blob: d25249a932bfa48abe544bfa7dac49ba0a3e17e7 [file] [log] [blame]
/*
* Sound driver for Silicon Graphics 320 and 540 Visual Workstations'
* onboard audio. See notes in Documentation/sound/oss/vwsnd .
*
* Copyright 1999 Silicon Graphics, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#undef VWSND_DEBUG /* define for debugging */
/*
* XXX to do -
*
* External sync.
* Rename swbuf, hwbuf, u&i, hwptr&swptr to something rational.
* Bug - if select() called before read(), pcm_setup() not called.
* Bug - output doesn't stop soon enough if process killed.
*/
/*
* Things to test -
*
* Will readv/writev work? Write a test.
*
* insmod/rmmod 100 million times.
*
* Run I/O until int ptrs wrap around (roughly 6.2 hours @ DAT
* rate).
*
* Concurrent threads banging on mixer simultaneously, both UP
* and SMP kernels. Especially, watch for thread A changing
* OUTSRC while thread B changes gain -- both write to the same
* ad1843 register.
*
* What happens if a client opens /dev/audio then forks?
* Do two procs have /dev/audio open? Test.
*
* Pump audio through the CD, MIC and line inputs and verify that
* they mix/mute into the output.
*
* Apps:
* amp
* mpg123
* x11amp
* mxv
* kmedia
* esound
* need more input apps
*
* Run tests while bombarding with signals. setitimer(2) will do it... */
/*
* This driver is organized in nine sections.
* The nine sections are:
*
* debug stuff
* low level lithium access
* high level lithium access
* AD1843 access
* PCM I/O
* audio driver
* mixer driver
* probe/attach/unload
* initialization and loadable kernel module interface
*
* That is roughly the order of increasing abstraction, so forward
* dependencies are minimal.
*/
/*
* Locking Notes
*
* INC_USE_COUNT and DEC_USE_COUNT keep track of the number of
* open descriptors to this driver. They store it in vwsnd_use_count.
* The global device list, vwsnd_dev_list, is immutable when the IN_USE
* is true.
*
* devc->open_lock is a semaphore that is used to enforce the
* single reader/single writer rule for /dev/audio. The rule is
* that each device may have at most one reader and one writer.
* Open will block until the previous client has closed the
* device, unless O_NONBLOCK is specified.
*
* The semaphore devc->io_mutex serializes PCM I/O syscalls. This
* is unnecessary in Linux 2.2, because the kernel lock
* serializes read, write, and ioctl globally, but it's there,
* ready for the brave, new post-kernel-lock world.
*
* Locking between interrupt and baselevel is handled by the
* "lock" spinlock in vwsnd_port (one lock each for read and
* write). Each half holds the lock just long enough to see what
* area it owns and update its pointers. See pcm_output() and
* pcm_input() for most of the gory stuff.
*
* devc->mix_mutex serializes all mixer ioctls. This is also
* redundant because of the kernel lock.
*
* The lowest level lock is lith->lithium_lock. It is a
* spinlock which is held during the two-register tango of
* reading/writing an AD1843 register. See
* li_{read,write}_ad1843_reg().
*/
/*
* Sample Format Notes
*
* Lithium's DMA engine has two formats: 16-bit 2's complement
* and 8-bit unsigned . 16-bit transfers the data unmodified, 2
* bytes per sample. 8-bit unsigned transfers 1 byte per sample
* and XORs each byte with 0x80. Lithium can input or output
* either mono or stereo in either format.
*
* The AD1843 has four formats: 16-bit 2's complement, 8-bit
* unsigned, 8-bit mu-Law and 8-bit A-Law.
*
* This driver supports five formats: AFMT_S8, AFMT_U8,
* AFMT_MU_LAW, AFMT_A_LAW, and AFMT_S16_LE.
*
* For AFMT_U8 output, we keep the AD1843 in 16-bit mode, and
* rely on Lithium's XOR to translate between U8 and S8.
*
* For AFMT_S8, AFMT_MU_LAW and AFMT_A_LAW output, we have to XOR
* the 0x80 bit in software to compensate for Lithium's XOR.
* This happens in pcm_copy_{in,out}().
*
* Changes:
* 11-10-2000 Bartlomiej Zolnierkiewicz <bkz@linux-ide.org>
* Added some __init/__exit
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp_lock.h>
#include <linux/wait.h>
#include <linux/interrupt.h>
#include <linux/mutex.h>
#include <asm/mach-visws/cobalt.h>
#include "sound_config.h"
/*****************************************************************************/
/* debug stuff */
#ifdef VWSND_DEBUG
static int shut_up = 1;
/*
* dbgassert - called when an assertion fails.
*/
static void dbgassert(const char *fcn, int line, const char *expr)
{
if (in_interrupt())
panic("ASSERTION FAILED IN INTERRUPT, %s:%s:%d %s\n",
__FILE__, fcn, line, expr);
else {
int x;
printk(KERN_ERR "ASSERTION FAILED, %s:%s:%d %s\n",
__FILE__, fcn, line, expr);
x = * (volatile int *) 0; /* force proc to exit */
}
}
/*
* Bunch of useful debug macros:
*
* ASSERT - print unless e nonzero (panic if in interrupt)
* DBGDO - include arbitrary code if debugging
* DBGX - debug print raw (w/o function name)
* DBGP - debug print w/ function name
* DBGE - debug print function entry
* DBGC - debug print function call
* DBGR - debug print function return
* DBGXV - debug print raw when verbose
* DBGPV - debug print when verbose
* DBGEV - debug print function entry when verbose
* DBGRV - debug print function return when verbose
*/
#define ASSERT(e) ((e) ? (void) 0 : dbgassert(__FUNCTION__, __LINE__, #e))
#define DBGDO(x) x
#define DBGX(fmt, args...) (in_interrupt() ? 0 : printk(KERN_ERR fmt, ##args))
#define DBGP(fmt, args...) (DBGX("%s: " fmt, __FUNCTION__ , ##args))
#define DBGE(fmt, args...) (DBGX("%s" fmt, __FUNCTION__ , ##args))
#define DBGC(rtn) (DBGP("calling %s\n", rtn))
#define DBGR() (DBGP("returning\n"))
#define DBGXV(fmt, args...) (shut_up ? 0 : DBGX(fmt, ##args))
#define DBGPV(fmt, args...) (shut_up ? 0 : DBGP(fmt, ##args))
#define DBGEV(fmt, args...) (shut_up ? 0 : DBGE(fmt, ##args))
#define DBGCV(rtn) (shut_up ? 0 : DBGC(rtn))
#define DBGRV() (shut_up ? 0 : DBGR())
#else /* !VWSND_DEBUG */
#define ASSERT(e) ((void) 0)
#define DBGDO(x) /* don't */
#define DBGX(fmt, args...) ((void) 0)
#define DBGP(fmt, args...) ((void) 0)
#define DBGE(fmt, args...) ((void) 0)
#define DBGC(rtn) ((void) 0)
#define DBGR() ((void) 0)
#define DBGPV(fmt, args...) ((void) 0)
#define DBGXV(fmt, args...) ((void) 0)
#define DBGEV(fmt, args...) ((void) 0)
#define DBGCV(rtn) ((void) 0)
#define DBGRV() ((void) 0)
#endif /* !VWSND_DEBUG */
/*****************************************************************************/
/* low level lithium access */
/*
* We need to talk to Lithium registers on three pages. Here are
* the pages' offsets from the base address (0xFF001000).
*/
enum {
LI_PAGE0_OFFSET = 0x01000 - 0x1000, /* FF001000 */
LI_PAGE1_OFFSET = 0x0F000 - 0x1000, /* FF00F000 */
LI_PAGE2_OFFSET = 0x10000 - 0x1000, /* FF010000 */
};
/* low-level lithium data */
typedef struct lithium {
void * page0; /* virtual addresses */
void * page1;
void * page2;
spinlock_t lock; /* protects codec and UST/MSC access */
} lithium_t;
/*
* li_destroy destroys the lithium_t structure and vm mappings.
*/
static void li_destroy(lithium_t *lith)
{
if (lith->page0) {
iounmap(lith->page0);
lith->page0 = NULL;
}
if (lith->page1) {
iounmap(lith->page1);
lith->page1 = NULL;
}
if (lith->page2) {
iounmap(lith->page2);
lith->page2 = NULL;
}
}
/*
* li_create initializes the lithium_t structure and sets up vm mappings
* to access the registers.
* Returns 0 on success, -errno on failure.
*/
static int __init li_create(lithium_t *lith, unsigned long baseaddr)
{
spin_lock_init(&lith->lock);
lith->page0 = ioremap_nocache(baseaddr + LI_PAGE0_OFFSET, PAGE_SIZE);
lith->page1 = ioremap_nocache(baseaddr + LI_PAGE1_OFFSET, PAGE_SIZE);
lith->page2 = ioremap_nocache(baseaddr + LI_PAGE2_OFFSET, PAGE_SIZE);
if (!lith->page0 || !lith->page1 || !lith->page2) {
li_destroy(lith);
return -ENOMEM;
}
return 0;
}
/*
* basic register accessors - read/write long/byte
*/
static __inline__ unsigned long li_readl(lithium_t *lith, int off)
{
return * (volatile unsigned long *) (lith->page0 + off);
}
static __inline__ unsigned char li_readb(lithium_t *lith, int off)
{
return * (volatile unsigned char *) (lith->page0 + off);
}
static __inline__ void li_writel(lithium_t *lith, int off, unsigned long val)
{
* (volatile unsigned long *) (lith->page0 + off) = val;
}
static __inline__ void li_writeb(lithium_t *lith, int off, unsigned char val)
{
* (volatile unsigned char *) (lith->page0 + off) = val;
}
/*****************************************************************************/
/* High Level Lithium Access */
/*
* Lithium DMA Notes
*
* Lithium has two dedicated DMA channels for audio. They are known
* as comm1 and comm2 (communication areas 1 and 2). Comm1 is for
* input, and comm2 is for output. Each is controlled by three
* registers: BASE (base address), CFG (config) and CCTL
* (config/control).
*
* Each DMA channel points to a physically contiguous ring buffer in
* main memory of up to 8 Kbytes. (This driver always uses 8 Kb.)
* There are three pointers into the ring buffer: read, write, and
* trigger. The pointers are 8 bits each. Each pointer points to
* 32-byte "chunks" of data. The DMA engine moves 32 bytes at a time,
* so there is no finer-granularity control.
*
* In comm1, the hardware updates the write ptr, and software updates
* the read ptr. In comm2, it's the opposite: hardware updates the
* read ptr, and software updates the write ptr. I designate the
* hardware-updated ptr as the hwptr, and the software-updated ptr as
* the swptr.
*
* The trigger ptr and trigger mask are used to trigger interrupts.
* From the Lithium spec, section 5.6.8, revision of 12/15/1998:
*
* Trigger Mask Value
*
* A three bit wide field that represents a power of two mask
* that is used whenever the trigger pointer is compared to its
* respective read or write pointer. A value of zero here
* implies a mask of 0xFF and a value of seven implies a mask
* 0x01. This value can be used to sub-divide the ring buffer
* into pie sections so that interrupts monitor the progress of
* hardware from section to section.
*
* My interpretation of that is, whenever the hw ptr is updated, it is
* compared with the trigger ptr, and the result is masked by the
* trigger mask. (Actually, by the complement of the trigger mask.)
* If the result is zero, an interrupt is triggered. I.e., interrupt
* if ((hwptr & ~mask) == (trptr & ~mask)). The mask is formed from
* the trigger register value as mask = (1 << (8 - tmreg)) - 1.
*
* In yet different words, setting tmreg to 0 causes an interrupt after
* every 256 DMA chunks (8192 bytes) or once per traversal of the
* ring buffer. Setting it to 7 caues an interrupt every 2 DMA chunks
* (64 bytes) or 128 times per traversal of the ring buffer.
*/
/* Lithium register offsets and bit definitions */
#define LI_HOST_CONTROLLER 0x000
# define LI_HC_RESET 0x00008000
# define LI_HC_LINK_ENABLE 0x00004000
# define LI_HC_LINK_FAILURE 0x00000004
# define LI_HC_LINK_CODEC 0x00000002
# define LI_HC_LINK_READY 0x00000001
#define LI_INTR_STATUS 0x010
#define LI_INTR_MASK 0x014
# define LI_INTR_LINK_ERR 0x00008000
# define LI_INTR_COMM2_TRIG 0x00000008
# define LI_INTR_COMM2_UNDERFLOW 0x00000004
# define LI_INTR_COMM1_TRIG 0x00000002
# define LI_INTR_COMM1_OVERFLOW 0x00000001
#define LI_CODEC_COMMAND 0x018
# define LI_CC_BUSY 0x00008000
# define LI_CC_DIR 0x00000080
# define LI_CC_DIR_RD LI_CC_DIR
# define LI_CC_DIR_WR (!LI_CC_DIR)
# define LI_CC_ADDR_MASK 0x0000007F
#define LI_CODEC_DATA 0x01C
#define LI_COMM1_BASE 0x100
#define LI_COMM1_CTL 0x104
# define LI_CCTL_RESET 0x80000000
# define LI_CCTL_SIZE 0x70000000
# define LI_CCTL_DMA_ENABLE 0x08000000
# define LI_CCTL_TMASK 0x07000000 /* trigger mask */
# define LI_CCTL_TPTR 0x00FF0000 /* trigger pointer */
# define LI_CCTL_RPTR 0x0000FF00
# define LI_CCTL_WPTR 0x000000FF
#define LI_COMM1_CFG 0x108
# define LI_CCFG_LOCK 0x00008000
# define LI_CCFG_SLOT 0x00000070
# define LI_CCFG_DIRECTION 0x00000008
# define LI_CCFG_DIR_IN (!LI_CCFG_DIRECTION)
# define LI_CCFG_DIR_OUT LI_CCFG_DIRECTION
# define LI_CCFG_MODE 0x00000004
# define LI_CCFG_MODE_MONO (!LI_CCFG_MODE)
# define LI_CCFG_MODE_STEREO LI_CCFG_MODE
# define LI_CCFG_FORMAT 0x00000003
# define LI_CCFG_FMT_8BIT 0x00000000
# define LI_CCFG_FMT_16BIT 0x00000001
#define LI_COMM2_BASE 0x10C
#define LI_COMM2_CTL 0x110
/* bit definitions are the same as LI_COMM1_CTL */
#define LI_COMM2_CFG 0x114
/* bit definitions are the same as LI_COMM1_CFG */
#define LI_UST_LOW 0x200 /* 64-bit Unadjusted System Time is */
#define LI_UST_HIGH 0x204 /* microseconds since boot */
#define LI_AUDIO1_UST 0x300 /* UST-MSC pairs */
#define LI_AUDIO1_MSC 0x304 /* MSC (Media Stream Counter) */
#define LI_AUDIO2_UST 0x308 /* counts samples actually */
#define LI_AUDIO2_MSC 0x30C /* processed as of time UST */
/*
* Lithium's DMA engine operates on chunks of 32 bytes. We call that
* a DMACHUNK.
*/
#define DMACHUNK_SHIFT 5
#define DMACHUNK_SIZE (1 << DMACHUNK_SHIFT)
#define BYTES_TO_CHUNKS(bytes) ((bytes) >> DMACHUNK_SHIFT)
#define CHUNKS_TO_BYTES(chunks) ((chunks) << DMACHUNK_SHIFT)
/*
* Two convenient macros to shift bitfields into/out of position.
*
* Observe that (mask & -mask) is (1 << low_set_bit_of(mask)).
* As long as mask is constant, we trust the compiler will change the
* multipy and divide into shifts.
*/
#define SHIFT_FIELD(val, mask) (((val) * ((mask) & -(mask))) & (mask))
#define UNSHIFT_FIELD(val, mask) (((val) & (mask)) / ((mask) & -(mask)))
/*
* dma_chan_desc is invariant information about a Lithium
* DMA channel. There are two instances, li_comm1 and li_comm2.
*
* Note that the CCTL register fields are write ptr and read ptr, but what
* we care about are which pointer is updated by software and which by
* hardware.
*/
typedef struct dma_chan_desc {
int basereg;
int cfgreg;
int ctlreg;
int hwptrreg;
int swptrreg;
int ustreg;
int mscreg;
unsigned long swptrmask;
int ad1843_slot;
int direction; /* LI_CCTL_DIR_IN/OUT */
} dma_chan_desc_t;
static const dma_chan_desc_t li_comm1 = {
LI_COMM1_BASE, /* base register offset */
LI_COMM1_CFG, /* config register offset */
LI_COMM1_CTL, /* control register offset */
LI_COMM1_CTL + 0, /* hw ptr reg offset (write ptr) */
LI_COMM1_CTL + 1, /* sw ptr reg offset (read ptr) */
LI_AUDIO1_UST, /* ust reg offset */
LI_AUDIO1_MSC, /* msc reg offset */
LI_CCTL_RPTR, /* sw ptr bitmask in ctlval */
2, /* ad1843 serial slot */
LI_CCFG_DIR_IN /* direction */
};
static const dma_chan_desc_t li_comm2 = {
LI_COMM2_BASE, /* base register offset */
LI_COMM2_CFG, /* config register offset */
LI_COMM2_CTL, /* control register offset */
LI_COMM2_CTL + 1, /* hw ptr reg offset (read ptr) */
LI_COMM2_CTL + 0, /* sw ptr reg offset (writr ptr) */
LI_AUDIO2_UST, /* ust reg offset */
LI_AUDIO2_MSC, /* msc reg offset */
LI_CCTL_WPTR, /* sw ptr bitmask in ctlval */
2, /* ad1843 serial slot */
LI_CCFG_DIR_OUT /* direction */
};
/*
* dma_chan is variable information about a Lithium DMA channel.
*
* The desc field points to invariant information.
* The lith field points to a lithium_t which is passed
* to li_read* and li_write* to access the registers.
* The *val fields shadow the lithium registers' contents.
*/
typedef struct dma_chan {
const dma_chan_desc_t *desc;
lithium_t *lith;
unsigned long baseval;
unsigned long cfgval;
unsigned long ctlval;
} dma_chan_t;
/*
* ustmsc is a UST/MSC pair (Unadjusted System Time/Media Stream Counter).
* UST is time in microseconds since the system booted, and MSC is a
* counter that increments with every audio sample.
*/
typedef struct ustmsc {
unsigned long long ust;
unsigned long msc;
} ustmsc_t;
/*
* li_ad1843_wait waits until lithium says the AD1843 register
* exchange is not busy. Returns 0 on success, -EBUSY on timeout.
*
* Locking: must be called with lithium_lock held.
*/
static int li_ad1843_wait(lithium_t *lith)
{
unsigned long later = jiffies + 2;
while (li_readl(lith, LI_CODEC_COMMAND) & LI_CC_BUSY)
if (time_after_eq(jiffies, later))
return -EBUSY;
return 0;
}
/*
* li_read_ad1843_reg returns the current contents of a 16 bit AD1843 register.
*
* Returns unsigned register value on success, -errno on failure.
*/
static int li_read_ad1843_reg(lithium_t *lith, int reg)
{
int val;
ASSERT(!in_interrupt());
spin_lock(&lith->lock);
{
val = li_ad1843_wait(lith);
if (val == 0) {
li_writel(lith, LI_CODEC_COMMAND, LI_CC_DIR_RD | reg);
val = li_ad1843_wait(lith);
}
if (val == 0)
val = li_readl(lith, LI_CODEC_DATA);
}
spin_unlock(&lith->lock);
DBGXV("li_read_ad1843_reg(lith=0x%p, reg=%d) returns 0x%04x\n",
lith, reg, val);
return val;
}
/*
* li_write_ad1843_reg writes the specified value to a 16 bit AD1843 register.
*/
static void li_write_ad1843_reg(lithium_t *lith, int reg, int newval)
{
spin_lock(&lith->lock);
{
if (li_ad1843_wait(lith) == 0) {
li_writel(lith, LI_CODEC_DATA, newval);
li_writel(lith, LI_CODEC_COMMAND, LI_CC_DIR_WR | reg);
}
}
spin_unlock(&lith->lock);
}
/*
* li_setup_dma calculates all the register settings for DMA in a particular
* mode. It takes too many arguments.
*/
static void li_setup_dma(dma_chan_t *chan,
const dma_chan_desc_t *desc,
lithium_t *lith,
unsigned long buffer_paddr,
int bufshift,
int fragshift,
int channels,
int sampsize)
{
unsigned long mode, format;
unsigned long size, tmask;
DBGEV("(chan=0x%p, desc=0x%p, lith=0x%p, buffer_paddr=0x%lx, "
"bufshift=%d, fragshift=%d, channels=%d, sampsize=%d)\n",
chan, desc, lith, buffer_paddr,
bufshift, fragshift, channels, sampsize);
/* Reset the channel first. */
li_writel(lith, desc->ctlreg, LI_CCTL_RESET);
ASSERT(channels == 1 || channels == 2);
if (channels == 2)
mode = LI_CCFG_MODE_STEREO;
else
mode = LI_CCFG_MODE_MONO;
ASSERT(sampsize == 1 || sampsize == 2);
if (sampsize == 2)
format = LI_CCFG_FMT_16BIT;
else
format = LI_CCFG_FMT_8BIT;
chan->desc = desc;
chan->lith = lith;
/*
* Lithium DMA address register takes a 40-bit physical
* address, right-shifted by 8 so it fits in 32 bits. Bit 37
* must be set -- it enables cache coherence.
*/
ASSERT(!(buffer_paddr & 0xFF));
chan->baseval = (buffer_paddr >> 8) | 1 << (37 - 8);
chan->cfgval = (!LI_CCFG_LOCK |
SHIFT_FIELD(desc->ad1843_slot, LI_CCFG_SLOT) |
desc->direction |
mode |
format);
size = bufshift - 6;
tmask = 13 - fragshift; /* See Lithium DMA Notes above. */
ASSERT(size >= 2 && size <= 7);
ASSERT(tmask >= 1 && tmask <= 7);
chan->ctlval = (!LI_CCTL_RESET |
SHIFT_FIELD(size, LI_CCTL_SIZE) |
!LI_CCTL_DMA_ENABLE |
SHIFT_FIELD(tmask, LI_CCTL_TMASK) |
SHIFT_FIELD(0, LI_CCTL_TPTR));
DBGPV("basereg 0x%x = 0x%lx\n", desc->basereg, chan->baseval);
DBGPV("cfgreg 0x%x = 0x%lx\n", desc->cfgreg, chan->cfgval);
DBGPV("ctlreg 0x%x = 0x%lx\n", desc->ctlreg, chan->ctlval);
li_writel(lith, desc->basereg, chan->baseval);
li_writel(lith, desc->cfgreg, chan->cfgval);
li_writel(lith, desc->ctlreg, chan->ctlval);
DBGRV();
}
static void li_shutdown_dma(dma_chan_t *chan)
{
lithium_t *lith = chan->lith;
void * lith1 = lith->page1;
DBGEV("(chan=0x%p)\n", chan);
chan->ctlval &= ~LI_CCTL_DMA_ENABLE;
DBGPV("ctlreg 0x%x = 0x%lx\n", chan->desc->ctlreg, chan->ctlval);
li_writel(lith, chan->desc->ctlreg, chan->ctlval);
/*
* Offset 0x500 on Lithium page 1 is an undocumented,
* unsupported register that holds the zero sample value.
* Lithium is supposed to output zero samples when DMA is
* inactive, and repeat the last sample when DMA underflows.
* But it has a bug, where, after underflow occurs, the zero
* sample is not reset.
*
* I expect this to break in a future rev of Lithium.
*/
if (lith1 && chan->desc->direction == LI_CCFG_DIR_OUT)
* (volatile unsigned long *) (lith1 + 0x500) = 0;
}
/*
* li_activate_dma always starts dma at the beginning of the buffer.
*
* N.B., these may be called from interrupt.
*/
static __inline__ void li_activate_dma(dma_chan_t *chan)
{
chan->ctlval |= LI_CCTL_DMA_ENABLE;
DBGPV("ctlval = 0x%lx\n", chan->ctlval);
li_writel(chan->lith, chan->desc->ctlreg, chan->ctlval);
}
static void li_deactivate_dma(dma_chan_t *chan)
{
lithium_t *lith = chan->lith;
void * lith2 = lith->page2;
chan->ctlval &= ~(LI_CCTL_DMA_ENABLE | LI_CCTL_RPTR | LI_CCTL_WPTR);
DBGPV("ctlval = 0x%lx\n", chan->ctlval);
DBGPV("ctlreg 0x%x = 0x%lx\n", chan->desc->ctlreg, chan->ctlval);
li_writel(lith, chan->desc->ctlreg, chan->ctlval);
/*
* Offsets 0x98 and 0x9C on Lithium page 2 are undocumented,
* unsupported registers that are internal copies of the DMA
* read and write pointers. Because of a Lithium bug, these
* registers aren't zeroed correctly when DMA is shut off. So
* we whack them directly.
*
* I expect this to break in a future rev of Lithium.
*/
if (lith2 && chan->desc->direction == LI_CCFG_DIR_OUT) {
* (volatile unsigned long *) (lith2 + 0x98) = 0;
* (volatile unsigned long *) (lith2 + 0x9C) = 0;
}
}
/*
* read/write the ring buffer pointers. These routines' arguments and results
* are byte offsets from the beginning of the ring buffer.
*/
static __inline__ int li_read_swptr(dma_chan_t *chan)
{
const unsigned long mask = chan->desc->swptrmask;
return CHUNKS_TO_BYTES(UNSHIFT_FIELD(chan->ctlval, mask));
}
static __inline__ int li_read_hwptr(dma_chan_t *chan)
{
return CHUNKS_TO_BYTES(li_readb(chan->lith, chan->desc->hwptrreg));
}
static __inline__ void li_write_swptr(dma_chan_t *chan, int val)
{
const unsigned long mask = chan->desc->swptrmask;
ASSERT(!(val & ~CHUNKS_TO_BYTES(0xFF)));
val = BYTES_TO_CHUNKS(val);
chan->ctlval = (chan->ctlval & ~mask) | SHIFT_FIELD(val, mask);
li_writeb(chan->lith, chan->desc->swptrreg, val);
}
/* li_read_USTMSC() returns a UST/MSC pair for the given channel. */
static void li_read_USTMSC(dma_chan_t *chan, ustmsc_t *ustmsc)
{
lithium_t *lith = chan->lith;
const dma_chan_desc_t *desc = chan->desc;
unsigned long now_low, now_high0, now_high1, chan_ust;
spin_lock(&lith->lock);
{
/*
* retry until we do all five reads without the
* high word changing. (High word increments
* every 2^32 microseconds, i.e., not often)
*/
do {
now_high0 = li_readl(lith, LI_UST_HIGH);
now_low = li_readl(lith, LI_UST_LOW);
/*
* Lithium guarantees these two reads will be
* atomic -- ust will not increment after msc
* is read.
*/
ustmsc->msc = li_readl(lith, desc->mscreg);
chan_ust = li_readl(lith, desc->ustreg);
now_high1 = li_readl(lith, LI_UST_HIGH);
} while (now_high0 != now_high1);
}
spin_unlock(&lith->lock);
ustmsc->ust = ((unsigned long long) now_high0 << 32 | chan_ust);
}
static void li_enable_interrupts(lithium_t *lith, unsigned int mask)
{
DBGEV("(lith=0x%p, mask=0x%x)\n", lith, mask);
/* clear any already-pending interrupts. */
li_writel(lith, LI_INTR_STATUS, mask);
/* enable the interrupts. */
mask |= li_readl(lith, LI_INTR_MASK);
li_writel(lith, LI_INTR_MASK, mask);
}
static void li_disable_interrupts(lithium_t *lith, unsigned int mask)
{
unsigned int keepmask;
DBGEV("(lith=0x%p, mask=0x%x)\n", lith, mask);
/* disable the interrupts */
keepmask = li_readl(lith, LI_INTR_MASK) & ~mask;
li_writel(lith, LI_INTR_MASK, keepmask);
/* clear any pending interrupts. */
li_writel(lith, LI_INTR_STATUS, mask);
}
/* Get the interrupt status and clear all pending interrupts. */
static unsigned int li_get_clear_intr_status(lithium_t *lith)
{
unsigned int status;
status = li_readl(lith, LI_INTR_STATUS);
li_writel(lith, LI_INTR_STATUS, ~0);
return status & li_readl(lith, LI_INTR_MASK);
}
static int li_init(lithium_t *lith)
{
/* 1. System power supplies stabilize. */
/* 2. Assert the ~RESET signal. */
li_writel(lith, LI_HOST_CONTROLLER, LI_HC_RESET);
udelay(1);
/* 3. Deassert the ~RESET signal and enter a wait period to allow
the AD1843 internal clocks and the external crystal oscillator
to stabilize. */
li_writel(lith, LI_HOST_CONTROLLER, LI_HC_LINK_ENABLE);
udelay(1);
return 0;
}
/*****************************************************************************/
/* AD1843 access */
/*
* AD1843 bitfield definitions. All are named as in the AD1843 data
* sheet, with ad1843_ prepended and individual bit numbers removed.
*
* E.g., bits LSS0 through LSS2 become ad1843_LSS.
*
* Only the bitfields we need are defined.
*/
typedef struct ad1843_bitfield {
char reg;
char lo_bit;
char nbits;
} ad1843_bitfield_t;
static const ad1843_bitfield_t
ad1843_PDNO = { 0, 14, 1 }, /* Converter Power-Down Flag */
ad1843_INIT = { 0, 15, 1 }, /* Clock Initialization Flag */
ad1843_RIG = { 2, 0, 4 }, /* Right ADC Input Gain */
ad1843_RMGE = { 2, 4, 1 }, /* Right ADC Mic Gain Enable */
ad1843_RSS = { 2, 5, 3 }, /* Right ADC Source Select */
ad1843_LIG = { 2, 8, 4 }, /* Left ADC Input Gain */
ad1843_LMGE = { 2, 12, 1 }, /* Left ADC Mic Gain Enable */
ad1843_LSS = { 2, 13, 3 }, /* Left ADC Source Select */
ad1843_RX1M = { 4, 0, 5 }, /* Right Aux 1 Mix Gain/Atten */
ad1843_RX1MM = { 4, 7, 1 }, /* Right Aux 1 Mix Mute */
ad1843_LX1M = { 4, 8, 5 }, /* Left Aux 1 Mix Gain/Atten */
ad1843_LX1MM = { 4, 15, 1 }, /* Left Aux 1 Mix Mute */
ad1843_RX2M = { 5, 0, 5 }, /* Right Aux 2 Mix Gain/Atten */
ad1843_RX2MM = { 5, 7, 1 }, /* Right Aux 2 Mix Mute */
ad1843_LX2M = { 5, 8, 5 }, /* Left Aux 2 Mix Gain/Atten */
ad1843_LX2MM = { 5, 15, 1 }, /* Left Aux 2 Mix Mute */
ad1843_RMCM = { 7, 0, 5 }, /* Right Mic Mix Gain/Atten */
ad1843_RMCMM = { 7, 7, 1 }, /* Right Mic Mix Mute */
ad1843_LMCM = { 7, 8, 5 }, /* Left Mic Mix Gain/Atten */
ad1843_LMCMM = { 7, 15, 1 }, /* Left Mic Mix Mute */
ad1843_HPOS = { 8, 4, 1 }, /* Headphone Output Voltage Swing */
ad1843_HPOM = { 8, 5, 1 }, /* Headphone Output Mute */
ad1843_RDA1G = { 9, 0, 6 }, /* Right DAC1 Analog/Digital Gain */
ad1843_RDA1GM = { 9, 7, 1 }, /* Right DAC1 Analog Mute */
ad1843_LDA1G = { 9, 8, 6 }, /* Left DAC1 Analog/Digital Gain */
ad1843_LDA1GM = { 9, 15, 1 }, /* Left DAC1 Analog Mute */
ad1843_RDA1AM = { 11, 7, 1 }, /* Right DAC1 Digital Mute */
ad1843_LDA1AM = { 11, 15, 1 }, /* Left DAC1 Digital Mute */
ad1843_ADLC = { 15, 0, 2 }, /* ADC Left Sample Rate Source */
ad1843_ADRC = { 15, 2, 2 }, /* ADC Right Sample Rate Source */
ad1843_DA1C = { 15, 8, 2 }, /* DAC1 Sample Rate Source */
ad1843_C1C = { 17, 0, 16 }, /* Clock 1 Sample Rate Select */
ad1843_C2C = { 20, 0, 16 }, /* Clock 1 Sample Rate Select */
ad1843_DAADL = { 25, 4, 2 }, /* Digital ADC Left Source Select */
ad1843_DAADR = { 25, 6, 2 }, /* Digital ADC Right Source Select */
ad1843_DRSFLT = { 25, 15, 1 }, /* Digital Reampler Filter Mode */
ad1843_ADLF = { 26, 0, 2 }, /* ADC Left Channel Data Format */
ad1843_ADRF = { 26, 2, 2 }, /* ADC Right Channel Data Format */
ad1843_ADTLK = { 26, 4, 1 }, /* ADC Transmit Lock Mode Select */
ad1843_SCF = { 26, 7, 1 }, /* SCLK Frequency Select */
ad1843_DA1F = { 26, 8, 2 }, /* DAC1 Data Format Select */
ad1843_DA1SM = { 26, 14, 1 }, /* DAC1 Stereo/Mono Mode Select */
ad1843_ADLEN = { 27, 0, 1 }, /* ADC Left Channel Enable */
ad1843_ADREN = { 27, 1, 1 }, /* ADC Right Channel Enable */
ad1843_AAMEN = { 27, 4, 1 }, /* Analog to Analog Mix Enable */
ad1843_ANAEN = { 27, 7, 1 }, /* Analog Channel Enable */
ad1843_DA1EN = { 27, 8, 1 }, /* DAC1 Enable */
ad1843_DA2EN = { 27, 9, 1 }, /* DAC2 Enable */
ad1843_C1EN = { 28, 11, 1 }, /* Clock Generator 1 Enable */
ad1843_C2EN = { 28, 12, 1 }, /* Clock Generator 2 Enable */
ad1843_PDNI = { 28, 15, 1 }; /* Converter Power Down */
/*
* The various registers of the AD1843 use three different formats for
* specifying gain. The ad1843_gain structure parameterizes the
* formats.
*/
typedef struct ad1843_gain {
int negative; /* nonzero if gain is negative. */
const ad1843_bitfield_t *lfield;
const ad1843_bitfield_t *rfield;
} ad1843_gain_t;
static const ad1843_gain_t ad1843_gain_RECLEV
= { 0, &ad1843_LIG, &ad1843_RIG };
static const ad1843_gain_t ad1843_gain_LINE
= { 1, &ad1843_LX1M, &ad1843_RX1M };
static const ad1843_gain_t ad1843_gain_CD
= { 1, &ad1843_LX2M, &ad1843_RX2M };
static const ad1843_gain_t ad1843_gain_MIC
= { 1, &ad1843_LMCM, &ad1843_RMCM };
static const ad1843_gain_t ad1843_gain_PCM
= { 1, &ad1843_LDA1G, &ad1843_RDA1G };
/* read the current value of an AD1843 bitfield. */
static int ad1843_read_bits(lithium_t *lith, const ad1843_bitfield_t *field)
{
int w = li_read_ad1843_reg(lith, field->reg);
int val = w >> field->lo_bit & ((1 << field->nbits) - 1);
DBGXV("ad1843_read_bits(lith=0x%p, field->{%d %d %d}) returns 0x%x\n",
lith, field->reg, field->lo_bit, field->nbits, val);
return val;
}
/*
* write a new value to an AD1843 bitfield and return the old value.
*/
static int ad1843_write_bits(lithium_t *lith,
const ad1843_bitfield_t *field,
int newval)
{
int w = li_read_ad1843_reg(lith, field->reg);
int mask = ((1 << field->nbits) - 1) << field->lo_bit;
int oldval = (w & mask) >> field->lo_bit;
int newbits = (newval << field->lo_bit) & mask;
w = (w & ~mask) | newbits;
(void) li_write_ad1843_reg(lith, field->reg, w);
DBGXV("ad1843_write_bits(lith=0x%p, field->{%d %d %d}, val=0x%x) "
"returns 0x%x\n",
lith, field->reg, field->lo_bit, field->nbits, newval,
oldval);
return oldval;
}
/*
* ad1843_read_multi reads multiple bitfields from the same AD1843
* register. It uses a single read cycle to do it. (Reading the
* ad1843 requires 256 bit times at 12.288 MHz, or nearly 20
* microseconds.)
*
* Called ike this.
*
* ad1843_read_multi(lith, nfields,
* &ad1843_FIELD1, &val1,
* &ad1843_FIELD2, &val2, ...);
*/
static void ad1843_read_multi(lithium_t *lith, int argcount, ...)
{
va_list ap;
const ad1843_bitfield_t *fp;
int w = 0, mask, *value, reg = -1;
va_start(ap, argcount);
while (--argcount >= 0) {
fp = va_arg(ap, const ad1843_bitfield_t *);
value = va_arg(ap, int *);
if (reg == -1) {
reg = fp->reg;
w = li_read_ad1843_reg(lith, reg);
}
ASSERT(reg == fp->reg);
mask = (1 << fp->nbits) - 1;
*value = w >> fp->lo_bit & mask;
}
va_end(ap);
}
/*
* ad1843_write_multi stores multiple bitfields into the same AD1843
* register. It uses one read and one write cycle to do it.
*
* Called like this.
*
* ad1843_write_multi(lith, nfields,
* &ad1843_FIELD1, val1,
* &ad1843_FIELF2, val2, ...);
*/
static void ad1843_write_multi(lithium_t *lith, int argcount, ...)
{
va_list ap;
int reg;
const ad1843_bitfield_t *fp;
int value;
int w, m, mask, bits;
mask = 0;
bits = 0;
reg = -1;
va_start(ap, argcount);
while (--argcount >= 0) {
fp = va_arg(ap, const ad1843_bitfield_t *);
value = va_arg(ap, int);
if (reg == -1)
reg = fp->reg;
ASSERT(fp->reg == reg);
m = ((1 << fp->nbits) - 1) << fp->lo_bit;
mask |= m;
bits |= (value << fp->lo_bit) & m;
}
va_end(ap);
ASSERT(!(bits & ~mask));
if (~mask & 0xFFFF)
w = li_read_ad1843_reg(lith, reg);
else
w = 0;
w = (w & ~mask) | bits;
(void) li_write_ad1843_reg(lith, reg, w);
}
/*
* ad1843_get_gain reads the specified register and extracts the gain value
* using the supplied gain type. It returns the gain in OSS format.
*/
static int ad1843_get_gain(lithium_t *lith, const ad1843_gain_t *gp)
{
int lg, rg;
unsigned short mask = (1 << gp->lfield->nbits) - 1;
ad1843_read_multi(lith, 2, gp->lfield, &lg, gp->rfield, &rg);
if (gp->negative) {
lg = mask - lg;
rg = mask - rg;
}
lg = (lg * 100 + (mask >> 1)) / mask;
rg = (rg * 100 + (mask >> 1)) / mask;
return lg << 0 | rg << 8;
}
/*
* Set an audio channel's gain. Converts from OSS format to AD1843's
* format.
*
* Returns the new gain, which may be lower than the old gain.
*/
static int ad1843_set_gain(lithium_t *lith,
const ad1843_gain_t *gp,
int newval)
{
unsigned short mask = (1 << gp->lfield->nbits) - 1;
int lg = newval >> 0 & 0xFF;
int rg = newval >> 8;
if (lg < 0 || lg > 100 || rg < 0 || rg > 100)
return -EINVAL;
lg = (lg * mask + (mask >> 1)) / 100;
rg = (rg * mask + (mask >> 1)) / 100;
if (gp->negative) {
lg = mask - lg;
rg = mask - rg;
}
ad1843_write_multi(lith, 2, gp->lfield, lg, gp->rfield, rg);
return ad1843_get_gain(lith, gp);
}
/* Returns the current recording source, in OSS format. */
static int ad1843_get_recsrc(lithium_t *lith)
{
int ls = ad1843_read_bits(lith, &ad1843_LSS);
switch (ls) {
case 1:
return SOUND_MASK_MIC;
case 2:
return SOUND_MASK_LINE;
case 3:
return SOUND_MASK_CD;
case 6:
return SOUND_MASK_PCM;
default:
ASSERT(0);
return -1;
}
}
/*
* Enable/disable digital resample mode in the AD1843.
*
* The AD1843 requires that ADL, ADR, DA1 and DA2 be powered down
* while switching modes. So we save DA1's state (DA2's state is not
* interesting), power them down, switch into/out of resample mode,
* power them up, and restore state.
*
* This will cause audible glitches if D/A or A/D is going on, so the
* driver disallows that (in mixer_write_ioctl()).
*
* The open question is, is this worth doing? I'm leaving it in,
* because it's written, but...
*/
static void ad1843_set_resample_mode(lithium_t *lith, int onoff)
{
/* Save DA1 mute and gain (addr 9 is DA1 analog gain/attenuation) */
int save_da1 = li_read_ad1843_reg(lith, 9);
/* Power down A/D and D/A. */
ad1843_write_multi(lith, 4,
&ad1843_DA1EN, 0,
&ad1843_DA2EN, 0,
&ad1843_ADLEN, 0,
&ad1843_ADREN, 0);
/* Switch mode */
ASSERT(onoff == 0 || onoff == 1);
ad1843_write_bits(lith, &ad1843_DRSFLT, onoff);
/* Power up A/D and D/A. */
ad1843_write_multi(lith, 3,
&ad1843_DA1EN, 1,
&ad1843_ADLEN, 1,
&ad1843_ADREN, 1);
/* Restore DA1 mute and gain. */
li_write_ad1843_reg(lith, 9, save_da1);
}
/*
* Set recording source. Arg newsrc specifies an OSS channel mask.
*
* The complication is that when we switch into/out of loopback mode
* (i.e., src = SOUND_MASK_PCM), we change the AD1843 into/out of
* digital resampling mode.
*
* Returns newsrc on success, -errno on failure.
*/
static int ad1843_set_recsrc(lithium_t *lith, int newsrc)
{
int bits;
int oldbits;
switch (newsrc) {
case SOUND_MASK_PCM:
bits = 6;
break;
case SOUND_MASK_MIC:
bits = 1;
break;
case SOUND_MASK_LINE:
bits = 2;
break;
case SOUND_MASK_CD:
bits = 3;
break;
default:
return -EINVAL;
}
oldbits = ad1843_read_bits(lith, &ad1843_LSS);
if (newsrc == SOUND_MASK_PCM && oldbits != 6) {
DBGP("enabling digital resample mode\n");
ad1843_set_resample_mode(lith, 1);
ad1843_write_multi(lith, 2,
&ad1843_DAADL, 2,
&ad1843_DAADR, 2);
} else if (newsrc != SOUND_MASK_PCM && oldbits == 6) {
DBGP("disabling digital resample mode\n");
ad1843_set_resample_mode(lith, 0);
ad1843_write_multi(lith, 2,
&ad1843_DAADL, 0,
&ad1843_DAADR, 0);
}
ad1843_write_multi(lith, 2, &ad1843_LSS, bits, &ad1843_RSS, bits);
return newsrc;
}
/*
* Return current output sources, in OSS format.
*/
static int ad1843_get_outsrc(lithium_t *lith)
{
int pcm, line, mic, cd;
pcm = ad1843_read_bits(lith, &ad1843_LDA1GM) ? 0 : SOUND_MASK_PCM;
line = ad1843_read_bits(lith, &ad1843_LX1MM) ? 0 : SOUND_MASK_LINE;
cd = ad1843_read_bits(lith, &ad1843_LX2MM) ? 0 : SOUND_MASK_CD;
mic = ad1843_read_bits(lith, &ad1843_LMCMM) ? 0 : SOUND_MASK_MIC;
return pcm | line | cd | mic;
}
/*
* Set output sources. Arg is a mask of active sources in OSS format.
*
* Returns source mask on success, -errno on failure.
*/
static int ad1843_set_outsrc(lithium_t *lith, int mask)
{
int pcm, line, mic, cd;
if (mask & ~(SOUND_MASK_PCM | SOUND_MASK_LINE |
SOUND_MASK_CD | SOUND_MASK_MIC))
return -EINVAL;
pcm = (mask & SOUND_MASK_PCM) ? 0 : 1;
line = (mask & SOUND_MASK_LINE) ? 0 : 1;
mic = (mask & SOUND_MASK_MIC) ? 0 : 1;
cd = (mask & SOUND_MASK_CD) ? 0 : 1;
ad1843_write_multi(lith, 2, &ad1843_LDA1GM, pcm, &ad1843_RDA1GM, pcm);
ad1843_write_multi(lith, 2, &ad1843_LX1MM, line, &ad1843_RX1MM, line);
ad1843_write_multi(lith, 2, &ad1843_LX2MM, cd, &ad1843_RX2MM, cd);
ad1843_write_multi(lith, 2, &ad1843_LMCMM, mic, &ad1843_RMCMM, mic);
return mask;
}
/* Setup ad1843 for D/A conversion. */
static void ad1843_setup_dac(lithium_t *lith,
int framerate,
int fmt,
int channels)
{
int ad_fmt = 0, ad_mode = 0;
DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n",
lith, framerate, fmt, channels);
switch (fmt) {
case AFMT_S8: ad_fmt = 1; break;
case AFMT_U8: ad_fmt = 1; break;
case AFMT_S16_LE: ad_fmt = 1; break;
case AFMT_MU_LAW: ad_fmt = 2; break;
case AFMT_A_LAW: ad_fmt = 3; break;
default: ASSERT(0);
}
switch (channels) {
case 2: ad_mode = 0; break;
case 1: ad_mode = 1; break;
default: ASSERT(0);
}
DBGPV("ad_mode = %d, ad_fmt = %d\n", ad_mode, ad_fmt);
ASSERT(framerate >= 4000 && framerate <= 49000);
ad1843_write_bits(lith, &ad1843_C1C, framerate);
ad1843_write_multi(lith, 2,
&ad1843_DA1SM, ad_mode, &ad1843_DA1F, ad_fmt);
}
static void ad1843_shutdown_dac(lithium_t *lith)
{
ad1843_write_bits(lith, &ad1843_DA1F, 1);
}
static void ad1843_setup_adc(lithium_t *lith, int framerate, int fmt, int channels)
{
int da_fmt = 0;
DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n",
lith, framerate, fmt, channels);
switch (fmt) {
case AFMT_S8: da_fmt = 1; break;
case AFMT_U8: da_fmt = 1; break;
case AFMT_S16_LE: da_fmt = 1; break;
case AFMT_MU_LAW: da_fmt = 2; break;
case AFMT_A_LAW: da_fmt = 3; break;
default: ASSERT(0);
}
DBGPV("da_fmt = %d\n", da_fmt);
ASSERT(framerate >= 4000 && framerate <= 49000);
ad1843_write_bits(lith, &ad1843_C2C, framerate);
ad1843_write_multi(lith, 2,
&ad1843_ADLF, da_fmt, &ad1843_ADRF, da_fmt);
}
static void ad1843_shutdown_adc(lithium_t *lith)
{
/* nothing to do */
}
/*
* Fully initialize the ad1843. As described in the AD1843 data
* sheet, section "START-UP SEQUENCE". The numbered comments are
* subsection headings from the data sheet. See the data sheet, pages
* 52-54, for more info.
*
* return 0 on success, -errno on failure. */
static int __init ad1843_init(lithium_t *lith)
{
unsigned long later;
int err;
err = li_init(lith);
if (err)
return err;
if (ad1843_read_bits(lith, &ad1843_INIT) != 0) {
printk(KERN_ERR "vwsnd sound: AD1843 won't initialize\n");
return -EIO;
}
ad1843_write_bits(lith, &ad1843_SCF, 1);
/* 4. Put the conversion resources into standby. */
ad1843_write_bits(lith, &ad1843_PDNI, 0);
later = jiffies + HZ / 2; /* roughly half a second */
DBGDO(shut_up++);
while (ad1843_read_bits(lith, &ad1843_PDNO)) {
if (time_after(jiffies, later)) {
printk(KERN_ERR
"vwsnd audio: AD1843 won't power up\n");
return -EIO;
}
schedule();
}
DBGDO(shut_up--);
/* 5. Power up the clock generators and enable clock output pins. */
ad1843_write_multi(lith, 2, &ad1843_C1EN, 1, &ad1843_C2EN, 1);
/* 6. Configure conversion resources while they are in standby. */
/* DAC1 uses clock 1 as source, ADC uses clock 2. Always. */
ad1843_write_multi(lith, 3,
&ad1843_DA1C, 1,
&ad1843_ADLC, 2,
&ad1843_ADRC, 2);
/* 7. Enable conversion resources. */
ad1843_write_bits(lith, &ad1843_ADTLK, 1);
ad1843_write_multi(lith, 5,
&ad1843_ANAEN, 1,
&ad1843_AAMEN, 1,
&ad1843_DA1EN, 1,
&ad1843_ADLEN, 1,
&ad1843_ADREN, 1);
/* 8. Configure conversion resources while they are enabled. */
ad1843_write_bits(lith, &ad1843_DA1C, 1);
/* Unmute all channels. */
ad1843_set_outsrc(lith,
(SOUND_MASK_PCM | SOUND_MASK_LINE |
SOUND_MASK_MIC | SOUND_MASK_CD));
ad1843_write_multi(lith, 2, &ad1843_LDA1AM, 0, &ad1843_RDA1AM, 0);
/* Set default recording source to Line In and set
* mic gain to +20 dB.
*/
ad1843_set_recsrc(lith, SOUND_MASK_LINE);
ad1843_write_multi(lith, 2, &ad1843_LMGE, 1, &ad1843_RMGE, 1);
/* Set Speaker Out level to +/- 4V and unmute it. */
ad1843_write_multi(lith, 2, &ad1843_HPOS, 1, &ad1843_HPOM, 0);
return 0;
}
/*****************************************************************************/
/* PCM I/O */
#define READ_INTR_MASK (LI_INTR_COMM1_TRIG | LI_INTR_COMM1_OVERFLOW)
#define WRITE_INTR_MASK (LI_INTR_COMM2_TRIG | LI_INTR_COMM2_UNDERFLOW)
typedef enum vwsnd_port_swstate { /* software state */
SW_OFF,
SW_INITIAL,
SW_RUN,
SW_DRAIN,
} vwsnd_port_swstate_t;
typedef enum vwsnd_port_hwstate { /* hardware state */
HW_STOPPED,
HW_RUNNING,
} vwsnd_port_hwstate_t;
/*
* These flags are read by ISR, but only written at baseline.
*/
typedef enum vwsnd_port_flags {
DISABLED = 1 << 0,
ERFLOWN = 1 << 1, /* overflown or underflown */
HW_BUSY = 1 << 2,
} vwsnd_port_flags_t;
/*
* vwsnd_port is the per-port data structure. Each device has two
* ports, one for input and one for output.
*
* Locking:
*
* port->lock protects: hwstate, flags, swb_[iu]_avail.
*
* devc->io_mutex protects: swstate, sw_*, swb_[iu]_idx.
*
* everything else is only written by open/release or
* pcm_{setup,shutdown}(), which are serialized by a
* combination of devc->open_mutex and devc->io_mutex.
*/
typedef struct vwsnd_port {
spinlock_t lock;
wait_queue_head_t queue;
vwsnd_port_swstate_t swstate;
vwsnd_port_hwstate_t hwstate;
vwsnd_port_flags_t flags;
int sw_channels;
int sw_samplefmt;
int sw_framerate;
int sample_size;
int frame_size;
unsigned int zero_word; /* zero for the sample format */
int sw_fragshift;
int sw_fragcount;
int sw_subdivshift;
unsigned int hw_fragshift;
unsigned int hw_fragsize;
unsigned int hw_fragcount;
int hwbuf_size;
unsigned long hwbuf_paddr;
unsigned long hwbuf_vaddr;
void * hwbuf; /* hwbuf == hwbuf_vaddr */
int hwbuf_max; /* max bytes to preload */
void * swbuf;
unsigned int swbuf_size; /* size in bytes */
unsigned int swb_u_idx; /* index of next user byte */
unsigned int swb_i_idx; /* index of next intr byte */
unsigned int swb_u_avail; /* # bytes avail to user */
unsigned int swb_i_avail; /* # bytes avail to intr */
dma_chan_t chan;
/* Accounting */
int byte_count;
int frag_count;
int MSC_offset;
} vwsnd_port_t;
/* vwsnd_dev is the per-device data structure. */
typedef struct vwsnd_dev {
struct vwsnd_dev *next_dev;
int audio_minor; /* minor number of audio device */
int mixer_minor; /* minor number of mixer device */
struct mutex open_mutex;
struct mutex io_mutex;
struct mutex mix_mutex;
mode_t open_mode;
wait_queue_head_t open_wait;
lithium_t lith;
vwsnd_port_t rport;
vwsnd_port_t wport;
} vwsnd_dev_t;
static vwsnd_dev_t *vwsnd_dev_list; /* linked list of all devices */
static atomic_t vwsnd_use_count = ATOMIC_INIT(0);
# define INC_USE_COUNT (atomic_inc(&vwsnd_use_count))
# define DEC_USE_COUNT (atomic_dec(&vwsnd_use_count))
# define IN_USE (atomic_read(&vwsnd_use_count) != 0)
/*
* Lithium can only DMA multiples of 32 bytes. Its DMA buffer may
* be up to 8 Kb. This driver always uses 8 Kb.
*
* Memory bug workaround -- I'm not sure what's going on here, but
* somehow pcm_copy_out() was triggering segv's going on to the next
* page of the hw buffer. So, I make the hw buffer one size bigger
* than we actually use. That way, the following page is allocated
* and mapped, and no error. I suspect that something is broken
* in Cobalt, but haven't really investigated. HBO is the actual
* size of the buffer, and HWBUF_ORDER is what we allocate.
*/
#define HWBUF_SHIFT 13
#define HWBUF_SIZE (1 << HWBUF_SHIFT)
# define HBO (HWBUF_SHIFT > PAGE_SHIFT ? HWBUF_SHIFT - PAGE_SHIFT : 0)
# define HWBUF_ORDER (HBO + 1) /* next size bigger */
#define MIN_SPEED 4000
#define MAX_SPEED 49000
#define MIN_FRAGSHIFT (DMACHUNK_SHIFT + 1)
#define MAX_FRAGSHIFT (PAGE_SHIFT)
#define MIN_FRAGSIZE (1 << MIN_FRAGSHIFT)
#define MAX_FRAGSIZE (1 << MAX_FRAGSHIFT)
#define MIN_FRAGCOUNT(fragsize) 3
#define MAX_FRAGCOUNT(fragsize) (32 * PAGE_SIZE / (fragsize))
#define DEFAULT_FRAGSHIFT 12
#define DEFAULT_FRAGCOUNT 16
#define DEFAULT_SUBDIVSHIFT 0
/*
* The software buffer (swbuf) is a ring buffer shared between user
* level and interrupt level. Each level owns some of the bytes in
* the buffer, and may give bytes away by calling swb_inc_{u,i}().
* User level calls _u for user, and interrupt level calls _i for
* interrupt.
*
* port->swb_{u,i}_avail is the number of bytes available to that level.
*
* port->swb_{u,i}_idx is the index of the first available byte in the
* buffer.
*
* Each level calls swb_inc_{u,i}() to atomically increment its index,
* recalculate the number of bytes available for both sides, and
* return the number of bytes available. Since each side can only
* give away bytes, the other side can only increase the number of
* bytes available to this side. Each side updates its own index
* variable, swb_{u,i}_idx, so no lock is needed to read it.
*
* To query the number of bytes available, call swb_inc_{u,i} with an
* increment of zero.
*/
static __inline__ unsigned int __swb_inc_u(vwsnd_port_t *port, int inc)
{
if (inc) {
port->swb_u_idx += inc;
port->swb_u_idx %= port->swbuf_size;
port->swb_u_avail -= inc;
port->swb_i_avail += inc;
}
return port->swb_u_avail;
}
static __inline__ unsigned int swb_inc_u(vwsnd_port_t *port, int inc)
{
unsigned long flags;
unsigned int ret;
spin_lock_irqsave(&port->lock, flags);
{
ret = __swb_inc_u(port, inc);
}
spin_unlock_irqrestore(&port->lock, flags);
return ret;
}
static __inline__ unsigned int __swb_inc_i(vwsnd_port_t *port, int inc)
{
if (inc) {
port->swb_i_idx += inc;
port->swb_i_idx %= port->swbuf_size;
port->swb_i_avail -= inc;
port->swb_u_avail += inc;
}
return port->swb_i_avail;
}
static __inline__ unsigned int swb_inc_i(vwsnd_port_t *port, int inc)
{
unsigned long flags;
unsigned int ret;
spin_lock_irqsave(&port->lock, flags);
{
ret = __swb_inc_i(port, inc);
}
spin_unlock_irqrestore(&port->lock, flags);
return ret;
}
/*
* pcm_setup - this routine initializes all port state after
* mode-setting ioctls have been done, but before the first I/O is
* done.
*
* Locking: called with devc->io_mutex held.
*
* Returns 0 on success, -errno on failure.
*/
static int pcm_setup(vwsnd_dev_t *devc,
vwsnd_port_t *rport,
vwsnd_port_t *wport)
{
vwsnd_port_t *aport = rport ? rport : wport;
int sample_size;
unsigned int zero_word;
DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc, rport, wport);
ASSERT(aport != NULL);
if (aport->swbuf != NULL)
return 0;
switch (aport->sw_samplefmt) {
case AFMT_MU_LAW:
sample_size = 1;
zero_word = 0xFFFFFFFF ^ 0x80808080;
break;
case AFMT_A_LAW:
sample_size = 1;
zero_word = 0xD5D5D5D5 ^ 0x80808080;
break;
case AFMT_U8:
sample_size = 1;
zero_word = 0x80808080;
break;
case AFMT_S8:
sample_size = 1;
zero_word = 0x00000000;
break;
case AFMT_S16_LE:
sample_size = 2;
zero_word = 0x00000000;
break;
default:
sample_size = 0; /* prevent compiler warning */
zero_word = 0;
ASSERT(0);
}
aport->sample_size = sample_size;
aport->zero_word = zero_word;
aport->frame_size = aport->sw_channels * aport->sample_size;
aport->hw_fragshift = aport->sw_fragshift - aport->sw_subdivshift;
aport->hw_fragsize = 1 << aport->hw_fragshift;
aport->hw_fragcount = aport->sw_fragcount << aport->sw_subdivshift;
ASSERT(aport->hw_fragsize >= MIN_FRAGSIZE);
ASSERT(aport->hw_fragsize <= MAX_FRAGSIZE);
ASSERT(aport->hw_fragcount >= MIN_FRAGCOUNT(aport->hw_fragsize));
ASSERT(aport->hw_fragcount <= MAX_FRAGCOUNT(aport->hw_fragsize));
if (rport) {
int hwfrags, swfrags;
rport->hwbuf_max = aport->hwbuf_size - DMACHUNK_SIZE;
hwfrags = rport->hwbuf_max >> aport->hw_fragshift;
swfrags = aport->hw_fragcount - hwfrags;
if (swfrags < 2)
swfrags = 2;
rport->swbuf_size = swfrags * aport->hw_fragsize;
DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags, swfrags);
DBGPV("read hwbuf_max = %d, swbuf_size = %d\n",
rport->hwbuf_max, rport->swbuf_size);
}
if (wport) {
int hwfrags, swfrags;
int total_bytes = aport->hw_fragcount * aport->hw_fragsize;
wport->hwbuf_max = aport->hwbuf_size - DMACHUNK_SIZE;
if (wport->hwbuf_max > total_bytes)
wport->hwbuf_max = total_bytes;
hwfrags = wport->hwbuf_max >> aport->hw_fragshift;
DBGPV("hwfrags = %d\n", hwfrags);
swfrags = aport->hw_fragcount - hwfrags;
if (swfrags < 2)
swfrags = 2;
wport->swbuf_size = swfrags * aport->hw_fragsize;
DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags, swfrags);
DBGPV("write hwbuf_max = %d, swbuf_size = %d\n",
wport->hwbuf_max, wport->swbuf_size);
}
aport->swb_u_idx = 0;
aport->swb_i_idx = 0;
aport->byte_count = 0;
/*
* Is this a Cobalt bug? We need to make this buffer extend
* one page further than we actually use -- somehow memcpy
* causes an exceptoin otherwise. I suspect there's a bug in
* Cobalt (or somewhere) where it's generating a fault on a
* speculative load or something. Obviously, I haven't taken
* the time to track it down.
*/
aport->swbuf = vmalloc(aport->swbuf_size + PAGE_SIZE);
if (!aport->swbuf)
return -ENOMEM;
if (rport && wport) {
ASSERT(aport == rport);
ASSERT(wport->swbuf == NULL);
/* One extra page - see comment above. */
wport->swbuf = vmalloc(aport->swbuf_size + PAGE_SIZE);
if (!wport->swbuf) {
vfree(aport->swbuf);
aport->swbuf = NULL;
return -ENOMEM;
}
wport->sample_size = rport->sample_size;
wport->zero_word = rport->zero_word;
wport->frame_size = rport->frame_size;
wport->hw_fragshift = rport->hw_fragshift;
wport->hw_fragsize = rport->hw_fragsize;
wport->hw_fragcount = rport->hw_fragcount;
wport->swbuf_size = rport->swbuf_size;
wport->hwbuf_max = rport->hwbuf_max;
wport->swb_u_idx = rport->swb_u_idx;
wport->swb_i_idx = rport->swb_i_idx;
wport->byte_count = rport->byte_count;
}
if (rport) {
rport->swb_u_avail = 0;
rport->swb_i_avail = rport->swbuf_size;
rport->swstate = SW_RUN;
li_setup_dma(&rport->chan,
&li_comm1,
&devc->lith,
rport->hwbuf_paddr,
HWBUF_SHIFT,
rport->hw_fragshift,
rport->sw_channels,
rport->sample_size);
ad1843_setup_adc(&devc->lith,
rport->sw_framerate,
rport->sw_samplefmt,
rport->sw_channels);
li_enable_interrupts(&devc->lith, READ_INTR_MASK);
if (!(rport->flags & DISABLED)) {
ustmsc_t ustmsc;
rport->hwstate = HW_RUNNING;
li_activate_dma(&rport->chan);
li_read_USTMSC(&rport->chan, &ustmsc);
rport->MSC_offset = ustmsc.msc;
}
}
if (wport) {
if (wport->hwbuf_max > wport->swbuf_size)
wport->hwbuf_max = wport->swbuf_size;
wport->flags &= ~ERFLOWN;
wport->swb_u_avail = wport->swbuf_size;
wport->swb_i_avail = 0;
wport->swstate = SW_RUN;
li_setup_dma(&wport->chan,
&li_comm2,
&devc->lith,
wport->hwbuf_paddr,
HWBUF_SHIFT,
wport->hw_fragshift,
wport->sw_channels,
wport->sample_size);
ad1843_setup_dac(&devc->lith,
wport->sw_framerate,
wport->sw_samplefmt,
wport->sw_channels);
li_enable_interrupts(&devc->lith, WRITE_INTR_MASK);
}
DBGRV();
return 0;
}
/*
* pcm_shutdown_port - shut down one port (direction) for PCM I/O.
* Only called from pcm_shutdown.
*/
static void pcm_shutdown_port(vwsnd_dev_t *devc,
vwsnd_port_t *aport,
unsigned int mask)
{
unsigned long flags;
vwsnd_port_hwstate_t hwstate;
DECLARE_WAITQUEUE(wait, current);
aport->swstate = SW_INITIAL;
add_wait_queue(&aport->queue, &wait);
while (1) {
set_current_state(TASK_UNINTERRUPTIBLE);
spin_lock_irqsave(&aport->lock, flags);
{
hwstate = aport->hwstate;
}
spin_unlock_irqrestore(&aport->lock, flags);
if (hwstate == HW_STOPPED)
break;
schedule();
}
current->state = TASK_RUNNING;
remove_wait_queue(&aport->queue, &wait);
li_disable_interrupts(&devc->lith, mask);
if (aport == &devc->rport)
ad1843_shutdown_adc(&devc->lith);
else /* aport == &devc->wport) */
ad1843_shutdown_dac(&devc->lith);
li_shutdown_dma(&aport->chan);
vfree(aport->swbuf);
aport->swbuf = NULL;
aport->byte_count = 0;
}
/*
* pcm_shutdown undoes what pcm_setup did.
* Also sets the ports' swstate to newstate.
*/
static void pcm_shutdown(vwsnd_dev_t *devc,
vwsnd_port_t *rport,
vwsnd_port_t *wport)
{
DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc, rport, wport);
if (rport && rport->swbuf) {
DBGPV("shutting down rport\n");
pcm_shutdown_port(devc, rport, READ_INTR_MASK);
}
if (wport && wport->swbuf) {
DBGPV("shutting down wport\n");
pcm_shutdown_port(devc, wport, WRITE_INTR_MASK);
}
DBGRV();
}
static void pcm_copy_in(vwsnd_port_t *rport, int swidx, int hwidx, int nb)
{
char *src = rport->hwbuf + hwidx;
char *dst = rport->swbuf + swidx;
int fmt = rport->sw_samplefmt;
DBGPV("swidx = %d, hwidx = %d\n", swidx, hwidx);
ASSERT(rport->hwbuf != NULL);
ASSERT(rport->swbuf != NULL);
ASSERT(nb > 0 && (nb % 32) == 0);
ASSERT(swidx % 32 == 0 && hwidx % 32 == 0);
ASSERT(swidx >= 0 && swidx + nb <= rport->swbuf_size);
ASSERT(hwidx >= 0 && hwidx + nb <= rport->hwbuf_size);
if (fmt == AFMT_MU_LAW || fmt == AFMT_A_LAW || fmt == AFMT_S8) {
/* See Sample Format Notes above. */
char *end = src + nb;
while (src < end)
*dst++ = *src++ ^ 0x80;
} else
memcpy(dst, src, nb);
}
static void pcm_copy_out(vwsnd_port_t *wport, int swidx, int hwidx, int nb)
{
char *src = wport->swbuf + swidx;
char *dst = wport->hwbuf + hwidx;
int fmt = wport->sw_samplefmt;
ASSERT(nb > 0 && (nb % 32) == 0);
ASSERT(wport->hwbuf != NULL);
ASSERT(wport->swbuf != NULL);
ASSERT(swidx % 32 == 0 && hwidx % 32 == 0);
ASSERT(swidx >= 0 && swidx + nb <= wport->swbuf_size);
ASSERT(hwidx >= 0 && hwidx + nb <= wport->hwbuf_size);
if (fmt == AFMT_MU_LAW || fmt == AFMT_A_LAW || fmt == AFMT_S8) {
/* See Sample Format Notes above. */
char *end = src + nb;
while (src < end)
*dst++ = *src++ ^ 0x80;
} else
memcpy(dst, src, nb);
}
/*
* pcm_output() is called both from baselevel and from interrupt level.
* This is where audio frames are copied into the hardware-accessible
* ring buffer.
*
* Locking note: The part of this routine that figures out what to do
* holds wport->lock. The longer part releases wport->lock, but sets
* wport->flags & HW_BUSY. Afterward, it reacquires wport->lock, and
* checks for more work to do.
*
* If another thread calls pcm_output() while HW_BUSY is set, it
* returns immediately, knowing that the thread that set HW_BUSY will
* look for more work to do before returning.
*
* This has the advantage that port->lock is held for several short
* periods instead of one long period. Also, when pcm_output is
* called from base level, it reenables interrupts.
*/
static void pcm_output(vwsnd_dev_t *devc, int erflown, int nb)
{
vwsnd_port_t *wport = &devc->wport;
const int hwmax = wport->hwbuf_max;
const int hwsize = wport->hwbuf_size;
const int swsize = wport->swbuf_size;
const int fragsize = wport->hw_fragsize;
unsigned long iflags;
DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc, erflown, nb);
spin_lock_irqsave(&wport->lock, iflags);
if (erflown)
wport->flags |= ERFLOWN;
(void) __swb_inc_u(wport, nb);
if (wport->flags & HW_BUSY) {
spin_unlock_irqrestore(&wport->lock, iflags);
DBGPV("returning: HW BUSY\n");
return;
}
if (wport->flags & DISABLED) {
spin_unlock_irqrestore(&wport->lock, iflags);
DBGPV("returning: DISABLED\n");
return;
}
wport->flags |= HW_BUSY;
while (1) {
int swptr, hwptr, hw_avail, sw_avail, swidx;
vwsnd_port_hwstate_t hwstate = wport->hwstate;
vwsnd_port_swstate_t swstate = wport->swstate;
int hw_unavail;
ustmsc_t ustmsc;
hwptr = li_read_hwptr(&wport->chan);
swptr = li_read_swptr(&wport->chan);
hw_unavail = (swptr - hwptr + hwsize) % hwsize;
hw_avail = (hwmax - hw_unavail) & -fragsize;
sw_avail = wport->swb_i_avail & -fragsize;
if (sw_avail && swstate == SW_RUN) {
if (wport->flags & ERFLOWN) {
wport->flags &= ~ERFLOWN;
}
} else if (swstate == SW_INITIAL ||
swstate == SW_OFF ||
(swstate == SW_DRAIN &&
!sw_avail &&
(wport->flags & ERFLOWN))) {
DBGP("stopping. hwstate = %d\n", hwstate);
if (hwstate != HW_STOPPED) {
li_deactivate_dma(&wport->chan);
wport->hwstate = HW_STOPPED;
}
wake_up(&wport->queue);
break;
}
if (!sw_avail || !hw_avail)
break;
spin_unlock_irqrestore(&wport->lock, iflags);
/*
* We gave up the port lock, but we have the HW_BUSY flag.
* Proceed without accessing any nonlocal state.
* Do not exit the loop -- must check for more work.
*/
swidx = wport->swb_i_idx;
nb = hw_avail;
if (nb > sw_avail)
nb = sw_avail;
if (nb > hwsize - swptr)
nb = hwsize - swptr; /* don't overflow hwbuf */
if (nb > swsize - swidx)
nb = swsize - swidx; /* don't overflow swbuf */
ASSERT(nb > 0);
if (nb % fragsize) {
DBGP("nb = %d, fragsize = %d\n", nb, fragsize);
DBGP("hw_avail = %d\n", hw_avail);
DBGP("sw_avail = %d\n", sw_avail);
DBGP("hwsize = %d, swptr = %d\n", hwsize, swptr);
DBGP("swsize = %d, swidx = %d\n", swsize, swidx);
}
ASSERT(!(nb % fragsize));
DBGPV("copying swb[%d..%d] to hwb[%d..%d]\n",
swidx, swidx + nb, swptr, swptr + nb);
pcm_copy_out(wport, swidx, swptr, nb);
li_write_swptr(&wport->chan, (swptr + nb) % hwsize);
spin_lock_irqsave(&wport->lock, iflags);
if (hwstate == HW_STOPPED) {
DBGPV("starting\n");
li_activate_dma(&wport->chan);
wport->hwstate = HW_RUNNING;
li_read_USTMSC(&wport->chan, &ustmsc);
ASSERT(wport->byte_count % wport->frame_size == 0);
wport->MSC_offset = ustmsc.msc - wport->byte_count / wport->frame_size;
}
__swb_inc_i(wport, nb);
wport->byte_count += nb;
wport->frag_count += nb / fragsize;
ASSERT(nb % fragsize == 0);
wake_up(&wport->queue);
}
wport->flags &= ~HW_BUSY;
spin_unlock_irqrestore(&wport->lock, iflags);
DBGRV();
}
/*
* pcm_input() is called both from baselevel and from interrupt level.
* This is where audio frames are copied out of the hardware-accessible
* ring buffer.
*
* Locking note: The part of this routine that figures out what to do
* holds rport->lock. The longer part releases rport->lock, but sets
* rport->flags & HW_BUSY. Afterward, it reacquires rport->lock, and
* checks for more work to do.
*
* If another thread calls pcm_input() while HW_BUSY is set, it
* returns immediately, knowing that the thread that set HW_BUSY will
* look for more work to do before returning.
*
* This has the advantage that port->lock is held for several short
* periods instead of one long period. Also, when pcm_input is
* called from base level, it reenables interrupts.
*/
static void pcm_input(vwsnd_dev_t *devc, int erflown, int nb)
{
vwsnd_port_t *rport = &devc->rport;
const int hwmax = rport->hwbuf_max;
const int hwsize = rport->hwbuf_size;
const int swsize = rport->swbuf_size;
const int fragsize = rport->hw_fragsize;
unsigned long iflags;
DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc, erflown, nb);
spin_lock_irqsave(&rport->lock, iflags);
if (erflown)
rport->flags |= ERFLOWN;
(void) __swb_inc_u(rport, nb);
if (rport->flags & HW_BUSY || !rport->swbuf) {
spin_unlock_irqrestore(&rport->lock, iflags);
DBGPV("returning: HW BUSY or !swbuf\n");
return;
}
if (rport->flags & DISABLED) {
spin_unlock_irqrestore(&rport->lock, iflags);
DBGPV("returning: DISABLED\n");
return;
}
rport->flags |= HW_BUSY;
while (1) {
int swptr, hwptr, hw_avail, sw_avail, swidx;
vwsnd_port_hwstate_t hwstate = rport->hwstate;
vwsnd_port_swstate_t swstate = rport->swstate;
hwptr = li_read_hwptr(&rport->chan);
swptr = li_read_swptr(&rport->chan);
hw_avail = (hwptr - swptr + hwsize) % hwsize & -fragsize;
if (hw_avail > hwmax)
hw_avail = hwmax;
sw_avail = rport->swb_i_avail & -fragsize;
if (swstate != SW_RUN) {
DBGP("stopping. hwstate = %d\n", hwstate);
if (hwstate != HW_STOPPED) {
li_deactivate_dma(&rport->chan);
rport->hwstate = HW_STOPPED;
}
wake_up(&rport->queue);
break;
}
if (!sw_avail || !hw_avail)
break;
spin_unlock_irqrestore(&rport->lock, iflags);
/*
* We gave up the port lock, but we have the HW_BUSY flag.
* Proceed without accessing any nonlocal state.
* Do not exit the loop -- must check for more work.
*/
swidx = rport->swb_i_idx;
nb = hw_avail;
if (nb > sw_avail)
nb = sw_avail;
if (nb > hwsize - swptr)
nb = hwsize - swptr; /* don't overflow hwbuf */
if (nb > swsize - swidx)
nb = swsize - swidx; /* don't overflow swbuf */
ASSERT(nb > 0);
if (nb % fragsize) {
DBGP("nb = %d, fragsize = %d\n", nb, fragsize);
DBGP("hw_avail = %d\n", hw_avail);
DBGP("sw_avail = %d\n", sw_avail);
DBGP("hwsize = %d, swptr = %d\n", hwsize, swptr);
DBGP("swsize = %d, swidx = %d\n", swsize, swidx);
}
ASSERT(!(nb % fragsize));
DBGPV("copying hwb[%d..%d] to swb[%d..%d]\n",
swptr, swptr + nb, swidx, swidx + nb);
pcm_copy_in(rport, swidx, swptr, nb);
li_write_swptr(&rport->chan, (swptr + nb) % hwsize);
spin_lock_irqsave(&rport->lock, iflags);
__swb_inc_i(rport, nb);
rport->byte_count += nb;
rport->frag_count += nb / fragsize;
ASSERT(nb % fragsize == 0);
wake_up(&rport->queue);
}
rport->flags &= ~HW_BUSY;
spin_unlock_irqrestore(&rport->lock, iflags);
DBGRV();
}
/*
* pcm_flush_frag() writes zero samples to fill the current fragment,
* then flushes it to the hardware.
*
* It is only meaningful to flush output, not input.
*/
static void pcm_flush_frag(vwsnd_dev_t *devc)
{
vwsnd_port_t *wport = &devc->wport;
DBGPV("swstate = %d\n", wport->swstate);
if (wport->swstate == SW_RUN) {
int idx = wport->swb_u_idx;
int end = (idx + wport->hw_fragsize - 1)
>> wport->hw_fragshift
<< wport->hw_fragshift;
int nb = end - idx;
DBGPV("clearing %d bytes\n", nb);
if (nb)
memset(wport->swbuf + idx,
(char) wport->zero_word,
nb);
wport->swstate = SW_DRAIN;
pcm_output(devc, 0, nb);
}
DBGRV();
}
/*
* Wait for output to drain. This sleeps uninterruptibly because
* there is nothing intelligent we can do if interrupted. This
* means the process will be delayed in responding to the signal.
*/
static void pcm_write_sync(vwsnd_dev_t *devc)
{
vwsnd_port_t *wport = &devc->wport;
DECLARE_WAITQUEUE(wait, current);
unsigned long flags;
vwsnd_port_hwstate_t hwstate;
DBGEV("(devc=0x%p)\n", devc);
add_wait_queue(&wport->queue, &wait);
while (1) {
set_current_state(TASK_UNINTERRUPTIBLE);
spin_lock_irqsave(&wport->lock, flags);
{
hwstate = wport->hwstate;
}
spin_unlock_irqrestore(&wport->lock, flags);
if (hwstate == HW_STOPPED)
break;
schedule();
}
current->state = TASK_RUNNING;
remove_wait_queue(&wport->queue, &wait);
DBGPV("swstate = %d, hwstate = %d\n", wport->swstate, wport->hwstate);
DBGRV();
}
/*****************************************************************************/
/* audio driver */
/*
* seek on an audio device always fails.
*/
static void vwsnd_audio_read_intr(vwsnd_dev_t *devc, unsigned int status)
{
int overflown = status & LI_INTR_COMM1_OVERFLOW;
if (status & READ_INTR_MASK)
pcm_input(devc, overflown, 0);
}
static void vwsnd_audio_write_intr(vwsnd_dev_t *devc, unsigned int status)
{
int underflown = status & LI_INTR_COMM2_UNDERFLOW;
if (status & WRITE_INTR_MASK)
pcm_output(devc, underflown, 0);
}
static irqreturn_t vwsnd_audio_intr(int irq, void *dev_id)
{
vwsnd_dev_t *devc = dev_id;
unsigned int status;
DBGEV("(irq=%d, dev_id=0x%p)\n", irq, dev_id);
status = li_get_clear_intr_status(&devc->lith);
vwsnd_audio_read_intr(devc, status);
vwsnd_audio_write_intr(devc, status);
return IRQ_HANDLED;
}
static ssize_t vwsnd_audio_do_read(struct file *file,
char *buffer,
size_t count,
loff_t *ppos)
{
vwsnd_dev_t *devc = file->private_data;
vwsnd_port_t *rport = ((file->f_mode & FMODE_READ) ?
&devc->rport : NULL);
int ret, nb;
DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n",
file, buffer, count, ppos);
if (!rport)
return -EINVAL;
if (rport->swbuf == NULL) {
vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ?
&devc->wport : NULL;
ret = pcm_setup(devc, rport, wport);
if (ret < 0)
return ret;
}
if (!access_ok(VERIFY_READ, buffer, count))
return -EFAULT;
ret = 0;
while (count) {
DECLARE_WAITQUEUE(wait, current);
add_wait_queue(&rport->queue, &wait);
while ((nb = swb_inc_u(rport, 0)) == 0) {
DBGPV("blocking\n");
set_current_state(TASK_INTERRUPTIBLE);
if (rport->flags & DISABLED ||
file->f_flags & O_NONBLOCK) {
current->state = TASK_RUNNING;
remove_wait_queue(&rport->queue, &wait);
return ret ? ret : -EAGAIN;
}
schedule();
if (signal_pending(current)) {
current->state = TASK_RUNNING;
remove_wait_queue(&rport->queue, &wait);
return ret ? ret : -ERESTARTSYS;
}
}
current->state = TASK_RUNNING;
remove_wait_queue(&rport->queue, &wait);
pcm_input(devc, 0, 0);
/* nb bytes are available in userbuf. */
if (nb > count)
nb = count;
DBGPV("nb = %d\n", nb);
if (copy_to_user(buffer, rport->swbuf + rport->swb_u_idx, nb))
return -EFAULT;
(void) swb_inc_u(rport, nb);
buffer += nb;
count -= nb;
ret += nb;
}
DBGPV("returning %d\n", ret);
return ret;
}
static ssize_t vwsnd_audio_read(struct file *file,
char *buffer,
size_t count,
loff_t *ppos)
{
vwsnd_dev_t *devc = file->private_data;
ssize_t ret;
mutex_lock(&devc->io_mutex);
ret = vwsnd_audio_do_read(file, buffer, count, ppos);
mutex_unlock(&devc->io_mutex);
return ret;
}
static ssize_t vwsnd_audio_do_write(struct file *file,
const char *buffer,
size_t count,
loff_t *ppos)
{
vwsnd_dev_t *devc = file->private_data;
vwsnd_port_t *wport = ((file->f_mode & FMODE_WRITE) ?
&devc->wport : NULL);
int ret, nb;
DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n",
file, buffer, count, ppos);
if (!wport)
return -EINVAL;
if (wport->swbuf == NULL) {
vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ?
&devc->rport : NULL;
ret = pcm_setup(devc, rport, wport);
if (ret < 0)
return ret;
}
if (!access_ok(VERIFY_WRITE, buffer, count))
return -EFAULT;
ret = 0;
while (count) {
DECLARE_WAITQUEUE(wait, current);
add_wait_queue(&wport->queue, &wait);
while ((nb = swb_inc_u(wport, 0)) == 0) {
set_current_state(TASK_INTERRUPTIBLE);
if (wport->flags & DISABLED ||
file->f_flags & O_NONBLOCK) {
current->state = TASK_RUNNING;
remove_wait_queue(&wport->queue, &wait);
return ret ? ret : -EAGAIN;
}
schedule();
if (signal_pending(current)) {
current->state = TASK_RUNNING;
remove_wait_queue(&wport->queue, &wait);
return ret ? ret : -ERESTARTSYS;
}
}
current->state = TASK_RUNNING;
remove_wait_queue(&wport->queue, &wait);
/* nb bytes are available in userbuf. */
if (nb > count)
nb = count;
DBGPV("nb = %d\n", nb);
if (copy_from_user(wport->swbuf + wport->swb_u_idx, buffer, nb))
return -EFAULT;
pcm_output(devc, 0, nb);
buffer += nb;
count -= nb;
ret += nb;
}
DBGPV("returning %d\n", ret);
return ret;
}
static ssize_t vwsnd_audio_write(struct file *file,
const char *buffer,
size_t count,
loff_t *ppos)
{
vwsnd_dev_t *devc = file->private_data;
ssize_t ret;
mutex_lock(&devc->io_mutex);
ret = vwsnd_audio_do_write(file, buffer, count, ppos);
mutex_unlock(&devc->io_mutex);
return ret;
}
/* No kernel lock - fine */
static unsigned int vwsnd_audio_poll(struct file *file,
struct poll_table_struct *wait)
{
vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ?
&devc->rport : NULL;
vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ?
&devc->wport : NULL;
unsigned int mask = 0;
DBGEV("(file=0x%p, wait=0x%p)\n", file, wait);
ASSERT(rport || wport);
if (rport) {
poll_wait(file, &rport->queue, wait);
if (swb_inc_u(rport, 0))
mask |= (POLLIN | POLLRDNORM);
}
if (wport) {
poll_wait(file, &wport->queue, wait);
if (wport->swbuf == NULL || swb_inc_u(wport, 0))
mask |= (POLLOUT | POLLWRNORM);
}
DBGPV("returning 0x%x\n", mask);
return mask;
}
static int vwsnd_audio_do_ioctl(struct inode *inode,
struct file *file,
unsigned int cmd,
unsigned long arg)
{
vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ?
&devc->rport : NULL;
vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ?
&devc->wport : NULL;
vwsnd_port_t *aport = rport ? rport : wport;
struct audio_buf_info buf_info;
struct count_info info;
unsigned long flags;
int ival;
DBGEV("(inode=0x%p, file=0x%p, cmd=0x%x, arg=0x%lx)\n",
inode, file, cmd, arg);
switch (cmd) {
case OSS_GETVERSION: /* _SIOR ('M', 118, int) */
DBGX("OSS_GETVERSION\n");
ival = SOUND_VERSION;
return put_user(ival, (int *) arg);
case SNDCTL_DSP_GETCAPS: /* _SIOR ('P',15, int) */
DBGX("SNDCTL_DSP_GETCAPS\n");
ival = DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER;
return put_user(ival, (int *) arg);
case SNDCTL_DSP_GETFMTS: /* _SIOR ('P',11, int) */
DBGX("SNDCTL_DSP_GETFMTS\n");
ival = (AFMT_S16_LE | AFMT_MU_LAW | AFMT_A_LAW |
AFMT_U8 | AFMT_S8);
return put_user(ival, (int *) arg);
break;
case SOUND_PCM_READ_RATE: /* _SIOR ('P', 2, int) */
DBGX("SOUND_PCM_READ_RATE\n");
ival = aport->sw_framerate;
return put_user(ival, (int *) arg);
case SOUND_PCM_READ_CHANNELS: /* _SIOR ('P', 6, int) */
DBGX("SOUND_PCM_READ_CHANNELS\n");
ival = aport->sw_channels;
return put_user(ival, (int *) arg);
case SNDCTL_DSP_SPEED: /* _SIOWR('P', 2, int) */
if (get_user(ival, (int *) arg))
return -EFAULT;
DBGX("SNDCTL_DSP_SPEED %d\n", ival);
if (ival) {
if (aport->swstate != SW_INITIAL) {
DBGX("SNDCTL_DSP_SPEED failed: swstate = %d\n",
aport->swstate);
return -EINVAL;
}
if (ival < MIN_SPEED)
ival = MIN_SPEED;
if (ival > MAX_SPEED)
ival = MAX_SPEED;
if (rport)
rport->sw_framerate = ival;
if (wport)
wport->sw_framerate = ival;
} else
ival = aport->sw_framerate;
return put_user(ival, (int *) arg);
case SNDCTL_DSP_STEREO: /* _SIOWR('P', 3, int) */
if (get_user(ival, (int *) arg))
return -EFAULT;
DBGX("SNDCTL_DSP_STEREO %d\n", ival);
if (ival != 0 && ival != 1)
return -EINVAL;
if (aport->swstate != SW_INITIAL)
return -EINVAL;
if (rport)
rport->sw_channels = ival + 1;
if (wport)
wport->sw_channels = ival + 1;
return put_user(ival, (int *) arg);
case SNDCTL_DSP_CHANNELS: /* _SIOWR('P', 6, int) */
if (get_user(ival, (int *) arg))
return -EFAULT;
DBGX("SNDCTL_DSP_CHANNELS %d\n", ival);
if (ival != 1 && ival != 2)
return -EINVAL;
if (aport->swstate != SW_INITIAL)
return -EINVAL;
if (rport)
rport->sw_channels = ival;
if (wport)
wport->sw_channels = ival;
return put_user(ival, (int *) arg);
case SNDCTL_DSP_GETBLKSIZE: /* _SIOWR('P', 4, int) */
ival = pcm_setup(devc, rport, wport);
if (ival < 0) {
DBGX("SNDCTL_DSP_GETBLKSIZE failed, errno %d\n", ival);
return ival;
}
ival = 1 << aport->sw_fragshift;
DBGX("SNDCTL_DSP_GETBLKSIZE returning %d\n", ival);
return put_user(ival, (int *) arg);
case SNDCTL_DSP_SETFRAGMENT: /* _SIOWR('P',10, int) */
if (get_user(ival, (int *) arg))
return -EFAULT;
DBGX("SNDCTL_DSP_SETFRAGMENT %d:%d\n",
ival >> 16, ival & 0xFFFF);
if (aport->swstate != SW_INITIAL)
return -EINVAL;
{
int sw_fragshift = ival & 0xFFFF;
int sw_subdivshift = aport->sw_subdivshift;
int hw_fragshift = sw_fragshift - sw_subdivshift;
int sw_fragcount = (ival >> 16) & 0xFFFF;
int hw_fragsize;
if (hw_fragshift < MIN_FRAGSHIFT)
hw_fragshift = MIN_FRAGSHIFT;
if (hw_fragshift > MAX_FRAGSHIFT)
hw_fragshift = MAX_FRAGSHIFT;
sw_fragshift = hw_fragshift + aport->sw_subdivshift;
hw_fragsize = 1 << hw_fragshift;
if (sw_fragcount < MIN_FRAGCOUNT(hw_fragsize))
sw_fragcount = MIN_FRAGCOUNT(hw_fragsize);
if (sw_fragcount > MAX_FRAGCOUNT(hw_fragsize))
sw_fragcount = MAX_FRAGCOUNT(hw_fragsize);
DBGPV("sw_fragshift = %d\n", sw_fragshift);
DBGPV("rport = 0x%p, wport = 0x%p\n", rport, wport);
if (rport) {
rport->sw_fragshift = sw_fragshift;
rport->sw_fragcount = sw_fragcount;
}
if (wport) {
wport->sw_fragshift = sw_fragshift;
wport->sw_fragcount = sw_fragcount;
}
ival = sw_fragcount << 16 | sw_fragshift;
}
DBGX("SNDCTL_DSP_SETFRAGMENT returns %d:%d\n",
ival >> 16, ival & 0xFFFF);
return put_user(ival, (int *) arg);
case SNDCTL_DSP_SUBDIVIDE: /* _SIOWR('P', 9, int) */
if (get_user(ival, (int *) arg))
return -EFAULT;
DBGX("SNDCTL_DSP_SUBDIVIDE %d\n", ival);
if (aport->swstate != SW_INITIAL)
return -EINVAL;
{
int subdivshift;
int hw_fragshift, hw_fragsize, hw_fragcount;
switch (ival) {
case 1: subdivshift = 0; break;
case 2: subdivshift = 1; break;
case 4: subdivshift = 2; break;
default: return -EINVAL;
}
hw_fragshift = aport->sw_fragshift - subdivshift;
if (hw_fragshift < MIN_FRAGSHIFT ||
hw_fragshift > MAX_FRAGSHIFT)
return -EINVAL;
hw_fragsize = 1 << hw_fragshift;
hw_fragcount = aport->sw_fragcount >> subdivshift;
if (hw_fragcount < MIN_FRAGCOUNT(hw_fragsize) ||
hw_fragcount > MAX_FRAGCOUNT(hw_fragsize))
return -EINVAL;
if (rport)
rport->sw_subdivshift = subdivshift;
if (wport)
wport->sw_subdivshift = subdivshift;
}
return 0;
case SNDCTL_DSP_SETFMT: /* _SIOWR('P',5, int) */
if (get_user(ival, (int *) arg))
return -EFAULT;
DBGX("SNDCTL_DSP_SETFMT %d\n", ival);
if (ival != AFMT_QUERY) {
if (aport->swstate != SW_INITIAL) {
DBGP("SETFMT failed, swstate = %d\n",
aport->swstate);
return -EINVAL;
}
switch (ival) {
case AFMT_MU_LAW:
case AFMT_A_LAW:
case AFMT_U8:
case AFMT_S8:
case AFMT_S16_LE:
if (rport)
rport->sw_samplefmt = ival;
if (wport)
wport->sw_samplefmt = ival;
break;
default:
return -EINVAL;
}
}
ival = aport->sw_samplefmt;
return put_user(ival, (int *) arg);
case SNDCTL_DSP_GETOSPACE: /* _SIOR ('P',12, audio_buf_info) */
DBGXV("SNDCTL_DSP_GETOSPACE\n");
if (!wport)
return -EINVAL;
ival = pcm_setup(devc, rport, wport);
if (ival < 0)
return ival;
ival = swb_inc_u(wport, 0);
buf_info.fragments = ival >> wport->sw_fragshift;
buf_info.fragstotal = wport->sw_fragcount;
buf_info.fragsize = 1 << wport->sw_fragshift;
buf_info.bytes = ival;
DBGXV("SNDCTL_DSP_GETOSPACE returns { %d %d %d %d }\n",
buf_info.fragments, buf_info.fragstotal,
buf_info.fragsize, buf_info.bytes);
if (copy_to_user((void *) arg, &buf_info, sizeof buf_info))
return -EFAULT;
return 0;
case SNDCTL_DSP_GETISPACE: /* _SIOR ('P',13, audio_buf_info) */
DBGX("SNDCTL_DSP_GETISPACE\n");
if (!rport)
return -EINVAL;
ival = pcm_setup(devc, rport, wport);
if (ival < 0)
return ival;
ival = swb_inc_u(rport, 0);
buf_info.fragments = ival >> rport->sw_fragshift;
buf_info.fragstotal = rport->sw_fragcount;
buf_info.fragsize = 1 << rport->sw_fragshift;
buf_info.bytes = ival;
DBGX("SNDCTL_DSP_GETISPACE returns { %d %d %d %d }\n",
buf_info.fragments, buf_info.fragstotal,
buf_info.fragsize, buf_info.bytes);
if (copy_to_user((void *) arg, &buf_info, sizeof buf_info))
return -EFAULT;
return 0;
case SNDCTL_DSP_NONBLOCK: /* _SIO ('P',14) */
DBGX("SNDCTL_DSP_NONBLOCK\n");
file->f_flags |= O_NONBLOCK;
return 0;
case SNDCTL_DSP_RESET: /* _SIO ('P', 0) */
DBGX("SNDCTL_DSP_RESET\n");
/*
* Nothing special needs to be done for input. Input
* samples sit in swbuf, but it will be reinitialized
* to empty when pcm_setup() is called.
*/
if (wport && wport->swbuf) {
wport->swstate = SW_INITIAL;
pcm_output(devc, 0, 0);
pcm_write_sync(devc);
}
pcm_shutdown(devc, rport, wport);
return 0;
case SNDCTL_DSP_SYNC: /* _SIO ('P', 1) */
DBGX("SNDCTL_DSP_SYNC\n");
if (wport) {
pcm_flush_frag(devc);
pcm_write_sync(devc);
}
pcm_shutdown(devc, rport, wport);
return 0;
case SNDCTL_DSP_POST: /* _SIO ('P', 8) */
DBGX("SNDCTL_DSP_POST\n");
if (!wport)
return -EINVAL;
pcm_flush_frag(devc);
return 0;
case SNDCTL_DSP_GETIPTR: /* _SIOR ('P', 17, count_info) */
DBGX("SNDCTL_DSP_GETIPTR\n");
if (!rport)
return -EINVAL;
spin_lock_irqsave(&rport->lock, flags);
{
ustmsc_t ustmsc;
if (rport->hwstate == HW_RUNNING) {
ASSERT(rport->swstate == SW_RUN);
li_read_USTMSC(&rport->chan, &ustmsc);
info.bytes = ustmsc.msc - rport->MSC_offset;
info.bytes *= rport->frame_size;
} else {
info.bytes