blob: 064516d824add6deca6527a1a7a0255884a19514 [file] [log] [blame]
/*
* lm80.c - From lm_sensors, Linux kernel modules for hardware
* monitoring
* Copyright (C) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
* and Philip Edelbrock <phil@netroedge.com>
*
* Ported to Linux 2.6 by Tiago Sousa <mirage@kaotik.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/err.h>
#include <linux/mutex.h>
/* Addresses to scan */
static unsigned short normal_i2c[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c,
0x2d, 0x2e, 0x2f, I2C_CLIENT_END };
/* Insmod parameters */
I2C_CLIENT_INSMOD_1(lm80);
/* Many LM80 constants specified below */
/* The LM80 registers */
#define LM80_REG_IN_MAX(nr) (0x2a + (nr) * 2)
#define LM80_REG_IN_MIN(nr) (0x2b + (nr) * 2)
#define LM80_REG_IN(nr) (0x20 + (nr))
#define LM80_REG_FAN1 0x28
#define LM80_REG_FAN2 0x29
#define LM80_REG_FAN_MIN(nr) (0x3b + (nr))
#define LM80_REG_TEMP 0x27
#define LM80_REG_TEMP_HOT_MAX 0x38
#define LM80_REG_TEMP_HOT_HYST 0x39
#define LM80_REG_TEMP_OS_MAX 0x3a
#define LM80_REG_TEMP_OS_HYST 0x3b
#define LM80_REG_CONFIG 0x00
#define LM80_REG_ALARM1 0x01
#define LM80_REG_ALARM2 0x02
#define LM80_REG_MASK1 0x03
#define LM80_REG_MASK2 0x04
#define LM80_REG_FANDIV 0x05
#define LM80_REG_RES 0x06
/* Conversions. Rounding and limit checking is only done on the TO_REG
variants. Note that you should be a bit careful with which arguments
these macros are called: arguments may be evaluated more than once.
Fixing this is just not worth it. */
#define IN_TO_REG(val) (SENSORS_LIMIT(((val)+5)/10,0,255))
#define IN_FROM_REG(val) ((val)*10)
static inline unsigned char FAN_TO_REG(unsigned rpm, unsigned div)
{
if (rpm == 0)
return 255;
rpm = SENSORS_LIMIT(rpm, 1, 1000000);
return SENSORS_LIMIT((1350000 + rpm*div / 2) / (rpm*div), 1, 254);
}
#define FAN_FROM_REG(val,div) ((val)==0?-1:\
(val)==255?0:1350000/((div)*(val)))
static inline long TEMP_FROM_REG(u16 temp)
{
long res;
temp >>= 4;
if (temp < 0x0800)
res = 625 * (long) temp;
else
res = ((long) temp - 0x01000) * 625;
return res / 10;
}
#define TEMP_LIMIT_FROM_REG(val) (((val)>0x80?(val)-0x100:(val))*1000)
#define TEMP_LIMIT_TO_REG(val) SENSORS_LIMIT((val)<0?\
((val)-500)/1000:((val)+500)/1000,0,255)
#define DIV_FROM_REG(val) (1 << (val))
/*
* Client data (each client gets its own)
*/
struct lm80_data {
struct i2c_client client;
struct class_device *class_dev;
struct mutex update_lock;
char valid; /* !=0 if following fields are valid */
unsigned long last_updated; /* In jiffies */
u8 in[7]; /* Register value */
u8 in_max[7]; /* Register value */
u8 in_min[7]; /* Register value */
u8 fan[2]; /* Register value */
u8 fan_min[2]; /* Register value */
u8 fan_div[2]; /* Register encoding, shifted right */
u16 temp; /* Register values, shifted right */
u8 temp_hot_max; /* Register value */
u8 temp_hot_hyst; /* Register value */
u8 temp_os_max; /* Register value */
u8 temp_os_hyst; /* Register value */
u16 alarms; /* Register encoding, combined */
};
/*
* Functions declaration
*/
static int lm80_attach_adapter(struct i2c_adapter *adapter);
static int lm80_detect(struct i2c_adapter *adapter, int address, int kind);
static void lm80_init_client(struct i2c_client *client);
static int lm80_detach_client(struct i2c_client *client);
static struct lm80_data *lm80_update_device(struct device *dev);
static int lm80_read_value(struct i2c_client *client, u8 reg);
static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value);
/*
* Driver data (common to all clients)
*/
static struct i2c_driver lm80_driver = {
.driver = {
.name = "lm80",
},
.id = I2C_DRIVERID_LM80,
.attach_adapter = lm80_attach_adapter,
.detach_client = lm80_detach_client,
};
/*
* Sysfs stuff
*/
#define show_in(suffix, value) \
static ssize_t show_in_##suffix(struct device *dev, struct device_attribute *attr, char *buf) \
{ \
struct lm80_data *data = lm80_update_device(dev); \
return sprintf(buf, "%d\n", IN_FROM_REG(data->value)); \
}
show_in(min0, in_min[0]);
show_in(min1, in_min[1]);
show_in(min2, in_min[2]);
show_in(min3, in_min[3]);
show_in(min4, in_min[4]);
show_in(min5, in_min[5]);
show_in(min6, in_min[6]);
show_in(max0, in_max[0]);
show_in(max1, in_max[1]);
show_in(max2, in_max[2]);
show_in(max3, in_max[3]);
show_in(max4, in_max[4]);
show_in(max5, in_max[5]);
show_in(max6, in_max[6]);
show_in(input0, in[0]);
show_in(input1, in[1]);
show_in(input2, in[2]);
show_in(input3, in[3]);
show_in(input4, in[4]);
show_in(input5, in[5]);
show_in(input6, in[6]);
#define set_in(suffix, value, reg) \
static ssize_t set_in_##suffix(struct device *dev, struct device_attribute *attr, const char *buf, \
size_t count) \
{ \
struct i2c_client *client = to_i2c_client(dev); \
struct lm80_data *data = i2c_get_clientdata(client); \
long val = simple_strtol(buf, NULL, 10); \
\
mutex_lock(&data->update_lock);\
data->value = IN_TO_REG(val); \
lm80_write_value(client, reg, data->value); \
mutex_unlock(&data->update_lock);\
return count; \
}
set_in(min0, in_min[0], LM80_REG_IN_MIN(0));
set_in(min1, in_min[1], LM80_REG_IN_MIN(1));
set_in(min2, in_min[2], LM80_REG_IN_MIN(2));
set_in(min3, in_min[3], LM80_REG_IN_MIN(3));
set_in(min4, in_min[4], LM80_REG_IN_MIN(4));
set_in(min5, in_min[5], LM80_REG_IN_MIN(5));
set_in(min6, in_min[6], LM80_REG_IN_MIN(6));
set_in(max0, in_max[0], LM80_REG_IN_MAX(0));
set_in(max1, in_max[1], LM80_REG_IN_MAX(1));
set_in(max2, in_max[2], LM80_REG_IN_MAX(2));
set_in(max3, in_max[3], LM80_REG_IN_MAX(3));
set_in(max4, in_max[4], LM80_REG_IN_MAX(4));
set_in(max5, in_max[5], LM80_REG_IN_MAX(5));
set_in(max6, in_max[6], LM80_REG_IN_MAX(6));
#define show_fan(suffix, value, div) \
static ssize_t show_fan_##suffix(struct device *dev, struct device_attribute *attr, char *buf) \
{ \
struct lm80_data *data = lm80_update_device(dev); \
return sprintf(buf, "%d\n", FAN_FROM_REG(data->value, \
DIV_FROM_REG(data->div))); \
}
show_fan(min1, fan_min[0], fan_div[0]);
show_fan(min2, fan_min[1], fan_div[1]);
show_fan(input1, fan[0], fan_div[0]);
show_fan(input2, fan[1], fan_div[1]);
#define show_fan_div(suffix, value) \
static ssize_t show_fan_div##suffix(struct device *dev, struct device_attribute *attr, char *buf) \
{ \
struct lm80_data *data = lm80_update_device(dev); \
return sprintf(buf, "%d\n", DIV_FROM_REG(data->value)); \
}
show_fan_div(1, fan_div[0]);
show_fan_div(2, fan_div[1]);
#define set_fan(suffix, value, reg, div) \
static ssize_t set_fan_##suffix(struct device *dev, struct device_attribute *attr, const char *buf, \
size_t count) \
{ \
struct i2c_client *client = to_i2c_client(dev); \
struct lm80_data *data = i2c_get_clientdata(client); \
long val = simple_strtoul(buf, NULL, 10); \
\
mutex_lock(&data->update_lock);\
data->value = FAN_TO_REG(val, DIV_FROM_REG(data->div)); \
lm80_write_value(client, reg, data->value); \
mutex_unlock(&data->update_lock);\
return count; \
}
set_fan(min1, fan_min[0], LM80_REG_FAN_MIN(1), fan_div[0]);
set_fan(min2, fan_min[1], LM80_REG_FAN_MIN(2), fan_div[1]);
/* Note: we save and restore the fan minimum here, because its value is
determined in part by the fan divisor. This follows the principle of
least surprise; the user doesn't expect the fan minimum to change just
because the divisor changed. */
static ssize_t set_fan_div(struct device *dev, const char *buf,
size_t count, int nr)
{
struct i2c_client *client = to_i2c_client(dev);
struct lm80_data *data = i2c_get_clientdata(client);
unsigned long min, val = simple_strtoul(buf, NULL, 10);
u8 reg;
/* Save fan_min */
mutex_lock(&data->update_lock);
min = FAN_FROM_REG(data->fan_min[nr],
DIV_FROM_REG(data->fan_div[nr]));
switch (val) {
case 1: data->fan_div[nr] = 0; break;
case 2: data->fan_div[nr] = 1; break;
case 4: data->fan_div[nr] = 2; break;
case 8: data->fan_div[nr] = 3; break;
default:
dev_err(&client->dev, "fan_div value %ld not "
"supported. Choose one of 1, 2, 4 or 8!\n", val);
mutex_unlock(&data->update_lock);
return -EINVAL;
}
reg = (lm80_read_value(client, LM80_REG_FANDIV) & ~(3 << (2 * (nr + 1))))
| (data->fan_div[nr] << (2 * (nr + 1)));
lm80_write_value(client, LM80_REG_FANDIV, reg);
/* Restore fan_min */
data->fan_min[nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
lm80_write_value(client, LM80_REG_FAN_MIN(nr + 1), data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define set_fan_div(number) \
static ssize_t set_fan_div##number(struct device *dev, struct device_attribute *attr, const char *buf, \
size_t count) \
{ \
return set_fan_div(dev, buf, count, number - 1); \
}
set_fan_div(1);
set_fan_div(2);
static ssize_t show_temp_input1(struct device *dev, struct device_attribute *attr, char *buf)
{
struct lm80_data *data = lm80_update_device(dev);
return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp));
}
#define show_temp(suffix, value) \
static ssize_t show_temp_##suffix(struct device *dev, struct device_attribute *attr, char *buf) \
{ \
struct lm80_data *data = lm80_update_device(dev); \
return sprintf(buf, "%d\n", TEMP_LIMIT_FROM_REG(data->value)); \
}
show_temp(hot_max, temp_hot_max);
show_temp(hot_hyst, temp_hot_hyst);
show_temp(os_max, temp_os_max);
show_temp(os_hyst, temp_os_hyst);
#define set_temp(suffix, value, reg) \
static ssize_t set_temp_##suffix(struct device *dev, struct device_attribute *attr, const char *buf, \
size_t count) \
{ \
struct i2c_client *client = to_i2c_client(dev); \
struct lm80_data *data = i2c_get_clientdata(client); \
long val = simple_strtoul(buf, NULL, 10); \
\
mutex_lock(&data->update_lock); \
data->value = TEMP_LIMIT_TO_REG(val); \
lm80_write_value(client, reg, data->value); \
mutex_unlock(&data->update_lock); \
return count; \
}
set_temp(hot_max, temp_hot_max, LM80_REG_TEMP_HOT_MAX);
set_temp(hot_hyst, temp_hot_hyst, LM80_REG_TEMP_HOT_HYST);
set_temp(os_max, temp_os_max, LM80_REG_TEMP_OS_MAX);
set_temp(os_hyst, temp_os_hyst, LM80_REG_TEMP_OS_HYST);
static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf)
{
struct lm80_data *data = lm80_update_device(dev);
return sprintf(buf, "%u\n", data->alarms);
}
static DEVICE_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min0, set_in_min0);
static DEVICE_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min1, set_in_min1);
static DEVICE_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min2, set_in_min2);
static DEVICE_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min3, set_in_min3);
static DEVICE_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min4, set_in_min4);
static DEVICE_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min5, set_in_min5);
static DEVICE_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min6, set_in_min6);
static DEVICE_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max0, set_in_max0);
static DEVICE_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max1, set_in_max1);
static DEVICE_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max2, set_in_max2);
static DEVICE_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max3, set_in_max3);
static DEVICE_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max4, set_in_max4);
static DEVICE_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max5, set_in_max5);
static DEVICE_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max6, set_in_max6);
static DEVICE_ATTR(in0_input, S_IRUGO, show_in_input0, NULL);
static DEVICE_ATTR(in1_input, S_IRUGO, show_in_input1, NULL);
static DEVICE_ATTR(in2_input, S_IRUGO, show_in_input2, NULL);
static DEVICE_ATTR(in3_input, S_IRUGO, show_in_input3, NULL);
static DEVICE_ATTR(in4_input, S_IRUGO, show_in_input4, NULL);
static DEVICE_ATTR(in5_input, S_IRUGO, show_in_input5, NULL);
static DEVICE_ATTR(in6_input, S_IRUGO, show_in_input6, NULL);
static DEVICE_ATTR(fan1_min, S_IWUSR | S_IRUGO, show_fan_min1,
set_fan_min1);
static DEVICE_ATTR(fan2_min, S_IWUSR | S_IRUGO, show_fan_min2,
set_fan_min2);
static DEVICE_ATTR(fan1_input, S_IRUGO, show_fan_input1, NULL);
static DEVICE_ATTR(fan2_input, S_IRUGO, show_fan_input2, NULL);
static DEVICE_ATTR(fan1_div, S_IWUSR | S_IRUGO, show_fan_div1, set_fan_div1);
static DEVICE_ATTR(fan2_div, S_IWUSR | S_IRUGO, show_fan_div2, set_fan_div2);
static DEVICE_ATTR(temp1_input, S_IRUGO, show_temp_input1, NULL);
static DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp_hot_max,
set_temp_hot_max);
static DEVICE_ATTR(temp1_max_hyst, S_IWUSR | S_IRUGO, show_temp_hot_hyst,
set_temp_hot_hyst);
static DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp_os_max,
set_temp_os_max);
static DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temp_os_hyst,
set_temp_os_hyst);
static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
/*
* Real code
*/
static int lm80_attach_adapter(struct i2c_adapter *adapter)
{
if (!(adapter->class & I2C_CLASS_HWMON))
return 0;
return i2c_probe(adapter, &addr_data, lm80_detect);
}
static struct attribute *lm80_attributes[] = {
&dev_attr_in0_min.attr,
&dev_attr_in1_min.attr,
&dev_attr_in2_min.attr,
&dev_attr_in3_min.attr,
&dev_attr_in4_min.attr,
&dev_attr_in5_min.attr,
&dev_attr_in6_min.attr,
&dev_attr_in0_max.attr,
&dev_attr_in1_max.attr,
&dev_attr_in2_max.attr,
&dev_attr_in3_max.attr,
&dev_attr_in4_max.attr,
&dev_attr_in5_max.attr,
&dev_attr_in6_max.attr,
&dev_attr_in0_input.attr,
&dev_attr_in1_input.attr,
&dev_attr_in2_input.attr,
&dev_attr_in3_input.attr,
&dev_attr_in4_input.attr,
&dev_attr_in5_input.attr,
&dev_attr_in6_input.attr,
&dev_attr_fan1_min.attr,
&dev_attr_fan2_min.attr,
&dev_attr_fan1_input.attr,
&dev_attr_fan2_input.attr,
&dev_attr_fan1_div.attr,
&dev_attr_fan2_div.attr,
&dev_attr_temp1_input.attr,
&dev_attr_temp1_max.attr,
&dev_attr_temp1_max_hyst.attr,
&dev_attr_temp1_crit.attr,
&dev_attr_temp1_crit_hyst.attr,
&dev_attr_alarms.attr,
NULL
};
static const struct attribute_group lm80_group = {
.attrs = lm80_attributes,
};
static int lm80_detect(struct i2c_adapter *adapter, int address, int kind)
{
int i, cur;
struct i2c_client *new_client;
struct lm80_data *data;
int err = 0;
const char *name;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
goto exit;
/* OK. For now, we presume we have a valid client. We now create the
client structure, even though we cannot fill it completely yet.
But it allows us to access lm80_{read,write}_value. */
if (!(data = kzalloc(sizeof(struct lm80_data), GFP_KERNEL))) {
err = -ENOMEM;
goto exit;
}
new_client = &data->client;
i2c_set_clientdata(new_client, data);
new_client->addr = address;
new_client->adapter = adapter;
new_client->driver = &lm80_driver;
new_client->flags = 0;
/* Now, we do the remaining detection. It is lousy. */
if (lm80_read_value(new_client, LM80_REG_ALARM2) & 0xc0)
goto error_free;
for (i = 0x2a; i <= 0x3d; i++) {
cur = i2c_smbus_read_byte_data(new_client, i);
if ((i2c_smbus_read_byte_data(new_client, i + 0x40) != cur)
|| (i2c_smbus_read_byte_data(new_client, i + 0x80) != cur)
|| (i2c_smbus_read_byte_data(new_client, i + 0xc0) != cur))
goto error_free;
}
/* Determine the chip type - only one kind supported! */
kind = lm80;
name = "lm80";
/* Fill in the remaining client fields and put it into the global list */
strlcpy(new_client->name, name, I2C_NAME_SIZE);
data->valid = 0;
mutex_init(&data->update_lock);
/* Tell the I2C layer a new client has arrived */
if ((err = i2c_attach_client(new_client)))
goto error_free;
/* Initialize the LM80 chip */
lm80_init_client(new_client);
/* A few vars need to be filled upon startup */
data->fan_min[0] = lm80_read_value(new_client, LM80_REG_FAN_MIN(1));
data->fan_min[1] = lm80_read_value(new_client, LM80_REG_FAN_MIN(2));
/* Register sysfs hooks */
if ((err = sysfs_create_group(&new_client->dev.kobj, &lm80_group)))
goto error_detach;
data->class_dev = hwmon_device_register(&new_client->dev);
if (IS_ERR(data->class_dev)) {
err = PTR_ERR(data->class_dev);
goto error_remove;
}
return 0;
error_remove:
sysfs_remove_group(&new_client->dev.kobj, &lm80_group);
error_detach:
i2c_detach_client(new_client);
error_free:
kfree(data);
exit:
return err;
}
static int lm80_detach_client(struct i2c_client *client)
{
struct lm80_data *data = i2c_get_clientdata(client);
int err;
hwmon_device_unregister(data->class_dev);
sysfs_remove_group(&client->dev.kobj, &lm80_group);
if ((err = i2c_detach_client(client)))
return err;
kfree(data);
return 0;
}
static int lm80_read_value(struct i2c_client *client, u8 reg)
{
return i2c_smbus_read_byte_data(client, reg);
}
static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value)
{
return i2c_smbus_write_byte_data(client, reg, value);
}
/* Called when we have found a new LM80. */
static void lm80_init_client(struct i2c_client *client)
{
/* Reset all except Watchdog values and last conversion values
This sets fan-divs to 2, among others. This makes most other
initializations unnecessary */
lm80_write_value(client, LM80_REG_CONFIG, 0x80);
/* Set 11-bit temperature resolution */
lm80_write_value(client, LM80_REG_RES, 0x08);
/* Start monitoring */
lm80_write_value(client, LM80_REG_CONFIG, 0x01);
}
static struct lm80_data *lm80_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct lm80_data *data = i2c_get_clientdata(client);
int i;
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
dev_dbg(&client->dev, "Starting lm80 update\n");
for (i = 0; i <= 6; i++) {
data->in[i] =
lm80_read_value(client, LM80_REG_IN(i));
data->in_min[i] =
lm80_read_value(client, LM80_REG_IN_MIN(i));
data->in_max[i] =
lm80_read_value(client, LM80_REG_IN_MAX(i));
}
data->fan[0] = lm80_read_value(client, LM80_REG_FAN1);
data->fan_min[0] =
lm80_read_value(client, LM80_REG_FAN_MIN(1));
data->fan[1] = lm80_read_value(client, LM80_REG_FAN2);
data->fan_min[1] =
lm80_read_value(client, LM80_REG_FAN_MIN(2));
data->temp =
(lm80_read_value(client, LM80_REG_TEMP) << 8) |
(lm80_read_value(client, LM80_REG_RES) & 0xf0);
data->temp_os_max =
lm80_read_value(client, LM80_REG_TEMP_OS_MAX);
data->temp_os_hyst =
lm80_read_value(client, LM80_REG_TEMP_OS_HYST);
data->temp_hot_max =
lm80_read_value(client, LM80_REG_TEMP_HOT_MAX);
data->temp_hot_hyst =
lm80_read_value(client, LM80_REG_TEMP_HOT_HYST);
i = lm80_read_value(client, LM80_REG_FANDIV);
data->fan_div[0] = (i >> 2) & 0x03;
data->fan_div[1] = (i >> 4) & 0x03;
data->alarms = lm80_read_value(client, LM80_REG_ALARM1) +
(lm80_read_value(client, LM80_REG_ALARM2) << 8);
data->last_updated = jiffies;
data->valid = 1;
}
mutex_unlock(&data->update_lock);
return data;
}
static int __init sensors_lm80_init(void)
{
return i2c_add_driver(&lm80_driver);
}
static void __exit sensors_lm80_exit(void)
{
i2c_del_driver(&lm80_driver);
}
MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and "
"Philip Edelbrock <phil@netroedge.com>");
MODULE_DESCRIPTION("LM80 driver");
MODULE_LICENSE("GPL");
module_init(sensors_lm80_init);
module_exit(sensors_lm80_exit);