_rd:1;
u64 i_rsvd:11;
u64 i_mult_err:1;
} ii_iprbb_fld_s;
} ii_iprbb_u_t;
/************************************************************************
* *
* Description: There are 9 instances of this register, one per *
* actual widget in this implementation of SHub and Crossbow. *
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
* refers to Crossbow's internal space. *
* This register contains the state elements per widget that are *
* necessary to manage the PIO flow control on Crosstalk and on the *
* Router Network. See the PIO Flow Control chapter for a complete *
* description of this register *
* The SPUR_WR bit requires some explanation. When this register is *
* written, the new value of the C field is captured in an internal *
* register so the hardware can remember what the programmer wrote *
* into the credit counter. The SPUR_WR bit sets whenever the C field *
* increments above this stored value, which indicates that there *
* have been more responses received than requests sent. The SPUR_WR *
* bit cannot be cleared until a value is written to the IPRBx *
* register; the write will correct the C field and capture its new *
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
* . *
* *
************************************************************************/
typedef union ii_iprbc_u {
u64 ii_iprbc_regval;
struct {
u64 i_c:8;
u64 i_na:14;
u64 i_rsvd_2:2;
u64 i_nb:14;
u64 i_rsvd_1:2;
u64 i_m:2;
u64 i_f:1;
u64 i_of_cnt:5;
u64 i_error:1;
u64 i_rd_to:1;
u64 i_spur_wr:1;
u64 i_spur_rd:1;
u64 i_rsvd:11;
u64 i_mult_err:1;
} ii_iprbc_fld_s;
} ii_iprbc_u_t;
/************************************************************************
* *
* Description: There are 9 instances of this register, one per *
* actual widget in this implementation of SHub and Crossbow. *
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
* refers to Crossbow's internal space. *
* This register contains the state elements per widget that are *
* necessary to manage the PIO flow control on Crosstalk and on the *
* Router Network. See the PIO Flow Control chapter for a complete *
* description of this register *
* The SPUR_WR bit requires some explanation. When this register is *
* written, the new value of the C field is captured in an internal *
* register so the hardware can remember what the programmer wrote *
* into the credit counter. The SPUR_WR bit sets whenever the C field *
* increments above this stored value, which indicates that there *
* have been more responses received than requests sent. The SPUR_WR *
* bit cannot be cleared until a value is written to the IPRBx *
* register; the write will correct the C field and capture its new *
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
* . *
* *
************************************************************************/
typedef union ii_iprbd_u {
u64 ii_iprbd_regval;
struct {
u64 i_c:8;
u64 i_na:14;
u64 i_rsvd_2:2;
u64 i_nb:14;
u64 i_rsvd_1:2;
u64 i_m:2;
u64 i_f:1;
u64 i_of_cnt:5;
u64 i_error:1;
u64 i_rd_to:1;
u64 i_spur_wr:1;
u64 i_spur_rd:1;
u64 i_rsvd:11;
u64 i_mult_err:1;
} ii_iprbd_fld_s;
} ii_iprbd_u_t;
/************************************************************************
* *
* Description: There are 9 instances of this register, one per *
* actual widget in this implementation of SHub and Crossbow. *
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
* refers to Crossbow's internal space. *
* This register contains the state elements per widget that are *
* necessary to manage the PIO flow control on Crosstalk and on the *
* Router Network. See the PIO Flow Control chapter for a complete *
* description of this register *
* The SPUR_WR bit requires some explanation. When this register is *
* written, the new value of the C field is captured in an internal *
* register so the hardware can remember what the programmer wrote *
* into the credit counter. The SPUR_WR bit sets whenever the C field *
* increments above this stored value, which indicates that there *
* have been more responses received than requests sent. The SPUR_WR *
* bit cannot be cleared until a value is written to the IPRBx *
* register; the write will correct the C field and capture its new *
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
* . *
* *
************************************************************************/
typedef union ii_iprbe_u {
u64 ii_iprbe_regval;
struct {
u64 i_c:8;
u64 i_na:14;
u64 i_rsvd_2:2;
u64 i_nb:14;
u64 i_rsvd_1:2;
u64 i_m:2;
u64 i_f:1;
u64 i_of_cnt:5;
u64 i_error:1;
u64 i_rd_to:1;
u64 i_spur_wr:1;
u64 i_spur_rd:1;
u64 i_rsvd:11;
u64 i_mult_err:1;
} ii_iprbe_fld_s;
} ii_iprbe_u_t;
/************************************************************************
* *
* Description: There are 9 instances of this register, one per *
* actual widget in this implementation of Shub and Crossbow. *
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
* refers to Crossbow's internal space. *
* This register contains the state elements per widget that are *
* necessary to manage the PIO flow control on Crosstalk and on the *
* Router Network. See the PIO Flow Control chapter for a complete *
* description of this register *
* The SPUR_WR bit requires some explanation. When this register is *
* written, the new value of the C field is captured in an internal *
* register so the hardware can remember what the programmer wrote *
* into the credit counter. The SPUR_WR bit sets whenever the C field *
* increments above this stored value, which indicates that there *
* have been more responses received than requests sent. The SPUR_WR *
* bit cannot be cleared until a value is written to the IPRBx *
* register; the write will correct the C field and capture its new *
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
* . *
* *
************************************************************************/
typedef union ii_iprbf_u {
u64 ii_iprbf_regval;
struct {
u64 i_c:8;
u64 i_na:14;
u64 i_rsvd_2:2;
u64 i_nb:14;
u64 i_rsvd_1:2;
u64 i_m:2;
u64 i_f:1;
u64 i_of_cnt:5;
u64 i_error:1;
u64 i_rd_to:1;
u64 i_spur_wr:1;
u64 i_spur_rd:1;
u64 i_rsvd:11;
u64 i_mult_err:1;
} ii_iprbe_fld_s;
} ii_iprbf_u_t;
/************************************************************************
* *
* This register specifies the timeout value to use for monitoring *
* Crosstalk credits which are used outbound to Crosstalk. An *
* internal counter called the Crosstalk Credit Timeout Counter *
* increments every 128 II clocks. The counter starts counting *
* anytime the credit count drops below a threshold, and resets to *
* zero (stops counting) anytime the credit count is at or above the *
* threshold. The threshold is 1 credit in direct connect mode and 2 *
* in Crossbow connect mode. When the internal Crosstalk Credit *
* Timeout Counter reaches the value programmed in this register, a *
* Crosstalk Credit Timeout has occurred. The internal counter is not *
* readable from software, and stops counting at its maximum value, *
* so it cannot cause more than one interrupt. *
* *
************************************************************************/
typedef union ii_ixcc_u {
u64 ii_ixcc_regval;
struct {
u64 i_time_out:26;
u64 i_rsvd:38;
} ii_ixcc_fld_s;
} ii_ixcc_u_t;
/************************************************************************
* *
* Description: This register qualifies all the PIO and DMA *
* operations launched from widget 0 towards the SHub. In *
* addition, it also qualifies accesses by the BTE streams. *
* The bits in each field of this register are cleared by the SHub *
* upon detection of an error which requires widget 0 or the BTE *
* streams to be terminated. Whether or not widget x has access *
* rights to this SHub is determined by an AND of the device *
* enable bit in the appropriate field of this register and bit 0 in *
* the Wx_IAC field. The bits in this field are set by writing a 1 to *
* them. Incoming replies from Crosstalk are not subject to this *
* access control mechanism. *
* *
************************************************************************/
typedef union ii_imem_u {
u64 ii_imem_regval;
struct {
u64 i_w0_esd:1;
u64 i_rsvd_3:3;
u64 i_b0_esd:1;
u64 i_rsvd_2:3;
u64 i_b1_esd:1;
u64 i_rsvd_1:3;
u64 i_clr_precise:1;
u64 i_rsvd:51;
} ii_imem_fld_s;
} ii_imem_u_t;
/************************************************************************
* *
* Description: This register specifies the timeout value to use for *
* monitoring Crosstalk tail flits coming into the Shub in the *
* TAIL_TO field. An internal counter associated with this register *
* is incremented every 128 II internal clocks (7 bits). The counter *
* starts counting anytime a header micropacket is received and stops *
* counting (and resets to zero) any time a micropacket with a Tail *
* bit is received. Once the counter reaches the threshold value *
* programmed in this register, it generates an interrupt to the *
* processor that is programmed into the IIDSR. The counter saturates *
* (does not roll over) at its maximum value, so it cannot cause *
* another interrupt until after it is cleared. *
* The register also contains the Read Response Timeout values. The *
* Prescalar is 23 bits, and counts II clocks. An internal counter *
* increments on every II clock and when it reaches the value in the *
* Prescalar field, all IPRTE registers with their valid bits set *
* have their Read Response timers bumped. Whenever any of them match *
* the value in the RRSP_TO field, a Read Response Timeout has *
* occurred, and error handling occurs as described in the Error *
* Handling section of this document. *
* *
************************************************************************/
typedef union ii_ixtt_u {
u64 ii_ixtt_regval;
struct {
u64 i_tail_to:26;
u64 i_rsvd_1:6;
u64 i_rrsp_ps:23;
u64 i_rrsp_to:5;
u64 i_rsvd:4;
} ii_ixtt_fld_s;
} ii_ixtt_u_t;
/************************************************************************
* *
* Writing a 1 to the fields of this register clears the appropriate *
* error bits in other areas of SHub. Note that when the *
* E_PRB_x bits are used to clear error bits in PRB registers, *
* SPUR_RD and SPUR_WR may persist, because they require additional *
* action to clear them. See the IPRBx and IXSS Register *
* specifications. *
* *
************************************************************************/
typedef union ii_ieclr_u {
u64 ii_ieclr_regval;
struct {
u64 i_e_prb_0:1;
u64 i_rsvd:7;
u64 i_e_prb_8:1;
u64 i_e_prb_9:1;
u64 i_e_prb_a:1;
u64 i_e_prb_b:1;
u64 i_e_prb_c:1;
u64 i_e_prb_d:1;
u64 i_e_prb_e:1;
u64 i_e_prb_f:1;
u64 i_e_crazy:1;
u64 i_e_bte_0:1;
u64 i_e_bte_1:1;
u64 i_reserved_1:10;
u64 i_spur_rd_hdr:1;
u64 i_cam_intr_to:1;
u64 i_cam_overflow:1;
u64 i_cam_read_miss:1;
u64 i_ioq_rep_underflow:1;
u64 i_ioq_req_underflow:1;
u64 i_ioq_rep_overflow:1;
u64 i_ioq_req_overflow:1;
u64 i_iiq_rep_overflow:1;
u64 i_iiq_req_overflow:1;
u64 i_ii_xn_rep_cred_overflow:1;
u64 i_ii_xn_req_cred_overflow:1;
u64 i_ii_xn_invalid_cmd:1;
u64 i_xn_ii_invalid_cmd:1;
u64 i_reserved_2:21;
} ii_ieclr_fld_s;
} ii_ieclr_u_t;
/************************************************************************
* *
* This register controls both BTEs. SOFT_RESET is intended for *
* recovery after an error. COUNT controls the total number of CRBs *
* that both BTEs (combined) can use, which affects total BTE *
* bandwidth. *
* *
************************************************************************/
typedef union ii_ibcr_u {
u64 ii_ibcr_regval;
struct {
u64 i_count:4;
u64 i_rsvd_1:4;
u64 i_soft_reset:1;
u64 i_rsvd:55;
} ii_ibcr_fld_s;
} ii_ibcr_u_t;
/************************************************************************
* *
* This register contains the header of a spurious read response *
* received from Crosstalk. A spurious read response is defined as a *
* read response received by II from a widget for which (1) the SIDN *
* has a value between 1 and 7, inclusive (II never sends requests to *
* these widgets (2) there is no valid IPRTE register which *
* corresponds to the TNUM, or (3) the widget indicated in SIDN is *
* not the same as the widget recorded in the IPRTE register *
* referenced by the TNUM. If this condition is true, and if the *
* IXSS[VALID] bit is clear, then the header of the spurious read *
* response is capture in IXSM and IXSS, and IXSS[VALID] is set. The *
* errant header is thereby captured, and no further spurious read *
* respones are captured until IXSS[VALID] is cleared by setting the *
* appropriate bit in IECLR.Everytime a spurious read response is *
* detected, the SPUR_RD bit of the PRB corresponding to the incoming *
* message's SIDN field is set. This always happens, regarless of *
* whether a header is captured. The programmer should check *
* IXSM[SIDN] to determine which widget sent the spurious response, *
* because there may be more than one SPUR_RD bit set in the PRB *
* registers. The widget indicated by IXSM[SIDN] was the first *
* spurious read response to be received since the last time *
* IXSS[VALID] was clear. The SPUR_RD bit of the corresponding PRB *
* will be set. Any SPUR_RD bits in any other PRB registers indicate *
* spurious messages from other widets which were detected after the *
* header was captured.. *
* *
************************************************************************/
typedef union ii_ixsm_u {
u64 ii_ixsm_regval;
struct {
u64 i_byte_en:32;
u64 i_reserved:1;
u64 i_tag:3;
u64 i_alt_pactyp:4;
u64 i_bo:1;
u64 i_error:1;
u64 i_vbpm:1;
u64 i_gbr:1;
u64 i_ds:2;
u64 i_ct:1;
u64 i_tnum:5;
u64 i_pactyp:4;
u64 i_sidn:4;
u64 i_didn:4;
} ii_ixsm_fld_s;
} ii_ixsm_u_t;
/************************************************************************
* *
* This register contains the sideband bits of a spurious read *
* response received from Crosstalk. *
* *
************************************************************************/
typedef union ii_ixss_u {
u64 ii_ixss_regval;
struct {
u64 i_sideband:8;
u64 i_rsvd:55;
u64 i_valid:1;
} ii_ixss_fld_s;
} ii_ixss_u_t;
/************************************************************************
* *
* This register enables software to access the II LLP's test port. *
* Refer to the LLP 2.5 documentation for an explanation of the test *
* port. Software can write to this register to program the values *
* for the control fields (TestErrCapture, TestClear, TestFlit, *
* TestMask and TestSeed). Similarly, software can read from this *
* register to obtain the values of the test port's status outputs *
* (TestCBerr, TestValid and TestData). *
* *
************************************************************************/
typedef union ii_ilct_u {
u64 ii_ilct_regval;
struct {
u64 i_test_seed:20;
u64 i_test_mask:8;
u64 i_test_data:20;
u64 i_test_valid:1;
u64 i_test_cberr:1;
u64 i_test_flit:3;
u64 i_test_clear:1;
u64 i_test_err_capture:1;
u64 i_rsvd:9;
} ii_ilct_fld_s;
} ii_ilct_u_t;
/************************************************************************
* *
* If the II detects an illegal incoming Duplonet packet (request or *
* reply) when VALID==0 in the IIEPH1 register, then it saves the *
* contents of the packet's header flit in the IIEPH1 and IIEPH2 *
* registers, sets the VALID bit in IIEPH1, clears the OVERRUN bit, *
* and assigns a value to the ERR_TYPE field which indicates the *
* specific nature of the error. The II recognizes four different *
* types of errors: short request packets (ERR_TYPE==2), short reply *
* packets (ERR_TYPE==3), long request packets (ERR_TYPE==4) and long *
* reply packets (ERR_TYPE==5). The encodings for these types of *
* errors were chosen to be consistent with the same types of errors *
* indicated by the ERR_TYPE field in the LB_ERROR_HDR1 register (in *
* the LB unit). If the II detects an illegal incoming Duplonet *
* packet when VALID==1 in the IIEPH1 register, then it merely sets *
* the OVERRUN bit to indicate that a subsequent error has happened, *
* and does nothing further. *
* *
************************************************************************/
typedef union ii_iieph1_u {
u64 ii_iieph1_regval;
struct {
u64 i_command:7;
u64 i_rsvd_5:1;
u64 i_suppl:14;
u64 i_rsvd_4:1;
u64 i_source:14;
u64 i_rsvd_3:1;
u64 i_err_type:4;
u64 i_rsvd_2:4;
u64 i_overrun:1;
u64 i_rsvd_1:3;
u64 i_valid:1;
u64 i_rsvd:13;
} ii_iieph1_fld_s;
} ii_iieph1_u_t;
/************************************************************************
* *
* This register holds the Address field from the header flit of an *
* incoming erroneous Duplonet packet, along with the tail bit which *
* accompanied this header flit. This register is essentially an *
* extension of IIEPH1. Two registers were necessary because the 64 *
* bits available in only a single register were insufficient to *
* capture the entire header flit of an erroneous packet. *
* *
************************************************************************/
typedef union ii_iieph2_u {
u64 ii_iieph2_regval;
struct {
u64 i_rsvd_0:3;
u64 i_address:47;
u64 i_rsvd_1:10;
u64 i_tail:1;
u64 i_rsvd:3;
} ii_iieph2_fld_s;
} ii_iieph2_u_t;
/******************************/
/************************************************************************
* *
* This register's value is a bit vector that guards access from SXBs *
* to local registers within the II as well as to external Crosstalk *
* widgets *
* *
************************************************************************/
typedef union ii_islapr_u {
u64 ii_islapr_regval;
struct {
u64 i_region:64;
} ii_islapr_fld_s;
} ii_islapr_u_t;
/************************************************************************
* *
* A write to this register of the 56-bit value "Pup+Bun" will cause *
* the bit in the ISLAPR register corresponding to the region of the *
* requestor to be set (access allowed). (
* *
************************************************************************/
typedef union ii_islapo_u {
u64 ii_islapo_regval;
struct {
u64 i_io_sbx_ovrride:56;
u64 i_rsvd:8;
} ii_islapo_fld_s;
} ii_islapo_u_t;
/************************************************************************
* *
* Determines how long the wrapper will wait aftr an interrupt is *
* initially issued from the II before it times out the outstanding *
* interrupt and drops it from the interrupt queue. *
* *
************************************************************************/
typedef union ii_iwi_u {
u64 ii_iwi_regval;
struct {
u64 i_prescale:24;
u64 i_rsvd:8;
u64 i_timeout:8;
u64 i_rsvd1:8;
u64 i_intrpt_retry_period:8;
u64 i_rsvd2:8;
} ii_iwi_fld_s;
} ii_iwi_u_t;
/************************************************************************
* *
* Log errors which have occurred in the II wrapper. The errors are *
* cleared by writing to the IECLR register. *
* *
************************************************************************/
typedef union ii_iwel_u {
u64 ii_iwel_regval;
struct {
u64 i_intr_timed_out:1;
u64 i_rsvd:7;
u64 i_cam_overflow:1;
u64 i_cam_read_miss:1;
u64 i_rsvd1:2;
u64 i_ioq_rep_underflow:1;
u64 i_ioq_req_underflow:1;
u64 i_ioq_rep_overflow:1;
u64 i_ioq_req_overflow:1;
u64 i_iiq_rep_overflow:1;
u64 i_iiq_req_overflow:1;
u64 i_rsvd2:6;
u64 i_ii_xn_rep_cred_over_under:1;
u64 i_ii_xn_req_cred_over_under:1;
u64 i_rsvd3:6;
u64 i_ii_xn_invalid_cmd:1;
u64 i_xn_ii_invalid_cmd:1;
u64 i_rsvd4:30;
} ii_iwel_fld_s;
} ii_iwel_u_t;
/************************************************************************
* *
* Controls the II wrapper. *
* *
************************************************************************/
typedef union ii_iwc_u {
u64 ii_iwc_regval;
struct {
u64 i_dma_byte_swap:1;
u64 i_rsvd:3;
u64 i_cam_read_lines_reset:1;
u64 i_rsvd1:3;
u64 i_ii_xn_cred_over_under_log:1;
u64 i_rsvd2:19;
u64 i_xn_rep_iq_depth:5;
u64 i_rsvd3:3;
u64 i_xn_req_iq_depth:5;
u64 i_rsvd4:3;
u64 i_iiq_depth:6;
u64 i_rsvd5:12;
u64 i_force_rep_cred:1;
u64 i_force_req_cred:1;
} ii_iwc_fld_s;
} ii_iwc_u_t;
/************************************************************************
* *
* Status in the II wrapper. *
* *
************************************************************************/
typedef union ii_iws_u {
u64 ii_iws_regval;
struct {
u64 i_xn_rep_iq_credits:5;
u64 i_rsvd:3;
u64 i_xn_req_iq_credits:5;
u64 i_rsvd1:51;
} ii_iws_fld_s;
} ii_iws_u_t;
/************************************************************************
* *
* Masks errors in the IWEL register. *
* *
************************************************************************/
typedef union ii_iweim_u {
u64 ii_iweim_regval;
struct {
u64 i_intr_timed_out:1;
u64 i_rsvd:7;
u64 i_cam_overflow:1;
u64 i_cam_read_miss:1;
u64 i_rsvd1:2;
u64 i_ioq_rep_underflow:1;
u64 i_ioq_req_underflow:1;
u64 i_ioq_rep_overflow:1;
u64 i_ioq_req_overflow:1;
u64 i_iiq_rep_overflow:1;
u64 i_iiq_req_overflow:1;
u64 i_rsvd2:6;
u64 i_ii_xn_rep_cred_overflow:1;
u64 i_ii_xn_req_cred_overflow:1;
u64 i_rsvd3:6;
u64 i_ii_xn_invalid_cmd:1;
u64 i_xn_ii_invalid_cmd:1;
u64 i_rsvd4:30;
} ii_iweim_fld_s;
} ii_iweim_u_t;
/************************************************************************
* *
* A write to this register causes a particular field in the *
* corresponding widget's PRB entry to be adjusted up or down by 1. *
* This counter should be used when recovering from error and reset *
* conditions. Note that software would be capable of causing *
* inadvertent overflow or underflow of these counters. *
* *
************************************************************************/
typedef union ii_ipca_u {
u64 ii_ipca_regval;
struct {
u64 i_wid:4;
u64 i_adjust:1;
u64 i_rsvd_1:3;
u64 i_field:2;
u64 i_rsvd:54;
} ii_ipca_fld_s;
} ii_ipca_u_t;
/************************************************************************
* *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
* *
************************************************************************/
typedef union ii_iprte0a_u {
u64 ii_iprte0a_regval;
struct {
u64 i_rsvd_1:54;
u64 i_widget:4;
u64 i_to_cnt:5;
u64 i_vld:1;
} ii_iprte0a_fld_s;
} ii_iprte0a_u_t;
/************************************************************************
* *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
* *
************************************************************************/
typedef union ii_iprte1a_u {
u64 ii_iprte1a_regval;
struct {
u64 i_rsvd_1:54;
u64 i_widget:4;
u64 i_to_cnt:5;
u64 i_vld:1;
} ii_iprte1a_fld_s;
} ii_iprte1a_u_t;
/************************************************************************
* *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
* *
************************************************************************/
typedef union ii_iprte2a_u {
u64 ii_iprte2a_regval;
struct {
u64 i_rsvd_1:54;
u64 i_widget:4;
u64 i_to_cnt:5;
u64 i_vld:1;
} ii_iprte2a_fld_s;
} ii_iprte2a_u_t;
/************************************************************************
* *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
* *
************************************************************************/
typedef union ii_iprte3a_u {
u64 ii_iprte3a_regval;
struct {
u64 i_rsvd_1:54;
u64 i_widget:4;
u64 i_to_cnt:5;
u64 i_vld:1;
} ii_iprte3a_fld_s;
} ii_iprte3a_u_t;
/************************************************************************
* *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
* *
************************************************************************/
typedef union ii_iprte4a_u {
u64 ii_iprte4a_regval;
struct {
u64 i_rsvd_1:54;
u64 i_widget:4;
u64 i_to_cnt:5;
u64 i_vld:1;
} ii_iprte4a_fld_s;
} ii_iprte4a_u_t;
/************************************************************************
* *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
* *
************************************************************************/
typedef union ii_iprte5a_u {
u64 ii_iprte5a_regval;
struct {
u64 i_rsvd_1:54;
u64 i_widget:4;
u64 i_to_cnt:5;
u64 i_vld:1;
} ii_iprte5a_fld_s;
} ii_iprte5a_u_t;
/************************************************************************
* *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
* *
************************************************************************/
typedef union ii_iprte6a_u {
u64 ii_iprte6a_regval;
struct {
u64 i_rsvd_1:54;
u64 i_widget:4;
u64 i_to_cnt:5;
u64 i_vld:1;
} ii_iprte6a_fld_s;
} ii_iprte6a_u_t;
/************************************************************************
* *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
* *
************************************************************************/
typedef union ii_iprte7a_u {
u64 ii_iprte7a_regval;
struct {
u64 i_rsvd_1:54;
u64 i_widget:4;
u64 i_to_cnt:5;
u64 i_vld:1;
} ii_iprtea7_fld_s;
} ii_iprte7a_u_t;
/************************************************************************
* *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
* *
************************************************************************/
typedef union ii_iprte0b_u {
u64 ii_iprte0b_regval;
struct {
u64 i_rsvd_1:3;
u64 i_address:47;
u64 i_init:3;
u64 i_source:11;
} ii_iprte0b_fld_s;
} ii_iprte0b_u_t;
/************************************************************************
* *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
* *
************************************************************************/
typedef union ii_iprte1b_u {
u64 ii_iprte1b_regval;
struct {
u64 i_rsvd_1:3;
u64 i_address:47;
u64 i_init:3;
u64 i_source:11;
} ii_iprte1b_fld_s;
} ii_iprte1b_u_t;
/************************************************************************
* *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
* *
************************************************************************/
typedef union ii_iprte2b_u {
u64 ii_iprte2b_regval;
struct {
u64 i_rsvd_1:3;
u64 i_address:47;
u64 i_init:3;
u64 i_source:11;
} ii_iprte2b_fld_s;
} ii_iprte2b_u_t;
/************************************************************************
* *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
* *
************************************************************************/
typedef union ii_iprte3b_u {
u64 ii_iprte3b_regval;
struct {
u64 i_rsvd_1:3;
u64 i_address:47;
u64 i_init:3;
u64 i_source:11;
} ii_iprte3b_fld_s;
} ii_iprte3b_u_t;
/************************************************************************
* *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
* *
************************************************************************/
typedef union ii_iprte4b_u {
u64 ii_iprte4b_regval;
struct {
u64 i_rsvd_1:3;
u64 i_address:47;
u64 i_init:3;
u64 i_source:11;
} ii_iprte4b_fld_s;
} ii_iprte4b_u_t;
/************************************************************************
* *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
* *
************************************************************************/
typedef union ii_iprte5b_u {
u64 ii_iprte5b_regval;
struct {
u64 i_rsvd_1:3;
u64 i_address:47;
u64 i_init:3;
u64 i_source:11;
} ii_iprte5b_fld_s;
} ii_iprte5b_u_t;
/************************************************************************
* *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
* *
************************************************************************/
typedef union ii_iprte6b_u {
u64 ii_iprte6b_regval;
struct {
u64 i_rsvd_1:3;
u64 i_address:47;
u64 i_init:3;
u64 i_source:11;
} ii_iprte6b_fld_s;
} ii_iprte6b_u_t;
/************************************************************************
* *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
* *
************************************************************************/
typedef union ii_iprte7b_u {
u64 ii_iprte7b_regval;
struct {
u64 i_rsvd_1:3;
u64 i_address:47;
u64 i_init:3;
u64 i_source:11;
} ii_iprte7b_fld_s;
} ii_iprte7b_u_t;
/************************************************************************
* *
* Description: SHub II contains a feature which did not exist in *
* the Hub which automatically cleans up after a Read Response *
* timeout, including deallocation of the IPRTE and recovery of IBuf *
* space. The inclusion of this register in SHub is for backward *
* compatibility *
* A write to this register causes an entry from the table of *
* outstanding PIO Read Requests to be freed and returned to the *
* stack of free entries. This register is used in handling the *
* timeout errors that result in a PIO Reply never returning from *
* Crosstalk. *
* Note that this register does not affect the contents of the IPRTE *
* registers. The Valid bits in those registers have to be *
* specifically turned off by software. *
* *
************************************************************************/
typedef union ii_ipdr_u {
u64 ii_ipdr_regval;
struct {
u64 i_te:3;
u64 i_rsvd_1:1;
u64 i_pnd:1;
u64 i_init_rpcnt:1;
u64 i_rsvd:58;
} ii_ipdr_fld_s;
} ii_ipdr_u_t;
/************************************************************************
* *
* A write to this register causes a CRB entry to be returned to the *
* queue of free CRBs. The entry should have previously been cleared *
* (mark bit) via backdoor access to the pertinent CRB entry. This *
* register is used in the last step of handling the errors that are *
* captured and marked in CRB entries. Briefly: 1) first error for *
* DMA write from a particular device, and first error for a *
* particular BTE stream, lead to a marked CRB entry, and processor *
* interrupt, 2) software reads the error information captured in the *
* CRB entry, and presumably takes some corrective action, 3) *
* software clears the mark bit, and finally 4) software writes to *
* the ICDR register to return the CRB entry to the list of free CRB *
* entries. *
* *
************************************************************************/
typedef union ii_icdr_u {
u64 ii_icdr_regval;
struct {
u64 i_crb_num:4;
u64 i_pnd:1;
u64 i_rsvd:59;
} ii_icdr_fld_s;
} ii_icdr_u_t;
/************************************************************************
* *
* This register provides debug access to two FIFOs inside of II. *
* Both IOQ_MAX* fields of this register contain the instantaneous *
* depth (in units of the number of available entries) of the *
* associated IOQ FIFO. A read of this register will return the *
* number of free entries on each FIFO at the time of the read. So *
* when a FIFO is idle, the associated field contains the maximum *
* depth of the FIFO. This register is writable for debug reasons *
* and is intended to be written with the maximum desired FIFO depth *
* while the FIFO is idle. Software must assure that II is idle when *
* this register is written. If there are any active entries in any *
* of these FIFOs when this register is written, the results are *
* undefined. *
* *
************************************************************************/
typedef union ii_ifdr_u {
u64 ii_ifdr_regval;
struct {
u64 i_ioq_max_rq:7;
u64 i_set_ioq_rq:1;
u64 i_ioq_max_rp:7;
u64 i_set_ioq_rp:1;
u64 i_rsvd:48;
} ii_ifdr_fld_s;
} ii_ifdr_u_t;
/************************************************************************
* *
* This register allows the II to become sluggish in removing *
* messages from its inbound queue (IIQ). This will cause messages to *
* back up in either virtual channel. Disabling the "molasses" mode *
* subsequently allows the II to be tested under stress. In the *
* sluggish ("Molasses") mode, the localized effects of congestion *
* can be observed. *
* *
************************************************************************/
typedef union ii_iiap_u {
u64 ii_iiap_regval;
struct {
u64 i_rq_mls:6;
u64 i_rsvd_1:2;
u64 i_rp_mls:6;
u64 i_rsvd:50;
} ii_iiap_fld_s;
} ii_iiap_u_t;
/************************************************************************
* *
* This register allows several parameters of CRB operation to be *
* set. Note that writing to this register can have catastrophic side *
* effects, if the CRB is not quiescent, i.e. if the CRB is *
* processing protocol messages when the write occurs. *
* *
************************************************************************/
typedef union ii_icmr_u {
u64 ii_icmr_regval;
struct {
u64 i_sp_msg:1;
u64 i_rd_hdr:1;
u64 i_rsvd_4:2;
u64 i_c_cnt:4;
u64 i_rsvd_3:4;
u64 i_clr_rqpd:1;
u64 i_clr_rppd:1;
u64 i_rsvd_2:2;
u64 i_fc_cnt:4;
u64 i_crb_vld:15;
u64 i_crb_mark:15;
u64 i_rsvd_1:2;
u64 i_precise:1;
u64 i_rsvd:11;
} ii_icmr_fld_s;
} ii_icmr_u_t;
/************************************************************************
* *
* This register allows control of the table portion of the CRB *
* logic via software. Control operations from this register have *
* priority over all incoming Crosstalk or BTE requests. *
* *
************************************************************************/
typedef union ii_iccr_u {
u64 ii_iccr_regval;
struct {
u64 i_crb_num:4;
u64 i_rsvd_1:4;
u64 i_cmd:8;
u64 i_pending:1;
u64 i_rsvd:47;
} ii_iccr_fld_s;
} ii_iccr_u_t;
/************************************************************************
* *
* This register allows the maximum timeout value to be programmed. *
* *
************************************************************************/
typedef union ii_icto_u {
u64 ii_icto_regval;
struct {
u64 i_timeout:8;
u64 i_rsvd:56;
} ii_icto_fld_s;
} ii_icto_u_t;
/************************************************************************
* *
* This register allows the timeout prescalar to be programmed. An *
* internal counter is associated with this register. When the *
* internal counter reaches the value of the PRESCALE field, the *
* timer registers in all valid CRBs are incremented (CRBx_D[TIMEOUT] *
* field). The internal counter resets to zero, and then continues *
* counting. *
* *
************************************************************************/
typedef union ii_ictp_u {
u64 ii_ictp_regval;
struct {
u64 i_prescale:24;
u64 i_rsvd:40;
} ii_ictp_fld_s;
} ii_ictp_u_t;
/************************************************************************
* *
* Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
* used for Crosstalk operations (both cacheline and partial *
* operations) or BTE/IO. Because the CRB entries are very wide, five *
* registers (_A to _E) are required to read and write each entry. *
* The CRB Entry registers can be conceptualized as rows and columns *
* (illustrated in the table above). Each row contains the 4 *
* registers required for a single CRB Entry. The first doubleword *
* (column) for each entry is labeled A, and the second doubleword *
* (higher address) is labeled B, the third doubleword is labeled C, *
* the fourth doubleword is labeled D and the fifth doubleword is *
* labeled E. All CRB entries have their addresses on a quarter *
* cacheline aligned boundary. *
* Upon reset, only the following fields are initialized: valid *
* (VLD), priority count, timeout, timeout valid, and context valid. *
* All other bits should be cleared by software before use (after *
* recovering any potential error state from before the reset). *
* The following four tables summarize the format for the four *
* registers that are used for each ICRB# Entry. *
* *
************************************************************************/
typedef union ii_icrb0_a_u {
u64 ii_icrb0_a_regval;
struct {
u64 ia_iow:1;
u64 ia_vld:1;
u64 ia_addr:47;
u64 ia_tnum:5;
u64 ia_sidn:4;
u64 ia_rsvd:6;
} ii_icrb0_a_fld_s;
} ii_icrb0_a_u_t;
/************************************************************************
* *
* Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
* used for Crosstalk operations (both cacheline and partial *
* operations) or BTE/IO. Because the CRB entries are very wide, five *
* registers (_A to _E) are required to read and write each entry. *
* *
************************************************************************/
typedef union ii_icrb0_b_u {
u64 ii_icrb0_b_regval;
struct {
u64 ib_xt_err:1;
u64 ib_mark:1;
u64 ib_ln_uce:1;
u64 ib_errcode:3;
u64 ib_error:1;
u64 ib_stall__bte_1:1;
u64 ib_stall__bte_0:1;
u64 ib_stall__intr:1;
u64 ib_stall_ib:1;
u64 ib_intvn:1;
u64 ib_wb:1;
u64 ib_hold:1;
u64 ib_ack:1;
u64 ib_resp:1;
u64 ib_ack_cnt:11;
u64 ib_rsvd:7;
u64 ib_exc:5;
u64 ib_init:3;
u64 ib_imsg:8;
u64 ib_imsgtype:2;
u64 ib_use_old:1;
u64 ib_rsvd_1:11;
} ii_icrb0_b_fld_s;
} ii_icrb0_b_u_t;
/************************************************************************
* *
* Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
* used for Crosstalk operations (both cacheline and partial *
* operations) or BTE/IO. Because the CRB entries are very wide, five *
* registers (_A to _E) are required to read and write each entry. *
* *
************************************************************************/
typedef union ii_icrb0_c_u {
u64 ii_icrb0_c_regval;
struct {
u64 ic_source:15;
u64 ic_size:2;
u64 ic_ct:1;
u64 ic_bte_num:1;
u64 ic_gbr:1;
u64 ic_resprqd:1;
u64 ic_bo:1;
u64 ic_suppl:15;
u64 ic_rsvd:27;
} ii_icrb0_c_fld_s;
} ii_icrb0_c_u_t;
/************************************************************************
* *
* Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
* used for Crosstalk operations (both cacheline and partial *
* operations) or BTE/IO. Because the CRB entries are very wide, five *
* registers (_A to _E) are required to read and write each entry. *
* *
************************************************************************/
typedef union ii_icrb0_d_u {
u64 ii_icrb0_d_regval;
struct {
u64 id_pa_be:43;
u64 id_bte_op:1;
u64 id_pr_psc:4;
u64 id_pr_cnt:4;
u64 id_sleep:1;
u64 id_rsvd:11;
} ii_icrb0_d_fld_s;
} ii_icrb0_d_u_t;
/************************************************************************
* *
* Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
* used for Crosstalk operations (both cacheline and partial *
* operations) or BTE/IO. Because the CRB entries are very wide, five *
* registers (_A to _E) are required to read and write each entry. *
* *
************************************************************************/
typedef union ii_icrb0_e_u {
u64 ii_icrb0_e_regval;
struct {
u64 ie_timeout:8;
u64 ie_context:15;
u64 ie_rsvd:1;
u64 ie_tvld:1;
u64 ie_cvld:1;
u64 ie_rsvd_0:38;
} ii_icrb0_e_fld_s;
} ii_icrb0_e_u_t;
/************************************************************************
* *
* This register contains the lower 64 bits of the header of the *
* spurious message captured by II. Valid when the SP_MSG bit in ICMR *
* register is set. *
* *
************************************************************************/
typedef union ii_icsml_u {
u64 ii_icsml_regval;
struct {
u64 i_tt_addr:47;
u64 i_newsuppl_ex:14;
u64 i_reserved:2;
u64 i_overflow:1;
} ii_icsml_fld_s;
} ii_icsml_u_t;
/************************************************************************
* *
* This register contains the middle 64 bits of the header of the *
* spurious message captured by II. Valid when the SP_MSG bit in ICMR *
* register is set. *
* *
************************************************************************/
typedef union ii_icsmm_u {
u64 ii_icsmm_regval;
struct {
u64 i_tt_ack_cnt:11;
u64 i_reserved:53;
} ii_icsmm_fld_s;
} ii_icsmm_u_t;
/************************************************************************
* *
* This register contains the microscopic state, all the inputs to *
* the protocol table, captured with the spurious message. Valid when *
* the SP_MSG bit in the ICMR register is set. *
* *
************************************************************************/
typedef union ii_icsmh_u {
u64 ii_icsmh_regval;
struct {
u64 i_tt_vld:1;
u64 i_xerr:1;
u64 i_ft_cwact_o:1;
u64 i_ft_wact_o:1;
u64 i_ft_active_o:1;
u64 i_sync:1;
u64 i_mnusg:1;
u64 i_mnusz:1;
u64 i_plusz:1;
u64 i_plusg:1;
u64 i_tt_exc:5;
u64 i_tt_wb:1;
u64 i_tt_hold:1;
u64 i_tt_ack:1;
u64 i_tt_resp:1;
u64 i_tt_intvn:1;
u64 i_g_stall_bte1:1;
u64 i_g_stall_bte0:1;
u64 i_g_stall_il:1;
u64 i_g_stall_ib:1;
u64 i_tt_imsg:8;
u64 i_tt_imsgtype:2;
u64 i_tt_use_old:1;
u64 i_tt_respreqd:1;
u64 i_tt_bte_num:1;
u64 i_cbn:1;
u64 i_match:1;
u64 i_rpcnt_lt_34:1;
u64 i_rpcnt_ge_34:1;
u64 i_rpcnt_lt_18:1;
u64 i_rpcnt_ge_18:1;
u64 i_rpcnt_lt_2:1;
u64 i_rpcnt_ge_2:1;
u64 i_rqcnt_lt_18:1;
u64 i_rqcnt_ge_18:1;
u64 i_rqcnt_lt_2:1;
u64 i_rqcnt_ge_2:1;
u64 i_tt_device:7;
u64 i_tt_init:3;
u64 i_reserved:5;
} ii_icsmh_fld_s;
} ii_icsmh_u_t;
/************************************************************************
* *
* The Shub DEBUG unit provides a 3-bit selection signal to the *
* II core and a 3-bit selection signal to the fsbclk domain in the II *
* wrapper. *
* *
************************************************************************/
typedef union ii_idbss_u {
u64 ii_idbss_regval;
struct {
u64 i_iioclk_core_submenu:3;
u64 i_rsvd:5;
u64 i_fsbclk_wrapper_submenu:3;
u64 i_rsvd_1:5;
u64 i_iioclk_menu:5;
u64 i_rsvd_2:43;
} ii_idbss_fld_s;
} ii_idbss_u_t;
/************************************************************************
* *
* Description: This register is used to set up the length for a *
* transfer and then to monitor the progress of that transfer. This *
* register needs to be initialized before a transfer is started. A *
* legitimate write to this register will set the Busy bit, clear the *
* Error bit, and initialize the length to the value desired. *
* While the transfer is in progress, hardware will decrement the *
* length field with each successful block that is copied. Once the *
* transfer completes, hardware will clear the Busy bit. The length *
* field will also contain the number of cache lines left to be *
* transferred. *
* *
************************************************************************/
typedef union ii_ibls0_u {
u64 ii_ibls0_regval;
struct {
u64 i_length:16;
u64 i_error:1;
u64 i_rsvd_1:3;
u64 i_busy:1;
u64 i_rsvd:43;
} ii_ibls0_fld_s;
} ii_ibls0_u_t;
/************************************************************************
* *
* This register should be loaded before a transfer is started. The *
* address to be loaded in bits 39:0 is the 40-bit TRex+ physical *
* address as described in Section 1.3, Figure2 and Figure3. Since *
* the bottom 7 bits of the address are always taken to be zero, BTE *
* transfers are always cacheline-aligned. *
* *
************************************************************************/
typedef union ii_ibsa0_u {
u64 ii_ibsa0_regval;
struct {
u64 i_rsvd_1:7;
u64 i_addr:42;
u64 i_rsvd:15;
} ii_ibsa0_fld_s;
} ii_ibsa0_u_t;
/************************************************************************
* *
* This register should be loaded before a transfer is started. The *
* address to be loaded in bits 39:0 is the 40-bit TRex+ physical *
* address as described in Section 1.3, Figure2 and Figure3. Since *
* the bottom 7 bits of the address are always taken to be zero, BTE *
* transfers are always cacheline-aligned. *
* *
************************************************************************/
typedef union ii_ibda0_u {
u64 ii_ibda0_regval;
struct {
u64 i_rsvd_1:7;
u64 i_addr:42;
u64 i_rsvd:15;
} ii_ibda0_fld_s;
} ii_ibda0_u_t;
/************************************************************************
* *
* Writing to this register sets up the attributes of the transfer *
* and initiates the transfer operation. Reading this register has *
* the side effect of terminating any transfer in progress. Note: *
* stopping a transfer midstream could have an adverse impact on the *
* other BTE. If a BTE stream has to be stopped (due to error *
* handling for example), both BTE streams should be stopped and *
* their transfers discarded. *
* *
************************************************************************/
typedef union ii_ibct0_u {
u64 ii_ibct0_regval;
struct {
u64 i_zerofill:1;
u64 i_rsvd_2:3;
u64 i_notify:1;
u64 i_rsvd_1:3;
u64 i_poison:1;
u64 i_rsvd:55;
} ii_ibct0_fld_s;
} ii_ibct0_u_t;
/************************************************************************
* *
* This register contains the address to which the WINV is sent. *
* This address has to be cache line aligned. *
* *
************************************************************************/
typedef union ii_ibna0_u {
u64 ii_ibna0_regval;
struct {
u64 i_rsvd_1:7;
u64 i_addr:42;
u64 i_rsvd:15;
} ii_ibna0_fld_s;
} ii_ibna0_u_t;
/************************************************************************
* *
* This register contains the programmable level as well as the node *
* ID and PI unit of the processor to which the interrupt will be *
* sent. *
* *
************************************************************************/
typedef union ii_ibia0_u {
u64 ii_ibia0_regval;
struct {
u64 i_rsvd_2:1;
u64 i_node_id:11;
u64 i_rsvd_1:4;
u64 i_level:7;
u64 i_rsvd:41;
} ii_ibia0_fld_s;
} ii_ibia0_u_t;
/************************************************************************
* *
* Description: This register is used to set up the length for a *
* transfer and then to monitor the progress of that transfer. This *
* register needs to be initialized before a transfer is started. A *
* legitimate write to this register will set the Busy bit, clear the *
* Error bit, and initialize the length to the value desired. *
* While the transfer is in progress, hardware will decrement the *
* length field with each successful block that is copied. Once the *
* transfer completes, hardware will clear the Busy bit. The length *
* field will also contain the number of cache lines left to be *
* transferred. *
* *
************************************************************************/
typedef union ii_ibls1_u {
u64 ii_ibls1_regval;
struct {
u64 i_length:16;
u64 i_error:1;
u64 i_rsvd_1:3;
u64 i_busy:1;
u64 i_rsvd:43;
} ii_ibls1_fld_s;
} ii_ibls1_u_t;
/************************************************************************
* *
* This register should be loaded before a transfer is started. The *
* address to be loaded in bits 39:0 is the 40-bit TRex+ physical *
* address as described in Section 1.3, Figure2 and Figure3. Since *
* the bottom 7 bits of the address are always taken to be zero, BTE *
* transfers are always cacheline-aligned. *
* *
************************************************************************/
typedef union ii_ibsa1_u {
u64 ii_ibsa1_regval;
struct {
u64 i_rsvd_1:7;
u64 i_addr:33;
u64 i_rsvd:24;
} ii_ibsa1_fld_s;
} ii_ibsa1_u_t;
/************************************************************************
* *
* This register should be loaded before a transfer is started. The *
* address to be loaded in bits 39:0 is the 40-bit TRex+ physical *
* address as described in Section 1.3, Figure2 and Figure3. Since *
* the bottom 7 bits of the address are always taken to be zero, BTE *
* transfers are always cacheline-aligned. *
* *
************************************************************************/
typedef union ii_ibda1_u {
u64 ii_ibda1_regval;
struct {
u64 i_rsvd_1:7;
u64 i_addr:33;
u64 i_rsvd:24;
} ii_ibda1_fld_s;
} ii_ibda1_u_t;
/************************************************************************
* *
* Writing to this register sets up the attributes of the transfer *
* and initiates the transfer operation. Reading this register has *
* the side effect of terminating any transfer in progress. Note: *
* stopping a transfer midstream could have an adverse impact on the *
* other BTE. If a BTE stream has to be stopped (due to error *
* handling for example), both BTE streams should be stopped and *
* their transfers discarded. *
* *
************************************************************************/
typedef union ii_ibct1_u {
u64 ii_ibct1_regval;
struct {
u64 i_zerofill:1;
u64 i_rsvd_2:3;
u64 i_notify:1;
u64 i_rsvd_1:3;
u64 i_poison:1;
u64 i_rsvd:55;
} ii_ibct1_fld_s;
} ii_ibct1_u_t;
/************************************************************************
* *
* This register contains the address to which the WINV is sent. *
* This address has to be cache line aligned. *
* *
************************************************************************/
typedef union ii_ibna1_u {
u64 ii_ibna1_regval;
struct {
u64 i_rsvd_1:7;
u64 i_addr:33;
u64 i_rsvd:24;
} ii_ibna1_fld_s;
} ii_ibna1_u_t;
/************************************************************************
* *
* This register contains the programmable level as well as the node *
* ID and PI unit of the processor to which the interrupt will be *
* sent. *
* *
************************************************************************/
typedef union ii_ibia1_u {
u64 ii_ibia1_regval;
struct {
u64 i_pi_id:1;
u64 i_node_id:8;
u64 i_rsvd_1:7;
u64 i_level:7;
u64 i_rsvd:41;
} ii_ibia1_fld_s;
} ii_ibia1_u_t;
/************************************************************************
* *
* This register defines the resources that feed information into *
* the two performance counters located in the IO Performance *
* Profiling Register. There are 17 different quantities that can be *
* measured. Given these 17 different options, the two performance *
* counters have 15 of them in common; menu selections 0 through 0xE *
* are identical for each performance counter. As for the other two *
* options, one is available from one performance counter and the *
* other is available from the other performance counter. Hence, the *
* II supports all 17*16=272 possible combinations of quantities to *
* measure. *
* *
************************************************************************/
typedef union ii_ipcr_u {
u64 ii_ipcr_regval;
struct {
u64 i_ippr0_c:4;
u64 i_ippr1_c:4;
u64 i_icct:8;
u64 i_rsvd:48;
} ii_ipcr_fld_s;
} ii_ipcr_u_t;
/************************************************************************
* *
* *
* *
************************************************************************/
typedef union ii_ippr_u {
u64 ii_ippr_regval;
struct {
u64 i_ippr0:32;
u64 i_ippr1:32;
} ii_ippr_fld_s;
} ii_ippr_u_t;
/************************************************************************
* *
* The following defines which were not formed into structures are *
* probably indentical to another register, and the name of the *
* register is provided against each of these registers. This *
* information needs to be checked carefully *
* *
* IIO_ICRB1_A IIO_ICRB0_A *
* IIO_ICRB1_B IIO_ICRB0_B *
* IIO_ICRB1_C IIO_ICRB0_C *
* IIO_ICRB1_D IIO_ICRB0_D *
* IIO_ICRB1_E IIO_ICRB0_E *
* IIO_ICRB2_A IIO_ICRB0_A *
* IIO_ICRB2_B IIO_ICRB0_B *
* IIO_ICRB2_C IIO_ICRB0_C *
* IIO_ICRB2_D IIO_ICRB0_D *
* IIO_ICRB2_E IIO_ICRB0_E *
* IIO_ICRB3_A IIO_ICRB0_A *
* IIO_ICRB3_B IIO_ICRB0_B *
* IIO_ICRB3_C IIO_ICRB0_C *
* IIO_ICRB3_D IIO_ICRB0_D *
* IIO_ICRB3_E IIO_ICRB0_E *
* IIO_ICRB4_A IIO_ICRB0_A *
* IIO_ICRB4_B IIO_ICRB0_B *
* IIO_ICRB4_C IIO_ICRB0_C *
* IIO_ICRB4_D IIO_ICRB0_D *
* IIO_ICRB4_E IIO_ICRB0_E *
* IIO_ICRB5_A IIO_ICRB0_A *
* IIO_ICRB5_B IIO_ICRB0_B *
* IIO_ICRB5_C IIO_ICRB0_C *
* IIO_ICRB5_D IIO_ICRB0_D *
* IIO_ICRB5_E IIO_ICRB0_E *
* IIO_ICRB6_A IIO_ICRB0_A *
* IIO_ICRB6_B IIO_ICRB0_B *
* IIO_ICRB6_C IIO_ICRB0_C *
* IIO_ICRB6_D IIO_ICRB0_D *
* IIO_ICRB6_E IIO_ICRB0_E *
* IIO_ICRB7_A IIO_ICRB0_A *
* IIO_ICRB7_B IIO_ICRB0_B *
* IIO_ICRB7_C IIO_ICRB0_C *
* IIO_ICRB7_D IIO_ICRB0_D *
* IIO_ICRB7_E IIO_ICRB0_E *
* IIO_ICRB8_A IIO_ICRB0_A *
* IIO_ICRB8_B IIO_ICRB0_B *
* IIO_ICRB8_C IIO_ICRB0_C *
* IIO_ICRB8_D IIO_ICRB0_D *
* IIO_ICRB8_E IIO_ICRB0_E *
* IIO_ICRB9_A IIO_ICRB0_A *
* IIO_ICRB9_B IIO_ICRB0_B *
* IIO_ICRB9_C IIO_ICRB0_C *
* IIO_ICRB9_D IIO_ICRB0_D *
* IIO_ICRB9_E IIO_ICRB0_E *
* IIO_ICRBA_A IIO_ICRB0_A *
* IIO_ICRBA_B IIO_ICRB0_B *
* IIO_ICRBA_C IIO_ICRB0_C *
* IIO_ICRBA_D IIO_ICRB0_D *
* IIO_ICRBA_E IIO_ICRB0_E *
* IIO_ICRBB_A IIO_ICRB0_A *
* IIO_ICRBB_B IIO_ICRB0_B *
* IIO_ICRBB_C IIO_ICRB0_C *
* IIO_ICRBB_D IIO_ICRB0_D *
* IIO_ICRBB_E IIO_ICRB0_E *
* IIO_ICRBC_A IIO_ICRB0_A *
* IIO_ICRBC_B IIO_ICRB0_B *
* IIO_ICRBC_C IIO_ICRB0_C *
* IIO_ICRBC_D IIO_ICRB0_D *
* IIO_ICRBC_E IIO_ICRB0_E *
* IIO_ICRBD_A IIO_ICRB0_A *
* IIO_ICRBD_B IIO_ICRB0_B *
* IIO_ICRBD_C IIO_ICRB0_C *
* IIO_ICRBD_D IIO_ICRB0_D *
* IIO_ICRBD_E IIO_ICRB0_E *
* IIO_ICRBE_A IIO_ICRB0_A *
* IIO_ICRBE_B IIO_ICRB0_B *
* IIO_ICRBE_C IIO_ICRB0_C *
* IIO_ICRBE_D IIO_ICRB0_D *
* IIO_ICRBE_E IIO_ICRB0_E *
* *
************************************************************************/
/*
* Slightly friendlier names for some common registers.
*/
#define IIO_WIDGET IIO_WID /* Widget identification */
#define IIO_WIDGET_STAT IIO_WSTAT /* Widget status register */
#define IIO_WIDGET_CTRL IIO_WCR /* Widget control register */
#define IIO_PROTECT IIO_ILAPR /* IO interface protection */
#define IIO_PROTECT_OVRRD IIO_ILAPO /* IO protect override */
#define IIO_OUTWIDGET_ACCESS IIO_IOWA /* Outbound widget access */
#define IIO_INWIDGET_ACCESS IIO_IIWA /* Inbound widget access */
#define IIO_INDEV_ERR_MASK IIO_IIDEM /* Inbound device error mask */
#define IIO_LLP_CSR IIO_ILCSR /* LLP control and status */
#define IIO_LLP_LOG IIO_ILLR /* LLP log */
#define IIO_XTALKCC_TOUT IIO_IXCC /* Xtalk credit count timeout */
#define IIO_XTALKTT_TOUT IIO_IXTT /* Xtalk tail timeout */
#define IIO_IO_ERR_CLR IIO_IECLR /* IO error clear */
#define IIO_IGFX_0 IIO_IGFX0
#define IIO_IGFX_1 IIO_IGFX1
#define IIO_IBCT_0 IIO_IBCT0
#define IIO_IBCT_1 IIO_IBCT1
#define IIO_IBLS_0 IIO_IBLS0
#define IIO_IBLS_1 IIO_IBLS1
#define IIO_IBSA_0 IIO_IBSA0
#define IIO_IBSA_1 IIO_IBSA1
#define IIO_IBDA_0 IIO_IBDA0
#define IIO_IBDA_1 IIO_IBDA1
#define IIO_IBNA_0 IIO_IBNA0
#define IIO_IBNA_1 IIO_IBNA1
#define IIO_IBIA_0 IIO_IBIA0
#define IIO_IBIA_1 IIO_IBIA1
#define IIO_IOPRB_0 IIO_IPRB0
#define IIO_PRTE_A(_x) (IIO_IPRTE0_A + (8 * (_x)))
#define IIO_PRTE_B(_x) (IIO_IPRTE0_B + (8 * (_x)))
#define IIO_NUM_PRTES 8 /* Total number of PRB table entries */
#define IIO_WIDPRTE_A(x) IIO_PRTE_A(((x) - 8)) /* widget ID to its PRTE num */
#define IIO_WIDPRTE_B(x) IIO_PRTE_B(((x) - 8)) /* widget ID to its PRTE num */
#define IIO_NUM_IPRBS 9
#define IIO_LLP_CSR_IS_UP 0x00002000
#define IIO_LLP_CSR_LLP_STAT_MASK 0x00003000
#define IIO_LLP_CSR_LLP_STAT_SHFT 12
#define IIO_LLP_CB_MAX 0xffff /* in ILLR CB_CNT, Max Check Bit errors */
#define IIO_LLP_SN_MAX 0xffff /* in ILLR SN_CNT, Max Sequence Number errors */
/* key to IIO_PROTECT_OVRRD */
#define IIO_PROTECT_OVRRD_KEY 0x53474972756c6573ull /* "SGIrules" */
/* BTE register names */
#define IIO_BTE_STAT_0 IIO_IBLS_0 /* Also BTE length/status 0 */
#define IIO_BTE_SRC_0 IIO_IBSA_0 /* Also BTE source address 0 */
#define IIO_BTE_DEST_0 IIO_IBDA_0 /* Also BTE dest. address 0 */
#define IIO_BTE_CTRL_0 IIO_IBCT_0 /* Also BTE control/terminate 0 */
#define IIO_BTE_NOTIFY_0 IIO_IBNA_0 /* Also BTE notification 0 */
#define IIO_BTE_INT_0 IIO_IBIA_0 /* Also BTE interrupt 0 */
#define IIO_BTE_OFF_0 0 /* Base offset from BTE 0 regs. */
#define IIO_BTE_OFF_1 (IIO_IBLS_1 - IIO_IBLS_0) /* Offset from base to BTE 1 */
/* BTE register offsets from base */
#define BTEOFF_STAT 0
#define BTEOFF_SRC (IIO_BTE_SRC_0 - IIO_BTE_STAT_0)
#define BTEOFF_DEST (IIO_BTE_DEST_0 - IIO_BTE_STAT_0)
#define BTEOFF_CTRL (IIO_BTE_CTRL_0 - IIO_BTE_STAT_0)
#define BTEOFF_NOTIFY (IIO_BTE_NOTIFY_0 - IIO_BTE_STAT_0)
#define BTEOFF_INT (IIO_BTE_INT_0 - IIO_BTE_STAT_0)
/* names used in shub diags */
#define IIO_BASE_BTE0 IIO_IBLS_0
#define IIO_BASE_BTE1 IIO_IBLS_1
/*
* Macro which takes the widget number, and returns the
* IO PRB address of that widget.
* value _x is expected to be a widget number in the range
* 0, 8 - 0xF
*/
#define IIO_IOPRB(_x) (IIO_IOPRB_0 + ( ( (_x) < HUB_WIDGET_ID_MIN ? \
(_x) : \
(_x) - (HUB_WIDGET_ID_MIN-1)) << 3) )
/* GFX Flow Control Node/Widget Register */
#define IIO_IGFX_W_NUM_BITS 4 /* size of widget num field */
#define IIO_IGFX_W_NUM_MASK ((1<<IIO_IGFX_W_NUM_BITS)-1)
#define IIO_IGFX_W_NUM_SHIFT 0
#define IIO_IGFX_PI_NUM_BITS 1 /* size of PI num field */
#define IIO_IGFX_PI_NUM_MASK ((1<<IIO_IGFX_PI_NUM_BITS)-1)
#define IIO_IGFX_PI_NUM_SHIFT 4
#define IIO_IGFX_N_NUM_BITS 8 /* size of node num field */
#define IIO_IGFX_N_NUM_MASK ((1<<IIO_IGFX_N_NUM_BITS)-1)
#define IIO_IGFX_N_NUM_SHIFT 5
#define IIO_IGFX_P_NUM_BITS 1 /* size of processor num field */
#define IIO_IGFX_P_NUM_MASK ((1<<IIO_IGFX_P_NUM_BITS)-1)
#define IIO_IGFX_P_NUM_SHIFT 16
#define IIO_IGFX_INIT(widget, pi, node, cpu) (\
(((widget) & IIO_IGFX_W_NUM_MASK) << IIO_IGFX_W_NUM_SHIFT) | \
(((pi) & IIO_IGFX_PI_NUM_MASK)<< IIO_IGFX_PI_NUM_SHIFT)| \
(((node) & IIO_IGFX_N_NUM_MASK) << IIO_IGFX_N_NUM_SHIFT) | \
(((cpu) & IIO_IGFX_P_NUM_MASK) << IIO_IGFX_P_NUM_SHIFT))
/* Scratch registers (all bits available) */
#define IIO_SCRATCH_REG0 IIO_ISCR0
#define IIO_SCRATCH_REG1 IIO_ISCR1
#define IIO_SCRATCH_MASK 0xffffffffffffffffUL
#define IIO_SCRATCH_BIT0_0 0x0000000000000001UL
#define IIO_SCRATCH_BIT0_1 0x0000000000000002UL
#define IIO_SCRATCH_BIT0_2 0x0000000000000004UL
#define IIO_SCRATCH_BIT0_3 0x0000000000000008UL
#define IIO_SCRATCH_BIT0_4 0x0000000000000010UL
#define IIO_SCRATCH_BIT0_5 0x0000000000000020UL
#define IIO_SCRATCH_BIT0_6 0x0000000000000040UL
#define IIO_SCRATCH_BIT0_7 0x0000000000000080UL
#define IIO_SCRATCH_BIT0_8 0x0000000000000100UL
#define IIO_SCRATCH_BIT0_9 0x0000000000000200UL
#define IIO_SCRATCH_BIT0_A 0x0000000000000400UL
#define IIO_SCRATCH_BIT1_0 0x0000000000000001UL
#define IIO_SCRATCH_BIT1_1 0x0000000000000002UL
/* IO Translation Table Entries */
#define IIO_NUM_ITTES 7 /* ITTEs numbered 0..6 */
/* Hw manuals number them 1..7! */
/*
* IIO_IMEM Register fields.
*/
#define IIO_IMEM_W0ESD 0x1UL /* Widget 0 shut down due to error */
#define IIO_IMEM_B0ESD (1UL << 4) /* BTE 0 shut down due to error */
#define IIO_IMEM_B1ESD (1UL << 8) /* BTE 1 Shut down due to error */
/*
* As a permanent workaround for a bug in the PI side of the shub, we've
* redefined big window 7 as small window 0.
XXX does this still apply for SN1??
*/
#define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1)
/*
* Use the top big window as a surrogate for the first small window
*/
#define SWIN0_BIGWIN HUB_NUM_BIG_WINDOW
#define ILCSR_WARM_RESET 0x100
/*
* CRB manipulation macros
* The CRB macros are slightly complicated, since there are up to
* four registers associated with each CRB entry.
*/
#define IIO_NUM_CRBS 15 /* Number of CRBs */
#define IIO_NUM_PC_CRBS 4 /* Number of partial cache CRBs */
#define IIO_ICRB_OFFSET 8
#define IIO_ICRB_0 IIO_ICRB0_A
#define IIO_ICRB_ADDR_SHFT 2 /* Shift to get proper address */
/* XXX - This is now tuneable:
#define IIO_FIRST_PC_ENTRY 12
*/
#define IIO_ICRB_A(_x) ((u64)(IIO_ICRB_0 + (6 * IIO_ICRB_OFFSET * (_x))))
#define IIO_ICRB_B(_x) ((u64)((char *)IIO_ICRB_A(_x) + 1*IIO_ICRB_OFFSET))
#define IIO_ICRB_C(_x) ((u64)((char *)IIO_ICRB_A(_x) + 2*IIO_ICRB_OFFSET))
#define IIO_ICRB_D(_x) ((u64)((char *)IIO_ICRB_A(_x) + 3*IIO_ICRB_OFFSET))
#define IIO_ICRB_E(_x) ((u64)((char *)IIO_ICRB_A(_x) + 4*IIO_ICRB_OFFSET))
#define TNUM_TO_WIDGET_DEV(_tnum) (_tnum & 0x7)
/*
* values for "ecode" field
*/
#define IIO_ICRB_ECODE_DERR 0 /* Directory error due to IIO access */
#define IIO_ICRB_ECODE_PERR 1 /* Poison error on IO access */
#define IIO_ICRB_ECODE_WERR 2 /* Write error by IIO access
* e.g. WINV to a Read only line. */
#define IIO_ICRB_ECODE_AERR 3 /* Access error caused by IIO access */
#define IIO_ICRB_ECODE_PWERR 4 /* Error on partial write */
#define IIO_ICRB_ECODE_PRERR 5 /* Error on partial read */
#define IIO_ICRB_ECODE_TOUT 6 /* CRB timeout before deallocating */
#define IIO_ICRB_ECODE_XTERR 7 /* Incoming xtalk pkt had error bit */
/*
* Values for field imsgtype
*/
#define IIO_ICRB_IMSGT_XTALK 0 /* Incoming Meessage from Xtalk */
#define IIO_ICRB_IMSGT_BTE 1 /* Incoming message from BTE */
#define IIO_ICRB_IMSGT_SN1NET 2 /* Incoming message from SN1 net */
#define IIO_ICRB_IMSGT_CRB 3 /* Incoming message from CRB ??? */
/*
* values for field initiator.
*/
#define IIO_ICRB_INIT_XTALK 0 /* Message originated in xtalk */
#define IIO_ICRB_INIT_BTE0 0x1 /* Message originated in BTE 0 */
#define IIO_ICRB_INIT_SN1NET 0x2 /* Message originated in SN1net */
#define IIO_ICRB_INIT_CRB 0x3 /* Message originated in CRB ? */
#define IIO_ICRB_INIT_BTE1 0x5 /* MEssage originated in BTE 1 */
/*
* Number of credits Hub widget has while sending req/response to
* xbow.
* Value of 3 is required by Xbow 1.1
* We may be able to increase this to 4 with Xbow 1.2.
*/
#define HUBII_XBOW_CREDIT 3
#define HUBII_XBOW_REV2_CREDIT 4
/*
* Number of credits that xtalk devices should use when communicating
* with a SHub (depth of SHub's queue).
*/
#define HUB_CREDIT 4
/*
* Some IIO_PRB fields
*/
#define IIO_PRB_MULTI_ERR (1LL << 63)
#define IIO_PRB_SPUR_RD (1LL << 51)
#define IIO_PRB_SPUR_WR (1LL << 50)
#define IIO_PRB_RD_TO (1LL << 49)
#define IIO_PRB_ERROR (1LL << 48)
/*************************************************************************
Some of the IIO field masks and shifts are defined here.
This is in order to maintain compatibility in SN0 and SN1 code
**************************************************************************/
/*
* ICMR register fields
* (Note: the IIO_ICMR_P_CNT and IIO_ICMR_PC_VLD from Hub are not
* present in SHub)
*/
#define IIO_ICMR_CRB_VLD_SHFT 20
#define IIO_ICMR_CRB_VLD_MASK (0x7fffUL << IIO_ICMR_CRB_VLD_SHFT)
#define IIO_ICMR_FC_CNT_SHFT 16
#define IIO_ICMR_FC_CNT_MASK (0xf << IIO_ICMR_FC_CNT_SHFT)
#define IIO_ICMR_C_CNT_SHFT 4
#define IIO_ICMR_C_CNT_MASK (0xf << IIO_ICMR_C_CNT_SHFT)
#define IIO_ICMR_PRECISE (1UL << 52)
#define IIO_ICMR_CLR_RPPD (1UL << 13)
#define IIO_ICMR_CLR_RQPD (1UL << 12)
/*
* IIO PIO Deallocation register field masks : (IIO_IPDR)
XXX present but not needed in bedrock? See the manual.
*/
#define IIO_IPDR_PND (1 << 4)
/*
* IIO CRB deallocation register field masks: (IIO_ICDR)
*/
#define IIO_ICDR_PND (1 << 4)
/*
* IO BTE Length/Status (IIO_IBLS) register bit field definitions
*/
#define IBLS_BUSY (0x1UL << 20)
#define IBLS_ERROR_SHFT 16
#define IBLS_ERROR (0x1UL << IBLS_ERROR_SHFT)
#define IBLS_LENGTH_MASK 0xffff
/*
* IO BTE Control/Terminate register (IBCT) register bit field definitions
*/
#define IBCT_POISON (0x1UL << 8)
#define IBCT_NOTIFY (0x1UL << 4)
#define IBCT_ZFIL_MODE (0x1UL << 0)
/*
* IIO Incoming Error Packet Header (IIO_IIEPH1/IIO_IIEPH2)
*/
#define IIEPH1_VALID (1UL << 44)
#define IIEPH1_OVERRUN (1UL << 40)
#define IIEPH1_ERR_TYPE_SHFT 32
#define IIEPH1_ERR_TYPE_MASK 0xf
#define IIEPH1_SOURCE_SHFT 20
#define IIEPH1_SOURCE_MASK 11
#define IIEPH1_SUPPL_SHFT 8
#define IIEPH1_SUPPL_MASK 11
#define IIEPH1_CMD_SHFT 0
#define IIEPH1_CMD_MASK 7
#define IIEPH2_TAIL (1UL << 40)
#define IIEPH2_ADDRESS_SHFT 0
#define IIEPH2_ADDRESS_MASK 38
#define IIEPH1_ERR_SHORT_REQ 2
#define IIEPH1_ERR_SHORT_REPLY 3
#define IIEPH1_ERR_LONG_REQ 4
#define IIEPH1_ERR_LONG_REPLY 5
/*
* IO Error Clear register bit field definitions
*/
#define IECLR_PI1_FWD_INT (1UL << 31) /* clear PI1_FORWARD_INT in iidsr */
#define IECLR_PI0_FWD_INT (1UL << 30) /* clear PI0_FORWARD_INT in iidsr */
#define IECLR_SPUR_RD_HDR (1UL << 29) /* clear valid bit in ixss reg */
#define IECLR_BTE1 (1UL << 18) /* clear bte error 1 */
#define IECLR_BTE0 (1UL << 17) /* clear bte error 0 */
#define IECLR_CRAZY (1UL << 16) /* clear crazy bit in wstat reg */
#define IECLR_PRB_F (1UL << 15) /* clear err bit in PRB_F reg */
#define IECLR_PRB_E (1UL << 14) /* clear err bit in PRB_E reg */
#define IECLR_PRB_D (1UL << 13) /* clear err bit in PRB_D reg */
#define IECLR_PRB_C (1UL << 12) /* clear err bit in PRB_C reg */
#define IECLR_PRB_B (1UL << 11) /* clear err bit in PRB_B reg */
#define IECLR_PRB_A (1UL << 10) /* clear err bit in PRB_A reg */
#define IECLR_PRB_9 (1UL << 9) /* clear err bit in PRB_9 reg */
#define IECLR_PRB_8 (1UL << 8) /* clear err bit in PRB_8 reg */
#define IECLR_PRB_0 (1UL << 0) /* clear err bit in PRB_0 reg */
/*
* IIO CRB control register Fields: IIO_ICCR
*/
#define IIO_ICCR_PENDING 0x10000
#define IIO_ICCR_CMD_MASK 0xFF
#define IIO_ICCR_CMD_SHFT 7
#define IIO_ICCR_CMD_NOP 0x0 /* No Op */
#define IIO_ICCR_CMD_WAKE 0x100 /* Reactivate CRB entry and process */
#define IIO_ICCR_CMD_TIMEOUT 0x200 /* Make CRB timeout & mark invalid */
#define IIO_ICCR_CMD_EJECT 0x400 /* Contents of entry written to memory
* via a WB
*/
#define IIO_ICCR_CMD_FLUSH 0x800
/*
*
* CRB Register description.
*
* WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
* WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
* WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
* WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
* WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
*
* Many of the fields in CRB are status bits used by hardware
* for implementation of the protocol. It's very dangerous to
* mess around with the CRB registers.
*
* It's OK to read the CRB registers and try to make sense out of the
* fields in CRB.
*
* Updating CRB requires all activities in Hub IIO to be quiesced.
* otherwise, a write to CRB could corrupt other CRB entries.
* CRBs are here only as a back door peek to shub IIO's status.
* Quiescing implies no dmas no PIOs
* either directly from the cpu or from sn0net.
* this is not something that can be done easily. So, AVOID updating
* CRBs.
*/
/*
* Easy access macros for CRBs, all 5 registers (A-E)
*/
typedef ii_icrb0_a_u_t icrba_t;
#define a_sidn ii_icrb0_a_fld_s.ia_sidn
#define a_tnum ii_icrb0_a_fld_s.ia_tnum
#define a_addr ii_icrb0_a_fld_s.ia_addr
#define a_valid ii_icrb0_a_fld_s.ia_vld
#define a_iow ii_icrb0_a_fld_s.ia_iow
#define a_regvalue ii_icrb0_a_regval
typedef ii_icrb0_b_u_t icrbb_t;
#define b_use_old ii_icrb0_b_fld_s.ib_use_old
#define b_imsgtype ii_icrb0_b_fld_s.ib_imsgtype
#define b_imsg ii_icrb0_b_fld_s.ib_imsg
#define b_initiator ii_icrb0_b_fld_s.ib_init
#define b_exc ii_icrb0_b_fld_s.ib_exc
#define b_ackcnt ii_icrb0_b_fld_s.ib_ack_cnt
#define b_resp ii_icrb0_b_fld_s.ib_resp
#define b_ack ii_icrb0_b_fld_s.ib_ack