blob: 302201f1a0978b0a0c7db477edb498a7fc57fd9e [file] [log] [blame]
#ifndef _ALPHA_BITOPS_H
#define _ALPHA_BITOPS_H
#include <linux/config.h>
#include <asm/compiler.h>
/*
* Copyright 1994, Linus Torvalds.
*/
/*
* These have to be done with inline assembly: that way the bit-setting
* is guaranteed to be atomic. All bit operations return 0 if the bit
* was cleared before the operation and != 0 if it was not.
*
* To get proper branch prediction for the main line, we must branch
* forward to code at the end of this object's .text section, then
* branch back to restart the operation.
*
* bit 0 is the LSB of addr; bit 64 is the LSB of (addr+1).
*/
static inline void
set_bit(unsigned long nr, volatile void * addr)
{
unsigned long temp;
int *m = ((int *) addr) + (nr >> 5);
__asm__ __volatile__(
"1: ldl_l %0,%3\n"
" bis %0,%2,%0\n"
" stl_c %0,%1\n"
" beq %0,2f\n"
".subsection 2\n"
"2: br 1b\n"
".previous"
:"=&r" (temp), "=m" (*m)
:"Ir" (1UL << (nr & 31)), "m" (*m));
}
/*
* WARNING: non atomic version.
*/
static inline void
__set_bit(unsigned long nr, volatile void * addr)
{
int *m = ((int *) addr) + (nr >> 5);
*m |= 1 << (nr & 31);
}
#define smp_mb__before_clear_bit() smp_mb()
#define smp_mb__after_clear_bit() smp_mb()
static inline void
clear_bit(unsigned long nr, volatile void * addr)
{
unsigned long temp;
int *m = ((int *) addr) + (nr >> 5);
__asm__ __volatile__(
"1: ldl_l %0,%3\n"
" bic %0,%2,%0\n"
" stl_c %0,%1\n"
" beq %0,2f\n"
".subsection 2\n"
"2: br 1b\n"
".previous"
:"=&r" (temp), "=m" (*m)
:"Ir" (1UL << (nr & 31)), "m" (*m));
}
/*
* WARNING: non atomic version.
*/
static __inline__ void
__clear_bit(unsigned long nr, volatile void * addr)
{
int *m = ((int *) addr) + (nr >> 5);
*m &= ~(1 << (nr & 31));
}
static inline void
change_bit(unsigned long nr, volatile void * addr)
{
unsigned long temp;
int *m = ((int *) addr) + (nr >> 5);
__asm__ __volatile__(
"1: ldl_l %0,%3\n"
" xor %0,%2,%0\n"
" stl_c %0,%1\n"
" beq %0,2f\n"
".subsection 2\n"
"2: br 1b\n"
".previous"
:"=&r" (temp), "=m" (*m)
:"Ir" (1UL << (nr & 31)), "m" (*m));
}
/*
* WARNING: non atomic version.
*/
static __inline__ void
__change_bit(unsigned long nr, volatile void * addr)
{
int *m = ((int *) addr) + (nr >> 5);
*m ^= 1 << (nr & 31);
}
static inline int
test_and_set_bit(unsigned long nr, volatile void *addr)
{
unsigned long oldbit;
unsigned long temp;
int *m = ((int *) addr) + (nr >> 5);
__asm__ __volatile__(
"1: ldl_l %0,%4\n"
" and %0,%3,%2\n"
" bne %2,2f\n"
" xor %0,%3,%0\n"
" stl_c %0,%1\n"
" beq %0,3f\n"
"2:\n"
#ifdef CONFIG_SMP
" mb\n"
#endif
".subsection 2\n"
"3: br 1b\n"
".previous"
:"=&r" (temp), "=m" (*m), "=&r" (oldbit)
:"Ir" (1UL << (nr & 31)), "m" (*m) : "memory");
return oldbit != 0;
}
/*
* WARNING: non atomic version.
*/
static inline int
__test_and_set_bit(unsigned long nr, volatile void * addr)
{
unsigned long mask = 1 << (nr & 0x1f);
int *m = ((int *) addr) + (nr >> 5);
int old = *m;
*m = old | mask;
return (old & mask) != 0;
}
static inline int
test_and_clear_bit(unsigned long nr, volatile void * addr)
{
unsigned long oldbit;
unsigned long temp;
int *m = ((int *) addr) + (nr >> 5);
__asm__ __volatile__(
"1: ldl_l %0,%4\n"
" and %0,%3,%2\n"
" beq %2,2f\n"
" xor %0,%3,%0\n"
" stl_c %0,%1\n"
" beq %0,3f\n"
"2:\n"
#ifdef CONFIG_SMP
" mb\n"
#endif
".subsection 2\n"
"3: br 1b\n"
".previous"
:"=&r" (temp), "=m" (*m), "=&r" (oldbit)
:"Ir" (1UL << (nr & 31)), "m" (*m) : "memory");
return oldbit != 0;
}
/*
* WARNING: non atomic version.
*/
static inline int
__test_and_clear_bit(unsigned long nr, volatile void * addr)
{
unsigned long mask = 1 << (nr & 0x1f);
int *m = ((int *) addr) + (nr >> 5);
int old = *m;
*m = old & ~mask;
return (old & mask) != 0;
}
static inline int
test_and_change_bit(unsigned long nr, volatile void * addr)
{
unsigned long oldbit;
unsigned long temp;
int *m = ((int *) addr) + (nr >> 5);
__asm__ __volatile__(
"1: ldl_l %0,%4\n"
" and %0,%3,%2\n"
" xor %0,%3,%0\n"
" stl_c %0,%1\n"
" beq %0,3f\n"
#ifdef CONFIG_SMP
" mb\n"
#endif
".subsection 2\n"
"3: br 1b\n"
".previous"
:"=&r" (temp), "=m" (*m), "=&r" (oldbit)
:"Ir" (1UL << (nr & 31)), "m" (*m) : "memory");
return oldbit != 0;
}
/*
* WARNING: non atomic version.
*/
static __inline__ int
__test_and_change_bit(unsigned long nr, volatile void * addr)
{
unsigned long mask = 1 << (nr & 0x1f);
int *m = ((int *) addr) + (nr >> 5);
int old = *m;
*m = old ^ mask;
return (old & mask) != 0;
}
static inline int
test_bit(int nr, const volatile void * addr)
{
return (1UL & (((const int *) addr)[nr >> 5] >> (nr & 31))) != 0UL;
}
/*
* ffz = Find First Zero in word. Undefined if no zero exists,
* so code should check against ~0UL first..
*
* Do a binary search on the bits. Due to the nature of large
* constants on the alpha, it is worthwhile to split the search.
*/
static inline unsigned long ffz_b(unsigned long x)
{
unsigned long sum, x1, x2, x4;
x = ~x & -~x; /* set first 0 bit, clear others */
x1 = x & 0xAA;
x2 = x & 0xCC;
x4 = x & 0xF0;
sum = x2 ? 2 : 0;
sum += (x4 != 0) * 4;
sum += (x1 != 0);
return sum;
}
static inline unsigned long ffz(unsigned long word)
{
#if defined(__alpha_cix__) && defined(__alpha_fix__)
/* Whee. EV67 can calculate it directly. */
return __kernel_cttz(~word);
#else
unsigned long bits, qofs, bofs;
bits = __kernel_cmpbge(word, ~0UL);
qofs = ffz_b(bits);
bits = __kernel_extbl(word, qofs);
bofs = ffz_b(bits);
return qofs*8 + bofs;
#endif
}
/*
* __ffs = Find First set bit in word. Undefined if no set bit exists.
*/
static inline unsigned long __ffs(unsigned long word)
{
#if defined(__alpha_cix__) && defined(__alpha_fix__)
/* Whee. EV67 can calculate it directly. */
return __kernel_cttz(word);
#else
unsigned long bits, qofs, bofs;
bits = __kernel_cmpbge(0, word);
qofs = ffz_b(bits);
bits = __kernel_extbl(word, qofs);
bofs = ffz_b(~bits);
return qofs*8 + bofs;
#endif
}
#ifdef __KERNEL__
/*
* ffs: find first bit set. This is defined the same way as
* the libc and compiler builtin ffs routines, therefore
* differs in spirit from the above __ffs.
*/
static inline int ffs(int word)
{
int result = __ffs(word) + 1;
return word ? result : 0;
}
/*
* fls: find last bit set.
*/
#if defined(__alpha_cix__) && defined(__alpha_fix__)
static inline int fls(int word)
{
return 64 - __kernel_ctlz(word & 0xffffffff);
}
#else
#define fls generic_fls
#endif
#define fls64 generic_fls64
/* Compute powers of two for the given integer. */
static inline long floor_log2(unsigned long word)
{
#if defined(__alpha_cix__) && defined(__alpha_fix__)
return 63 - __kernel_ctlz(word);
#else
long bit;
for (bit = -1; word ; bit++)
word >>= 1;
return bit;
#endif
}
static inline long ceil_log2(unsigned long word)
{
long bit = floor_log2(word);
return bit + (word > (1UL << bit));
}
/*
* hweightN: returns the hamming weight (i.e. the number
* of bits set) of a N-bit word
*/
#if defined(__alpha_cix__) && defined(__alpha_fix__)
/* Whee. EV67 can calculate it directly. */
static inline unsigned long hweight64(unsigned long w)
{
return __kernel_ctpop(w);
}
#define hweight32(x) (unsigned int) hweight64((x) & 0xfffffffful)
#define hweight16(x) (unsigned int) hweight64((x) & 0xfffful)
#define hweight8(x) (unsigned int) hweight64((x) & 0xfful)
#else
static inline unsigned long hweight64(unsigned long w)
{
unsigned long result;
for (result = 0; w ; w >>= 1)
result += (w & 1);
return result;
}
#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)
#endif
#endif /* __KERNEL__ */
/*
* Find next zero bit in a bitmap reasonably efficiently..
*/
static inline unsigned long
find_next_zero_bit(const void *addr, unsigned long size, unsigned long offset)
{
const unsigned long *p = addr;
unsigned long result = offset & ~63UL;
unsigned long tmp;
p += offset >> 6;
if (offset >= size)
return size;
size -= result;
offset &= 63UL;
if (offset) {
tmp = *(p++);
tmp |= ~0UL >> (64-offset);
if (size < 64)
goto found_first;
if (~tmp)
goto found_middle;
size -= 64;
result += 64;
}
while (size & ~63UL) {
if (~(tmp = *(p++)))
goto found_middle;
result += 64;
size -= 64;
}
if (!size)
return result;
tmp = *p;
found_first:
tmp |= ~0UL << size;
if (tmp == ~0UL) /* Are any bits zero? */
return result + size; /* Nope. */
found_middle:
return result + ffz(tmp);
}
/*
* Find next one bit in a bitmap reasonably efficiently.
*/
static inline unsigned long
find_next_bit(const void * addr, unsigned long size, unsigned long offset)
{
const unsigned long *p = addr;
unsigned long result = offset & ~63UL;
unsigned long tmp;
p += offset >> 6;
if (offset >= size)
return size;
size -= result;
offset &= 63UL;
if (offset) {
tmp = *(p++);
tmp &= ~0UL << offset;
if (size < 64)
goto found_first;
if (tmp)
goto found_middle;
size -= 64;
result += 64;
}
while (size & ~63UL) {
if ((tmp = *(p++)))
goto found_middle;
result += 64;
size -= 64;
}
if (!size)
return result;
tmp = *p;
found_first:
tmp &= ~0UL >> (64 - size);
if (!tmp)
return result + size;
found_middle:
return result + __ffs(tmp);
}
/*
* The optimizer actually does good code for this case.
*/
#define find_first_zero_bit(addr, size) \
find_next_zero_bit((addr), (size), 0)
#define find_first_bit(addr, size) \
find_next_bit((addr), (size), 0)
#ifdef __KERNEL__
/*
* Every architecture must define this function. It's the fastest
* way of searching a 140-bit bitmap where the first 100 bits are
* unlikely to be set. It's guaranteed that at least one of the 140
* bits is set.
*/
static inline unsigned long
sched_find_first_bit(unsigned long b[3])
{
unsigned long b0 = b[0], b1 = b[1], b2 = b[2];
unsigned long ofs;
ofs = (b1 ? 64 : 128);
b1 = (b1 ? b1 : b2);
ofs = (b0 ? 0 : ofs);
b0 = (b0 ? b0 : b1);
return __ffs(b0) + ofs;
}
#define ext2_set_bit __test_and_set_bit
#define ext2_set_bit_atomic(l,n,a) test_and_set_bit(n,a)
#define ext2_clear_bit __test_and_clear_bit
#define ext2_clear_bit_atomic(l,n,a) test_and_clear_bit(n,a)
#define ext2_test_bit test_bit
#define ext2_find_first_zero_bit find_first_zero_bit
#define ext2_find_next_zero_bit find_next_zero_bit
/* Bitmap functions for the minix filesystem. */
#define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr)
#define minix_set_bit(nr,addr) __set_bit(nr,addr)
#define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr)
#define minix_test_bit(nr,addr) test_bit(nr,addr)
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
#endif /* __KERNEL__ */
#endif /* _ALPHA_BITOPS_H */