blob: e32d3370862e75bdbeff078b3e1a18e57ee14979 [file] [log] [blame]
/* Copyright 2008-2009 Broadcom Corporation
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2, available
* at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a
* license other than the GPL, without Broadcom's express prior written
* consent.
*
* Written by Yaniv Rosner
*
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/delay.h>
#include <linux/ethtool.h>
#include <linux/mutex.h>
#include "bnx2x.h"
/********************************************************/
#define ETH_HLEN 14
#define ETH_OVREHEAD (ETH_HLEN + 8)/* 8 for CRC + VLAN*/
#define ETH_MIN_PACKET_SIZE 60
#define ETH_MAX_PACKET_SIZE 1500
#define ETH_MAX_JUMBO_PACKET_SIZE 9600
#define MDIO_ACCESS_TIMEOUT 1000
#define BMAC_CONTROL_RX_ENABLE 2
/***********************************************************/
/* Shortcut definitions */
/***********************************************************/
#define NIG_LATCH_BC_ENABLE_MI_INT 0
#define NIG_STATUS_EMAC0_MI_INT \
NIG_STATUS_INTERRUPT_PORT0_REG_STATUS_EMAC0_MISC_MI_INT
#define NIG_STATUS_XGXS0_LINK10G \
NIG_STATUS_INTERRUPT_PORT0_REG_STATUS_XGXS0_LINK10G
#define NIG_STATUS_XGXS0_LINK_STATUS \
NIG_STATUS_INTERRUPT_PORT0_REG_STATUS_XGXS0_LINK_STATUS
#define NIG_STATUS_XGXS0_LINK_STATUS_SIZE \
NIG_STATUS_INTERRUPT_PORT0_REG_STATUS_XGXS0_LINK_STATUS_SIZE
#define NIG_STATUS_SERDES0_LINK_STATUS \
NIG_STATUS_INTERRUPT_PORT0_REG_STATUS_SERDES0_LINK_STATUS
#define NIG_MASK_MI_INT \
NIG_MASK_INTERRUPT_PORT0_REG_MASK_EMAC0_MISC_MI_INT
#define NIG_MASK_XGXS0_LINK10G \
NIG_MASK_INTERRUPT_PORT0_REG_MASK_XGXS0_LINK10G
#define NIG_MASK_XGXS0_LINK_STATUS \
NIG_MASK_INTERRUPT_PORT0_REG_MASK_XGXS0_LINK_STATUS
#define NIG_MASK_SERDES0_LINK_STATUS \
NIG_MASK_INTERRUPT_PORT0_REG_MASK_SERDES0_LINK_STATUS
#define MDIO_AN_CL73_OR_37_COMPLETE \
(MDIO_GP_STATUS_TOP_AN_STATUS1_CL73_AUTONEG_COMPLETE | \
MDIO_GP_STATUS_TOP_AN_STATUS1_CL37_AUTONEG_COMPLETE)
#define XGXS_RESET_BITS \
(MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_XGXS0_RSTB_HW | \
MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_XGXS0_IDDQ | \
MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_XGXS0_PWRDWN | \
MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_XGXS0_PWRDWN_SD | \
MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_XGXS0_TXD_FIFO_RSTB)
#define SERDES_RESET_BITS \
(MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_SERDES0_RSTB_HW | \
MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_SERDES0_IDDQ | \
MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_SERDES0_PWRDWN | \
MISC_REGISTERS_RESET_REG_3_MISC_NIG_MUX_SERDES0_PWRDWN_SD)
#define AUTONEG_CL37 SHARED_HW_CFG_AN_ENABLE_CL37
#define AUTONEG_CL73 SHARED_HW_CFG_AN_ENABLE_CL73
#define AUTONEG_BAM SHARED_HW_CFG_AN_ENABLE_BAM
#define AUTONEG_PARALLEL \
SHARED_HW_CFG_AN_ENABLE_PARALLEL_DETECTION
#define AUTONEG_SGMII_FIBER_AUTODET \
SHARED_HW_CFG_AN_EN_SGMII_FIBER_AUTO_DETECT
#define AUTONEG_REMOTE_PHY SHARED_HW_CFG_AN_ENABLE_REMOTE_PHY
#define GP_STATUS_PAUSE_RSOLUTION_TXSIDE \
MDIO_GP_STATUS_TOP_AN_STATUS1_PAUSE_RSOLUTION_TXSIDE
#define GP_STATUS_PAUSE_RSOLUTION_RXSIDE \
MDIO_GP_STATUS_TOP_AN_STATUS1_PAUSE_RSOLUTION_RXSIDE
#define GP_STATUS_SPEED_MASK \
MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_MASK
#define GP_STATUS_10M MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10M
#define GP_STATUS_100M MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_100M
#define GP_STATUS_1G MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_1G
#define GP_STATUS_2_5G MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_2_5G
#define GP_STATUS_5G MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_5G
#define GP_STATUS_6G MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_6G
#define GP_STATUS_10G_HIG \
MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_HIG
#define GP_STATUS_10G_CX4 \
MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_CX4
#define GP_STATUS_12G_HIG \
MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_12G_HIG
#define GP_STATUS_12_5G MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_12_5G
#define GP_STATUS_13G MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_13G
#define GP_STATUS_15G MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_15G
#define GP_STATUS_16G MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_16G
#define GP_STATUS_1G_KX MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_1G_KX
#define GP_STATUS_10G_KX4 \
MDIO_GP_STATUS_TOP_AN_STATUS1_ACTUAL_SPEED_10G_KX4
#define LINK_10THD LINK_STATUS_SPEED_AND_DUPLEX_10THD
#define LINK_10TFD LINK_STATUS_SPEED_AND_DUPLEX_10TFD
#define LINK_100TXHD LINK_STATUS_SPEED_AND_DUPLEX_100TXHD
#define LINK_100T4 LINK_STATUS_SPEED_AND_DUPLEX_100T4
#define LINK_100TXFD LINK_STATUS_SPEED_AND_DUPLEX_100TXFD
#define LINK_1000THD LINK_STATUS_SPEED_AND_DUPLEX_1000THD
#define LINK_1000TFD LINK_STATUS_SPEED_AND_DUPLEX_1000TFD
#define LINK_1000XFD LINK_STATUS_SPEED_AND_DUPLEX_1000XFD
#define LINK_2500THD LINK_STATUS_SPEED_AND_DUPLEX_2500THD
#define LINK_2500TFD LINK_STATUS_SPEED_AND_DUPLEX_2500TFD
#define LINK_2500XFD LINK_STATUS_SPEED_AND_DUPLEX_2500XFD
#define LINK_10GTFD LINK_STATUS_SPEED_AND_DUPLEX_10GTFD
#define LINK_10GXFD LINK_STATUS_SPEED_AND_DUPLEX_10GXFD
#define LINK_12GTFD LINK_STATUS_SPEED_AND_DUPLEX_12GTFD
#define LINK_12GXFD LINK_STATUS_SPEED_AND_DUPLEX_12GXFD
#define LINK_12_5GTFD LINK_STATUS_SPEED_AND_DUPLEX_12_5GTFD
#define LINK_12_5GXFD LINK_STATUS_SPEED_AND_DUPLEX_12_5GXFD
#define LINK_13GTFD LINK_STATUS_SPEED_AND_DUPLEX_13GTFD
#define LINK_13GXFD LINK_STATUS_SPEED_AND_DUPLEX_13GXFD
#define LINK_15GTFD LINK_STATUS_SPEED_AND_DUPLEX_15GTFD
#define LINK_15GXFD LINK_STATUS_SPEED_AND_DUPLEX_15GXFD
#define LINK_16GTFD LINK_STATUS_SPEED_AND_DUPLEX_16GTFD
#define LINK_16GXFD LINK_STATUS_SPEED_AND_DUPLEX_16GXFD
#define PHY_XGXS_FLAG 0x1
#define PHY_SGMII_FLAG 0x2
#define PHY_SERDES_FLAG 0x4
/* */
#define SFP_EEPROM_CON_TYPE_ADDR 0x2
#define SFP_EEPROM_CON_TYPE_VAL_LC 0x7
#define SFP_EEPROM_CON_TYPE_VAL_COPPER 0x21
#define SFP_EEPROM_COMP_CODE_ADDR 0x3
#define SFP_EEPROM_COMP_CODE_SR_MASK (1<<4)
#define SFP_EEPROM_COMP_CODE_LR_MASK (1<<5)
#define SFP_EEPROM_COMP_CODE_LRM_MASK (1<<6)
#define SFP_EEPROM_FC_TX_TECH_ADDR 0x8
#define SFP_EEPROM_FC_TX_TECH_BITMASK_COPPER_PASSIVE 0x4
#define SFP_EEPROM_FC_TX_TECH_BITMASK_COPPER_ACTIVE 0x8
#define SFP_EEPROM_OPTIONS_ADDR 0x40
#define SFP_EEPROM_OPTIONS_LINEAR_RX_OUT_MASK 0x1
#define SFP_EEPROM_OPTIONS_SIZE 2
#define EDC_MODE_LINEAR 0x0022
#define EDC_MODE_LIMITING 0x0044
#define EDC_MODE_PASSIVE_DAC 0x0055
/**********************************************************/
/* INTERFACE */
/**********************************************************/
#define CL45_WR_OVER_CL22(_bp, _port, _phy_addr, _bank, _addr, _val) \
bnx2x_cl45_write(_bp, _port, 0, _phy_addr, \
DEFAULT_PHY_DEV_ADDR, \
(_bank + (_addr & 0xf)), \
_val)
#define CL45_RD_OVER_CL22(_bp, _port, _phy_addr, _bank, _addr, _val) \
bnx2x_cl45_read(_bp, _port, 0, _phy_addr, \
DEFAULT_PHY_DEV_ADDR, \
(_bank + (_addr & 0xf)), \
_val)
static void bnx2x_set_serdes_access(struct link_params *params)
{
struct bnx2x *bp = params->bp;
u32 emac_base = (params->port) ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
/* Set Clause 22 */
REG_WR(bp, NIG_REG_SERDES0_CTRL_MD_ST + params->port*0x10, 1);
REG_WR(bp, emac_base + EMAC_REG_EMAC_MDIO_COMM, 0x245f8000);
udelay(500);
REG_WR(bp, emac_base + EMAC_REG_EMAC_MDIO_COMM, 0x245d000f);
udelay(500);
/* Set Clause 45 */
REG_WR(bp, NIG_REG_SERDES0_CTRL_MD_ST + params->port*0x10, 0);
}
static void bnx2x_set_phy_mdio(struct link_params *params, u8 phy_flags)
{
struct bnx2x *bp = params->bp;
if (phy_flags & PHY_XGXS_FLAG) {
REG_WR(bp, NIG_REG_XGXS0_CTRL_MD_ST +
params->port*0x18, 0);
REG_WR(bp, NIG_REG_XGXS0_CTRL_MD_DEVAD + params->port*0x18,
DEFAULT_PHY_DEV_ADDR);
} else {
bnx2x_set_serdes_access(params);
REG_WR(bp, NIG_REG_SERDES0_CTRL_MD_DEVAD +
params->port*0x10,
DEFAULT_PHY_DEV_ADDR);
}
}
static u32 bnx2x_bits_en(struct bnx2x *bp, u32 reg, u32 bits)
{
u32 val = REG_RD(bp, reg);
val |= bits;
REG_WR(bp, reg, val);
return val;
}
static u32 bnx2x_bits_dis(struct bnx2x *bp, u32 reg, u32 bits)
{
u32 val = REG_RD(bp, reg);
val &= ~bits;
REG_WR(bp, reg, val);
return val;
}
static void bnx2x_emac_init(struct link_params *params,
struct link_vars *vars)
{
/* reset and unreset the emac core */
struct bnx2x *bp = params->bp;
u8 port = params->port;
u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
u32 val;
u16 timeout;
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
(MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE << port));
udelay(5);
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
(MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE << port));
/* init emac - use read-modify-write */
/* self clear reset */
val = REG_RD(bp, emac_base + EMAC_REG_EMAC_MODE);
EMAC_WR(bp, EMAC_REG_EMAC_MODE, (val | EMAC_MODE_RESET));
timeout = 200;
do {
val = REG_RD(bp, emac_base + EMAC_REG_EMAC_MODE);
DP(NETIF_MSG_LINK, "EMAC reset reg is %u\n", val);
if (!timeout) {
DP(NETIF_MSG_LINK, "EMAC timeout!\n");
return;
}
timeout--;
} while (val & EMAC_MODE_RESET);
/* Set mac address */
val = ((params->mac_addr[0] << 8) |
params->mac_addr[1]);
EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH, val);
val = ((params->mac_addr[2] << 24) |
(params->mac_addr[3] << 16) |
(params->mac_addr[4] << 8) |
params->mac_addr[5]);
EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + 4, val);
}
static u8 bnx2x_emac_enable(struct link_params *params,
struct link_vars *vars, u8 lb)
{
struct bnx2x *bp = params->bp;
u8 port = params->port;
u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
u32 val;
DP(NETIF_MSG_LINK, "enabling EMAC\n");
/* enable emac and not bmac */
REG_WR(bp, NIG_REG_EGRESS_EMAC0_PORT + port*4, 1);
/* for paladium */
if (CHIP_REV_IS_EMUL(bp)) {
/* Use lane 1 (of lanes 0-3) */
REG_WR(bp, NIG_REG_XGXS_LANE_SEL_P0 + port*4, 1);
REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL +
port*4, 1);
}
/* for fpga */
else
if (CHIP_REV_IS_FPGA(bp)) {
/* Use lane 1 (of lanes 0-3) */
DP(NETIF_MSG_LINK, "bnx2x_emac_enable: Setting FPGA\n");
REG_WR(bp, NIG_REG_XGXS_LANE_SEL_P0 + port*4, 1);
REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4,
0);
} else
/* ASIC */
if (vars->phy_flags & PHY_XGXS_FLAG) {
u32 ser_lane = ((params->lane_config &
PORT_HW_CFG_LANE_SWAP_CFG_MASTER_MASK) >>
PORT_HW_CFG_LANE_SWAP_CFG_MASTER_SHIFT);
DP(NETIF_MSG_LINK, "XGXS\n");
/* select the master lanes (out of 0-3) */
REG_WR(bp, NIG_REG_XGXS_LANE_SEL_P0 +
port*4, ser_lane);
/* select XGXS */
REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL +
port*4, 1);
} else { /* SerDes */
DP(NETIF_MSG_LINK, "SerDes\n");
/* select SerDes */
REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL +
port*4, 0);
}
bnx2x_bits_en(bp, emac_base + EMAC_REG_EMAC_RX_MODE,
EMAC_RX_MODE_RESET);
bnx2x_bits_en(bp, emac_base + EMAC_REG_EMAC_TX_MODE,
EMAC_TX_MODE_RESET);
if (CHIP_REV_IS_SLOW(bp)) {
/* config GMII mode */
val = REG_RD(bp, emac_base + EMAC_REG_EMAC_MODE);
EMAC_WR(bp, EMAC_REG_EMAC_MODE,
(val | EMAC_MODE_PORT_GMII));
} else { /* ASIC */
/* pause enable/disable */
bnx2x_bits_dis(bp, emac_base + EMAC_REG_EMAC_RX_MODE,
EMAC_RX_MODE_FLOW_EN);
if (vars->flow_ctrl & BNX2X_FLOW_CTRL_RX)
bnx2x_bits_en(bp, emac_base +
EMAC_REG_EMAC_RX_MODE,
EMAC_RX_MODE_FLOW_EN);
bnx2x_bits_dis(bp, emac_base + EMAC_REG_EMAC_TX_MODE,
(EMAC_TX_MODE_EXT_PAUSE_EN |
EMAC_TX_MODE_FLOW_EN));
if (vars->flow_ctrl & BNX2X_FLOW_CTRL_TX)
bnx2x_bits_en(bp, emac_base +
EMAC_REG_EMAC_TX_MODE,
(EMAC_TX_MODE_EXT_PAUSE_EN |
EMAC_TX_MODE_FLOW_EN));
}
/* KEEP_VLAN_TAG, promiscuous */
val = REG_RD(bp, emac_base + EMAC_REG_EMAC_RX_MODE);
val |= EMAC_RX_MODE_KEEP_VLAN_TAG | EMAC_RX_MODE_PROMISCUOUS;
EMAC_WR(bp, EMAC_REG_EMAC_RX_MODE, val);
/* Set Loopback */
val = REG_RD(bp, emac_base + EMAC_REG_EMAC_MODE);
if (lb)
val |= 0x810;
else
val &= ~0x810;
EMAC_WR(bp, EMAC_REG_EMAC_MODE, val);
/* enable emac */
REG_WR(bp, NIG_REG_NIG_EMAC0_EN + port*4, 1);
/* enable emac for jumbo packets */
EMAC_WR(bp, EMAC_REG_EMAC_RX_MTU_SIZE,
(EMAC_RX_MTU_SIZE_JUMBO_ENA |
(ETH_MAX_JUMBO_PACKET_SIZE + ETH_OVREHEAD)));
/* strip CRC */
REG_WR(bp, NIG_REG_NIG_INGRESS_EMAC0_NO_CRC + port*4, 0x1);
/* disable the NIG in/out to the bmac */
REG_WR(bp, NIG_REG_BMAC0_IN_EN + port*4, 0x0);
REG_WR(bp, NIG_REG_BMAC0_PAUSE_OUT_EN + port*4, 0x0);
REG_WR(bp, NIG_REG_BMAC0_OUT_EN + port*4, 0x0);
/* enable the NIG in/out to the emac */
REG_WR(bp, NIG_REG_EMAC0_IN_EN + port*4, 0x1);
val = 0;
if (vars->flow_ctrl & BNX2X_FLOW_CTRL_TX)
val = 1;
REG_WR(bp, NIG_REG_EMAC0_PAUSE_OUT_EN + port*4, val);
REG_WR(bp, NIG_REG_EGRESS_EMAC0_OUT_EN + port*4, 0x1);
if (CHIP_REV_IS_EMUL(bp)) {
/* take the BigMac out of reset */
REG_WR(bp,
GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
(MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port));
/* enable access for bmac registers */
REG_WR(bp, NIG_REG_BMAC0_REGS_OUT_EN + port*4, 0x1);
} else
REG_WR(bp, NIG_REG_BMAC0_REGS_OUT_EN + port*4, 0x0);
vars->mac_type = MAC_TYPE_EMAC;
return 0;
}
static u8 bnx2x_bmac_enable(struct link_params *params, struct link_vars *vars,
u8 is_lb)
{
struct bnx2x *bp = params->bp;
u8 port = params->port;
u32 bmac_addr = port ? NIG_REG_INGRESS_BMAC1_MEM :
NIG_REG_INGRESS_BMAC0_MEM;
u32 wb_data[2];
u32 val;
DP(NETIF_MSG_LINK, "Enabling BigMAC\n");
/* reset and unreset the BigMac */
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
(MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port));
msleep(1);
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
(MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port));
/* enable access for bmac registers */
REG_WR(bp, NIG_REG_BMAC0_REGS_OUT_EN + port*4, 0x1);
/* XGXS control */
wb_data[0] = 0x3c;
wb_data[1] = 0;
REG_WR_DMAE(bp, bmac_addr +
BIGMAC_REGISTER_BMAC_XGXS_CONTROL,
wb_data, 2);
/* tx MAC SA */
wb_data[0] = ((params->mac_addr[2] << 24) |
(params->mac_addr[3] << 16) |
(params->mac_addr[4] << 8) |
params->mac_addr[5]);
wb_data[1] = ((params->mac_addr[0] << 8) |
params->mac_addr[1]);
REG_WR_DMAE(bp, bmac_addr + BIGMAC_REGISTER_TX_SOURCE_ADDR,
wb_data, 2);
/* tx control */
val = 0xc0;
if (vars->flow_ctrl & BNX2X_FLOW_CTRL_TX)
val |= 0x800000;
wb_data[0] = val;
wb_data[1] = 0;
REG_WR_DMAE(bp, bmac_addr + BIGMAC_REGISTER_TX_CONTROL,
wb_data, 2);
/* mac control */
val = 0x3;
if (is_lb) {
val |= 0x4;
DP(NETIF_MSG_LINK, "enable bmac loopback\n");
}
wb_data[0] = val;
wb_data[1] = 0;
REG_WR_DMAE(bp, bmac_addr + BIGMAC_REGISTER_BMAC_CONTROL,
wb_data, 2);
/* set rx mtu */
wb_data[0] = ETH_MAX_JUMBO_PACKET_SIZE + ETH_OVREHEAD;
wb_data[1] = 0;
REG_WR_DMAE(bp, bmac_addr + BIGMAC_REGISTER_RX_MAX_SIZE,
wb_data, 2);
/* rx control set to don't strip crc */
val = 0x14;
if (vars->flow_ctrl & BNX2X_FLOW_CTRL_RX)
val |= 0x20;
wb_data[0] = val;
wb_data[1] = 0;
REG_WR_DMAE(bp, bmac_addr + BIGMAC_REGISTER_RX_CONTROL,
wb_data, 2);
/* set tx mtu */
wb_data[0] = ETH_MAX_JUMBO_PACKET_SIZE + ETH_OVREHEAD;
wb_data[1] = 0;
REG_WR_DMAE(bp, bmac_addr + BIGMAC_REGISTER_TX_MAX_SIZE,
wb_data, 2);
/* set cnt max size */
wb_data[0] = ETH_MAX_JUMBO_PACKET_SIZE + ETH_OVREHEAD;
wb_data[1] = 0;
REG_WR_DMAE(bp, bmac_addr + BIGMAC_REGISTER_CNT_MAX_SIZE,
wb_data, 2);
/* configure safc */
wb_data[0] = 0x1000200;
wb_data[1] = 0;
REG_WR_DMAE(bp, bmac_addr + BIGMAC_REGISTER_RX_LLFC_MSG_FLDS,
wb_data, 2);
/* fix for emulation */
if (CHIP_REV_IS_EMUL(bp)) {
wb_data[0] = 0xf000;
wb_data[1] = 0;
REG_WR_DMAE(bp,
bmac_addr + BIGMAC_REGISTER_TX_PAUSE_THRESHOLD,
wb_data, 2);
}
REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 0x1);
REG_WR(bp, NIG_REG_XGXS_LANE_SEL_P0 + port*4, 0x0);
REG_WR(bp, NIG_REG_EGRESS_EMAC0_PORT + port*4, 0x0);
val = 0;
if (vars->flow_ctrl & BNX2X_FLOW_CTRL_TX)
val = 1;
REG_WR(bp, NIG_REG_BMAC0_PAUSE_OUT_EN + port*4, val);
REG_WR(bp, NIG_REG_EGRESS_EMAC0_OUT_EN + port*4, 0x0);
REG_WR(bp, NIG_REG_EMAC0_IN_EN + port*4, 0x0);
REG_WR(bp, NIG_REG_EMAC0_PAUSE_OUT_EN + port*4, 0x0);
REG_WR(bp, NIG_REG_BMAC0_IN_EN + port*4, 0x1);
REG_WR(bp, NIG_REG_BMAC0_OUT_EN + port*4, 0x1);
vars->mac_type = MAC_TYPE_BMAC;
return 0;
}
static void bnx2x_phy_deassert(struct link_params *params, u8 phy_flags)
{
struct bnx2x *bp = params->bp;
u32 val;
if (phy_flags & PHY_XGXS_FLAG) {
DP(NETIF_MSG_LINK, "bnx2x_phy_deassert:XGXS\n");
val = XGXS_RESET_BITS;
} else { /* SerDes */
DP(NETIF_MSG_LINK, "bnx2x_phy_deassert:SerDes\n");
val = SERDES_RESET_BITS;
}
val = val << (params->port*16);
/* reset and unreset the SerDes/XGXS */
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_3_CLEAR,
val);
udelay(500);
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_3_SET,
val);
bnx2x_set_phy_mdio(params, phy_flags);
}
void bnx2x_link_status_update(struct link_params *params,
struct link_vars *vars)
{
struct bnx2x *bp = params->bp;
u8 link_10g;
u8 port = params->port;
if (params->switch_cfg == SWITCH_CFG_1G)
vars->phy_flags = PHY_SERDES_FLAG;
else
vars->phy_flags = PHY_XGXS_FLAG;
vars->link_status = REG_RD(bp, params->shmem_base +
offsetof(struct shmem_region,
port_mb[port].link_status));
vars->link_up = (vars->link_status & LINK_STATUS_LINK_UP);
if (vars->link_up) {
DP(NETIF_MSG_LINK, "phy link up\n");
vars->phy_link_up = 1;
vars->duplex = DUPLEX_FULL;
switch (vars->link_status &
LINK_STATUS_SPEED_AND_DUPLEX_MASK) {
case LINK_10THD:
vars->duplex = DUPLEX_HALF;
/* fall thru */
case LINK_10TFD:
vars->line_speed = SPEED_10;
break;
case LINK_100TXHD:
vars->duplex = DUPLEX_HALF;
/* fall thru */
case LINK_100T4:
case LINK_100TXFD:
vars->line_speed = SPEED_100;
break;
case LINK_1000THD:
vars->duplex = DUPLEX_HALF;
/* fall thru */
case LINK_1000TFD:
vars->line_speed = SPEED_1000;
break;
case LINK_2500THD:
vars->duplex = DUPLEX_HALF;
/* fall thru */
case LINK_2500TFD:
vars->line_speed = SPEED_2500;
break;
case LINK_10GTFD:
vars->line_speed = SPEED_10000;
break;
case LINK_12GTFD:
vars->line_speed = SPEED_12000;
break;
case LINK_12_5GTFD:
vars->line_speed = SPEED_12500;
break;
case LINK_13GTFD:
vars->line_speed = SPEED_13000;
break;
case LINK_15GTFD:
vars->line_speed = SPEED_15000;
break;
case LINK_16GTFD:
vars->line_speed = SPEED_16000;
break;
default:
break;
}
if (vars->link_status & LINK_STATUS_TX_FLOW_CONTROL_ENABLED)
vars->flow_ctrl |= BNX2X_FLOW_CTRL_TX;
else
vars->flow_ctrl &= ~BNX2X_FLOW_CTRL_TX;
if (vars->link_status & LINK_STATUS_RX_FLOW_CONTROL_ENABLED)
vars->flow_ctrl |= BNX2X_FLOW_CTRL_RX;
else
vars->flow_ctrl &= ~BNX2X_FLOW_CTRL_RX;
if (vars->phy_flags & PHY_XGXS_FLAG) {
if (vars->line_speed &&
((vars->line_speed == SPEED_10) ||
(vars->line_speed == SPEED_100))) {
vars->phy_flags |= PHY_SGMII_FLAG;
} else {
vars->phy_flags &= ~PHY_SGMII_FLAG;
}
}
/* anything 10 and over uses the bmac */
link_10g = ((vars->line_speed == SPEED_10000) ||
(vars->line_speed == SPEED_12000) ||
(vars->line_speed == SPEED_12500) ||
(vars->line_speed == SPEED_13000) ||
(vars->line_speed == SPEED_15000) ||
(vars->line_speed == SPEED_16000));
if (link_10g)
vars->mac_type = MAC_TYPE_BMAC;
else
vars->mac_type = MAC_TYPE_EMAC;
} else { /* link down */
DP(NETIF_MSG_LINK, "phy link down\n");
vars->phy_link_up = 0;
vars->line_speed = 0;
vars->duplex = DUPLEX_FULL;
vars->flow_ctrl = BNX2X_FLOW_CTRL_NONE;
/* indicate no mac active */
vars->mac_type = MAC_TYPE_NONE;
}
DP(NETIF_MSG_LINK, "link_status 0x%x phy_link_up %x\n",
vars->link_status, vars->phy_link_up);
DP(NETIF_MSG_LINK, "line_speed %x duplex %x flow_ctrl 0x%x\n",
vars->line_speed, vars->duplex, vars->flow_ctrl);
}
static void bnx2x_update_mng(struct link_params *params, u32 link_status)
{
struct bnx2x *bp = params->bp;
REG_WR(bp, params->shmem_base +
offsetof(struct shmem_region,
port_mb[params->port].link_status),
link_status);
}
static void bnx2x_bmac_rx_disable(struct bnx2x *bp, u8 port)
{
u32 bmac_addr = port ? NIG_REG_INGRESS_BMAC1_MEM :
NIG_REG_INGRESS_BMAC0_MEM;
u32 wb_data[2];
u32 nig_bmac_enable = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port*4);
/* Only if the bmac is out of reset */
if (REG_RD(bp, MISC_REG_RESET_REG_2) &
(MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port) &&
nig_bmac_enable) {
/* Clear Rx Enable bit in BMAC_CONTROL register */
REG_RD_DMAE(bp, bmac_addr + BIGMAC_REGISTER_BMAC_CONTROL,
wb_data, 2);
wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
REG_WR_DMAE(bp, bmac_addr + BIGMAC_REGISTER_BMAC_CONTROL,
wb_data, 2);
msleep(1);
}
}
static u8 bnx2x_pbf_update(struct link_params *params, u32 flow_ctrl,
u32 line_speed)
{
struct bnx2x *bp = params->bp;
u8 port = params->port;
u32 init_crd, crd;
u32 count = 1000;
/* disable port */
REG_WR(bp, PBF_REG_DISABLE_NEW_TASK_PROC_P0 + port*4, 0x1);
/* wait for init credit */
init_crd = REG_RD(bp, PBF_REG_P0_INIT_CRD + port*4);
crd = REG_RD(bp, PBF_REG_P0_CREDIT + port*8);
DP(NETIF_MSG_LINK, "init_crd 0x%x crd 0x%x\n", init_crd, crd);
while ((init_crd != crd) && count) {
msleep(5);
crd = REG_RD(bp, PBF_REG_P0_CREDIT + port*8);
count--;
}
crd = REG_RD(bp, PBF_REG_P0_CREDIT + port*8);
if (init_crd != crd) {
DP(NETIF_MSG_LINK, "BUG! init_crd 0x%x != crd 0x%x\n",
init_crd, crd);
return -EINVAL;
}
if (flow_ctrl & BNX2X_FLOW_CTRL_RX ||
line_speed == SPEED_10 ||
line_speed == SPEED_100 ||
line_speed == SPEED_1000 ||
line_speed == SPEED_2500) {
REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 1);
/* update threshold */
REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, 0);
/* update init credit */
init_crd = 778; /* (800-18-4) */
} else {
u32 thresh = (ETH_MAX_JUMBO_PACKET_SIZE +
ETH_OVREHEAD)/16;
REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
/* update threshold */
REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, thresh);
/* update init credit */
switch (line_speed) {
case SPEED_10000:
init_crd = thresh + 553 - 22;
break;
case SPEED_12000:
init_crd = thresh + 664 - 22;
break;
case SPEED_13000:
init_crd = thresh + 742 - 22;
break;
case SPEED_16000:
init_crd = thresh + 778 - 22;
break;
default:
DP(NETIF_MSG_LINK, "Invalid line_speed 0x%x\n",
line_speed);
return -EINVAL;
}
}
REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, init_crd);
DP(NETIF_MSG_LINK, "PBF updated to speed %d credit %d\n",
line_speed, init_crd);
/* probe the credit changes */
REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0x1);
msleep(5);
REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0x0);
/* enable port */
REG_WR(bp, PBF_REG_DISABLE_NEW_TASK_PROC_P0 + port*4, 0x0);
return 0;
}
static u32 bnx2x_get_emac_base(struct bnx2x *bp, u32 ext_phy_type, u8 port)
{
u32 emac_base;
switch (ext_phy_type) {
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8072:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8726:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727:
/* All MDC/MDIO is directed through single EMAC */
if (REG_RD(bp, NIG_REG_PORT_SWAP))
emac_base = GRCBASE_EMAC0;
else
emac_base = GRCBASE_EMAC1;
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8073:
emac_base = (port) ? GRCBASE_EMAC0 : GRCBASE_EMAC1;
break;
default:
emac_base = (port) ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
break;
}
return emac_base;
}
u8 bnx2x_cl45_write(struct bnx2x *bp, u8 port, u32 ext_phy_type,
u8 phy_addr, u8 devad, u16 reg, u16 val)
{
u32 tmp, saved_mode;
u8 i, rc = 0;
u32 mdio_ctrl = bnx2x_get_emac_base(bp, ext_phy_type, port);
/* set clause 45 mode, slow down the MDIO clock to 2.5MHz
* (a value of 49==0x31) and make sure that the AUTO poll is off
*/
saved_mode = REG_RD(bp, mdio_ctrl + EMAC_REG_EMAC_MDIO_MODE);
tmp = saved_mode & ~(EMAC_MDIO_MODE_AUTO_POLL |
EMAC_MDIO_MODE_CLOCK_CNT);
tmp |= (EMAC_MDIO_MODE_CLAUSE_45 |
(49 << EMAC_MDIO_MODE_CLOCK_CNT_BITSHIFT));
REG_WR(bp, mdio_ctrl + EMAC_REG_EMAC_MDIO_MODE, tmp);
REG_RD(bp, mdio_ctrl + EMAC_REG_EMAC_MDIO_MODE);
udelay(40);
/* address */
tmp = ((phy_addr << 21) | (devad << 16) | reg |
EMAC_MDIO_COMM_COMMAND_ADDRESS |
EMAC_MDIO_COMM_START_BUSY);
REG_WR(bp, mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM, tmp);
for (i = 0; i < 50; i++) {
udelay(10);
tmp = REG_RD(bp, mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM);
if (!(tmp & EMAC_MDIO_COMM_START_BUSY)) {
udelay(5);
break;
}
}
if (tmp & EMAC_MDIO_COMM_START_BUSY) {
DP(NETIF_MSG_LINK, "write phy register failed\n");
rc = -EFAULT;
} else {
/* data */
tmp = ((phy_addr << 21) | (devad << 16) | val |
EMAC_MDIO_COMM_COMMAND_WRITE_45 |
EMAC_MDIO_COMM_START_BUSY);
REG_WR(bp, mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM, tmp);
for (i = 0; i < 50; i++) {
udelay(10);
tmp = REG_RD(bp, mdio_ctrl +
EMAC_REG_EMAC_MDIO_COMM);
if (!(tmp & EMAC_MDIO_COMM_START_BUSY)) {
udelay(5);
break;
}
}
if (tmp & EMAC_MDIO_COMM_START_BUSY) {
DP(NETIF_MSG_LINK, "write phy register failed\n");
rc = -EFAULT;
}
}
/* Restore the saved mode */
REG_WR(bp, mdio_ctrl + EMAC_REG_EMAC_MDIO_MODE, saved_mode);
return rc;
}
u8 bnx2x_cl45_read(struct bnx2x *bp, u8 port, u32 ext_phy_type,
u8 phy_addr, u8 devad, u16 reg, u16 *ret_val)
{
u32 val, saved_mode;
u16 i;
u8 rc = 0;
u32 mdio_ctrl = bnx2x_get_emac_base(bp, ext_phy_type, port);
/* set clause 45 mode, slow down the MDIO clock to 2.5MHz
* (a value of 49==0x31) and make sure that the AUTO poll is off
*/
saved_mode = REG_RD(bp, mdio_ctrl + EMAC_REG_EMAC_MDIO_MODE);
val = saved_mode & ((EMAC_MDIO_MODE_AUTO_POLL |
EMAC_MDIO_MODE_CLOCK_CNT));
val |= (EMAC_MDIO_MODE_CLAUSE_45 |
(49L << EMAC_MDIO_MODE_CLOCK_CNT_BITSHIFT));
REG_WR(bp, mdio_ctrl + EMAC_REG_EMAC_MDIO_MODE, val);
REG_RD(bp, mdio_ctrl + EMAC_REG_EMAC_MDIO_MODE);
udelay(40);
/* address */
val = ((phy_addr << 21) | (devad << 16) | reg |
EMAC_MDIO_COMM_COMMAND_ADDRESS |
EMAC_MDIO_COMM_START_BUSY);
REG_WR(bp, mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM, val);
for (i = 0; i < 50; i++) {
udelay(10);
val = REG_RD(bp, mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM);
if (!(val & EMAC_MDIO_COMM_START_BUSY)) {
udelay(5);
break;
}
}
if (val & EMAC_MDIO_COMM_START_BUSY) {
DP(NETIF_MSG_LINK, "read phy register failed\n");
*ret_val = 0;
rc = -EFAULT;
} else {
/* data */
val = ((phy_addr << 21) | (devad << 16) |
EMAC_MDIO_COMM_COMMAND_READ_45 |
EMAC_MDIO_COMM_START_BUSY);
REG_WR(bp, mdio_ctrl + EMAC_REG_EMAC_MDIO_COMM, val);
for (i = 0; i < 50; i++) {
udelay(10);
val = REG_RD(bp, mdio_ctrl +
EMAC_REG_EMAC_MDIO_COMM);
if (!(val & EMAC_MDIO_COMM_START_BUSY)) {
*ret_val = (u16)(val & EMAC_MDIO_COMM_DATA);
break;
}
}
if (val & EMAC_MDIO_COMM_START_BUSY) {
DP(NETIF_MSG_LINK, "read phy register failed\n");
*ret_val = 0;
rc = -EFAULT;
}
}
/* Restore the saved mode */
REG_WR(bp, mdio_ctrl + EMAC_REG_EMAC_MDIO_MODE, saved_mode);
return rc;
}
static void bnx2x_set_aer_mmd(struct link_params *params,
struct link_vars *vars)
{
struct bnx2x *bp = params->bp;
u32 ser_lane;
u16 offset;
ser_lane = ((params->lane_config &
PORT_HW_CFG_LANE_SWAP_CFG_MASTER_MASK) >>
PORT_HW_CFG_LANE_SWAP_CFG_MASTER_SHIFT);
offset = (vars->phy_flags & PHY_XGXS_FLAG) ?
(params->phy_addr + ser_lane) : 0;
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_AER_BLOCK,
MDIO_AER_BLOCK_AER_REG, 0x3800 + offset);
}
static void bnx2x_set_master_ln(struct link_params *params)
{
struct bnx2x *bp = params->bp;
u16 new_master_ln, ser_lane;
ser_lane = ((params->lane_config &
PORT_HW_CFG_LANE_SWAP_CFG_MASTER_MASK) >>
PORT_HW_CFG_LANE_SWAP_CFG_MASTER_SHIFT);
/* set the master_ln for AN */
CL45_RD_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_XGXS_BLOCK2,
MDIO_XGXS_BLOCK2_TEST_MODE_LANE,
&new_master_ln);
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_XGXS_BLOCK2 ,
MDIO_XGXS_BLOCK2_TEST_MODE_LANE,
(new_master_ln | ser_lane));
}
static u8 bnx2x_reset_unicore(struct link_params *params)
{
struct bnx2x *bp = params->bp;
u16 mii_control;
u16 i;
CL45_RD_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_MII_CONTROL, &mii_control);
/* reset the unicore */
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_MII_CONTROL,
(mii_control |
MDIO_COMBO_IEEO_MII_CONTROL_RESET));
if (params->switch_cfg == SWITCH_CFG_1G)
bnx2x_set_serdes_access(params);
/* wait for the reset to self clear */
for (i = 0; i < MDIO_ACCESS_TIMEOUT; i++) {
udelay(5);
/* the reset erased the previous bank value */
CL45_RD_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_MII_CONTROL,
&mii_control);
if (!(mii_control & MDIO_COMBO_IEEO_MII_CONTROL_RESET)) {
udelay(5);
return 0;
}
}
DP(NETIF_MSG_LINK, "BUG! XGXS is still in reset!\n");
return -EINVAL;
}
static void bnx2x_set_swap_lanes(struct link_params *params)
{
struct bnx2x *bp = params->bp;
/* Each two bits represents a lane number:
No swap is 0123 => 0x1b no need to enable the swap */
u16 ser_lane, rx_lane_swap, tx_lane_swap;
ser_lane = ((params->lane_config &
PORT_HW_CFG_LANE_SWAP_CFG_MASTER_MASK) >>
PORT_HW_CFG_LANE_SWAP_CFG_MASTER_SHIFT);
rx_lane_swap = ((params->lane_config &
PORT_HW_CFG_LANE_SWAP_CFG_RX_MASK) >>
PORT_HW_CFG_LANE_SWAP_CFG_RX_SHIFT);
tx_lane_swap = ((params->lane_config &
PORT_HW_CFG_LANE_SWAP_CFG_TX_MASK) >>
PORT_HW_CFG_LANE_SWAP_CFG_TX_SHIFT);
if (rx_lane_swap != 0x1b) {
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_XGXS_BLOCK2,
MDIO_XGXS_BLOCK2_RX_LN_SWAP,
(rx_lane_swap |
MDIO_XGXS_BLOCK2_RX_LN_SWAP_ENABLE |
MDIO_XGXS_BLOCK2_RX_LN_SWAP_FORCE_ENABLE));
} else {
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_XGXS_BLOCK2,
MDIO_XGXS_BLOCK2_RX_LN_SWAP, 0);
}
if (tx_lane_swap != 0x1b) {
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_XGXS_BLOCK2,
MDIO_XGXS_BLOCK2_TX_LN_SWAP,
(tx_lane_swap |
MDIO_XGXS_BLOCK2_TX_LN_SWAP_ENABLE));
} else {
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_XGXS_BLOCK2,
MDIO_XGXS_BLOCK2_TX_LN_SWAP, 0);
}
}
static void bnx2x_set_parallel_detection(struct link_params *params,
u8 phy_flags)
{
struct bnx2x *bp = params->bp;
u16 control2;
CL45_RD_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_SERDES_DIGITAL,
MDIO_SERDES_DIGITAL_A_1000X_CONTROL2,
&control2);
control2 |= MDIO_SERDES_DIGITAL_A_1000X_CONTROL2_PRL_DT_EN;
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_SERDES_DIGITAL,
MDIO_SERDES_DIGITAL_A_1000X_CONTROL2,
control2);
if (phy_flags & PHY_XGXS_FLAG) {
DP(NETIF_MSG_LINK, "XGXS\n");
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_10G_PARALLEL_DETECT,
MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_LINK,
MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_LINK_CNT);
CL45_RD_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_10G_PARALLEL_DETECT,
MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_CONTROL,
&control2);
control2 |=
MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_CONTROL_PARDET10G_EN;
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_10G_PARALLEL_DETECT,
MDIO_10G_PARALLEL_DETECT_PAR_DET_10G_CONTROL,
control2);
/* Disable parallel detection of HiG */
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_XGXS_BLOCK2,
MDIO_XGXS_BLOCK2_UNICORE_MODE_10G,
MDIO_XGXS_BLOCK2_UNICORE_MODE_10G_CX4_XGXS |
MDIO_XGXS_BLOCK2_UNICORE_MODE_10G_HIGIG_XGXS);
}
}
static void bnx2x_set_autoneg(struct link_params *params,
struct link_vars *vars,
u8 enable_cl73)
{
struct bnx2x *bp = params->bp;
u16 reg_val;
/* CL37 Autoneg */
CL45_RD_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_MII_CONTROL, &reg_val);
/* CL37 Autoneg Enabled */
if (vars->line_speed == SPEED_AUTO_NEG)
reg_val |= MDIO_COMBO_IEEO_MII_CONTROL_AN_EN;
else /* CL37 Autoneg Disabled */
reg_val &= ~(MDIO_COMBO_IEEO_MII_CONTROL_AN_EN |
MDIO_COMBO_IEEO_MII_CONTROL_RESTART_AN);
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_MII_CONTROL, reg_val);
/* Enable/Disable Autodetection */
CL45_RD_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_SERDES_DIGITAL,
MDIO_SERDES_DIGITAL_A_1000X_CONTROL1, &reg_val);
reg_val &= ~(MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_SIGNAL_DETECT_EN |
MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_INVERT_SIGNAL_DETECT);
reg_val |= MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_FIBER_MODE;
if (vars->line_speed == SPEED_AUTO_NEG)
reg_val |= MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_AUTODET;
else
reg_val &= ~MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_AUTODET;
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_SERDES_DIGITAL,
MDIO_SERDES_DIGITAL_A_1000X_CONTROL1, reg_val);
/* Enable TetonII and BAM autoneg */
CL45_RD_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_BAM_NEXT_PAGE,
MDIO_BAM_NEXT_PAGE_MP5_NEXT_PAGE_CTRL,
&reg_val);
if (vars->line_speed == SPEED_AUTO_NEG) {
/* Enable BAM aneg Mode and TetonII aneg Mode */
reg_val |= (MDIO_BAM_NEXT_PAGE_MP5_NEXT_PAGE_CTRL_BAM_MODE |
MDIO_BAM_NEXT_PAGE_MP5_NEXT_PAGE_CTRL_TETON_AN);
} else {
/* TetonII and BAM Autoneg Disabled */
reg_val &= ~(MDIO_BAM_NEXT_PAGE_MP5_NEXT_PAGE_CTRL_BAM_MODE |
MDIO_BAM_NEXT_PAGE_MP5_NEXT_PAGE_CTRL_TETON_AN);
}
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_BAM_NEXT_PAGE,
MDIO_BAM_NEXT_PAGE_MP5_NEXT_PAGE_CTRL,
reg_val);
if (enable_cl73) {
/* Enable Cl73 FSM status bits */
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_CL73_USERB0,
MDIO_CL73_USERB0_CL73_UCTRL,
MDIO_CL73_USERB0_CL73_UCTRL_USTAT1_MUXSEL);
/* Enable BAM Station Manager*/
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_CL73_USERB0,
MDIO_CL73_USERB0_CL73_BAM_CTRL1,
MDIO_CL73_USERB0_CL73_BAM_CTRL1_BAM_EN |
MDIO_CL73_USERB0_CL73_BAM_CTRL1_BAM_STATION_MNGR_EN |
MDIO_CL73_USERB0_CL73_BAM_CTRL1_BAM_NP_AFTER_BP_EN);
/* Merge CL73 and CL37 aneg resolution */
CL45_RD_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_CL73_USERB0,
MDIO_CL73_USERB0_CL73_BAM_CTRL3,
&reg_val);
if (params->speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
/* Set the CL73 AN speed */
CL45_RD_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_CL73_IEEEB1,
MDIO_CL73_IEEEB1_AN_ADV2,
&reg_val);
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_CL73_IEEEB1,
MDIO_CL73_IEEEB1_AN_ADV2,
reg_val | MDIO_CL73_IEEEB1_AN_ADV2_ADVR_10G_KX4);
}
/* CL73 Autoneg Enabled */
reg_val = MDIO_CL73_IEEEB0_CL73_AN_CONTROL_AN_EN;
} else /* CL73 Autoneg Disabled */
reg_val = 0;
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_CL73_IEEEB0,
MDIO_CL73_IEEEB0_CL73_AN_CONTROL, reg_val);
}
/* program SerDes, forced speed */
static void bnx2x_program_serdes(struct link_params *params,
struct link_vars *vars)
{
struct bnx2x *bp = params->bp;
u16 reg_val;
/* program duplex, disable autoneg and sgmii*/
CL45_RD_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_MII_CONTROL, &reg_val);
reg_val &= ~(MDIO_COMBO_IEEO_MII_CONTROL_FULL_DUPLEX |
MDIO_COMBO_IEEO_MII_CONTROL_AN_EN |
MDIO_COMBO_IEEO_MII_CONTROL_MAN_SGMII_SP_MASK);
if (params->req_duplex == DUPLEX_FULL)
reg_val |= MDIO_COMBO_IEEO_MII_CONTROL_FULL_DUPLEX;
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_MII_CONTROL, reg_val);
/* program speed
- needed only if the speed is greater than 1G (2.5G or 10G) */
CL45_RD_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_SERDES_DIGITAL,
MDIO_SERDES_DIGITAL_MISC1, &reg_val);
/* clearing the speed value before setting the right speed */
DP(NETIF_MSG_LINK, "MDIO_REG_BANK_SERDES_DIGITAL = 0x%x\n", reg_val);
reg_val &= ~(MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_MASK |
MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_SEL);
if (!((vars->line_speed == SPEED_1000) ||
(vars->line_speed == SPEED_100) ||
(vars->line_speed == SPEED_10))) {
reg_val |= (MDIO_SERDES_DIGITAL_MISC1_REFCLK_SEL_156_25M |
MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_SEL);
if (vars->line_speed == SPEED_10000)
reg_val |=
MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_10G_CX4;
if (vars->line_speed == SPEED_13000)
reg_val |=
MDIO_SERDES_DIGITAL_MISC1_FORCE_SPEED_13G;
}
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_SERDES_DIGITAL,
MDIO_SERDES_DIGITAL_MISC1, reg_val);
}
static void bnx2x_set_brcm_cl37_advertisment(struct link_params *params)
{
struct bnx2x *bp = params->bp;
u16 val = 0;
/* configure the 48 bits for BAM AN */
/* set extended capabilities */
if (params->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)
val |= MDIO_OVER_1G_UP1_2_5G;
if (params->speed_cap_mask & PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
val |= MDIO_OVER_1G_UP1_10G;
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_OVER_1G,
MDIO_OVER_1G_UP1, val);
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_OVER_1G,
MDIO_OVER_1G_UP3, 0x400);
}
static void bnx2x_calc_ieee_aneg_adv(struct link_params *params, u16 *ieee_fc)
{
*ieee_fc = MDIO_COMBO_IEEE0_AUTO_NEG_ADV_FULL_DUPLEX;
/* resolve pause mode and advertisement
* Please refer to Table 28B-3 of the 802.3ab-1999 spec */
switch (params->req_flow_ctrl) {
case BNX2X_FLOW_CTRL_AUTO:
if (params->req_fc_auto_adv == BNX2X_FLOW_CTRL_BOTH) {
*ieee_fc |=
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH;
} else {
*ieee_fc |=
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC;
}
break;
case BNX2X_FLOW_CTRL_TX:
*ieee_fc |=
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC;
break;
case BNX2X_FLOW_CTRL_RX:
case BNX2X_FLOW_CTRL_BOTH:
*ieee_fc |= MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH;
break;
case BNX2X_FLOW_CTRL_NONE:
default:
*ieee_fc |= MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE;
break;
}
}
static void bnx2x_set_ieee_aneg_advertisment(struct link_params *params,
u16 ieee_fc)
{
struct bnx2x *bp = params->bp;
/* for AN, we are always publishing full duplex */
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_AUTO_NEG_ADV, ieee_fc);
}
static void bnx2x_restart_autoneg(struct link_params *params, u8 enable_cl73)
{
struct bnx2x *bp = params->bp;
u16 mii_control;
DP(NETIF_MSG_LINK, "bnx2x_restart_autoneg\n");
/* Enable and restart BAM/CL37 aneg */
if (enable_cl73) {
CL45_RD_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_CL73_IEEEB0,
MDIO_CL73_IEEEB0_CL73_AN_CONTROL,
&mii_control);
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_CL73_IEEEB0,
MDIO_CL73_IEEEB0_CL73_AN_CONTROL,
(mii_control |
MDIO_CL73_IEEEB0_CL73_AN_CONTROL_AN_EN |
MDIO_CL73_IEEEB0_CL73_AN_CONTROL_RESTART_AN));
} else {
CL45_RD_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_MII_CONTROL,
&mii_control);
DP(NETIF_MSG_LINK,
"bnx2x_restart_autoneg mii_control before = 0x%x\n",
mii_control);
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_MII_CONTROL,
(mii_control |
MDIO_COMBO_IEEO_MII_CONTROL_AN_EN |
MDIO_COMBO_IEEO_MII_CONTROL_RESTART_AN));
}
}
static void bnx2x_initialize_sgmii_process(struct link_params *params,
struct link_vars *vars)
{
struct bnx2x *bp = params->bp;
u16 control1;
/* in SGMII mode, the unicore is always slave */
CL45_RD_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_SERDES_DIGITAL,
MDIO_SERDES_DIGITAL_A_1000X_CONTROL1,
&control1);
control1 |= MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_INVERT_SIGNAL_DETECT;
/* set sgmii mode (and not fiber) */
control1 &= ~(MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_FIBER_MODE |
MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_AUTODET |
MDIO_SERDES_DIGITAL_A_1000X_CONTROL1_MSTR_MODE);
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_SERDES_DIGITAL,
MDIO_SERDES_DIGITAL_A_1000X_CONTROL1,
control1);
/* if forced speed */
if (!(vars->line_speed == SPEED_AUTO_NEG)) {
/* set speed, disable autoneg */
u16 mii_control;
CL45_RD_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_MII_CONTROL,
&mii_control);
mii_control &= ~(MDIO_COMBO_IEEO_MII_CONTROL_AN_EN |
MDIO_COMBO_IEEO_MII_CONTROL_MAN_SGMII_SP_MASK|
MDIO_COMBO_IEEO_MII_CONTROL_FULL_DUPLEX);
switch (vars->line_speed) {
case SPEED_100:
mii_control |=
MDIO_COMBO_IEEO_MII_CONTROL_MAN_SGMII_SP_100;
break;
case SPEED_1000:
mii_control |=
MDIO_COMBO_IEEO_MII_CONTROL_MAN_SGMII_SP_1000;
break;
case SPEED_10:
/* there is nothing to set for 10M */
break;
default:
/* invalid speed for SGMII */
DP(NETIF_MSG_LINK, "Invalid line_speed 0x%x\n",
vars->line_speed);
break;
}
/* setting the full duplex */
if (params->req_duplex == DUPLEX_FULL)
mii_control |=
MDIO_COMBO_IEEO_MII_CONTROL_FULL_DUPLEX;
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_MII_CONTROL,
mii_control);
} else { /* AN mode */
/* enable and restart AN */
bnx2x_restart_autoneg(params, 0);
}
}
/*
* link management
*/
static void bnx2x_pause_resolve(struct link_vars *vars, u32 pause_result)
{ /* LD LP */
switch (pause_result) { /* ASYM P ASYM P */
case 0xb: /* 1 0 1 1 */
vars->flow_ctrl = BNX2X_FLOW_CTRL_TX;
break;
case 0xe: /* 1 1 1 0 */
vars->flow_ctrl = BNX2X_FLOW_CTRL_RX;
break;
case 0x5: /* 0 1 0 1 */
case 0x7: /* 0 1 1 1 */
case 0xd: /* 1 1 0 1 */
case 0xf: /* 1 1 1 1 */
vars->flow_ctrl = BNX2X_FLOW_CTRL_BOTH;
break;
default:
break;
}
}
static u8 bnx2x_ext_phy_resolve_fc(struct link_params *params,
struct link_vars *vars)
{
struct bnx2x *bp = params->bp;
u8 ext_phy_addr;
u16 ld_pause; /* local */
u16 lp_pause; /* link partner */
u16 an_complete; /* AN complete */
u16 pause_result;
u8 ret = 0;
u32 ext_phy_type;
u8 port = params->port;
ext_phy_addr = XGXS_EXT_PHY_ADDR(params->ext_phy_config);
ext_phy_type = XGXS_EXT_PHY_TYPE(params->ext_phy_config);
/* read twice */
bnx2x_cl45_read(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_AN_DEVAD,
MDIO_AN_REG_STATUS, &an_complete);
bnx2x_cl45_read(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_AN_DEVAD,
MDIO_AN_REG_STATUS, &an_complete);
if (an_complete & MDIO_AN_REG_STATUS_AN_COMPLETE) {
ret = 1;
bnx2x_cl45_read(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_AN_DEVAD,
MDIO_AN_REG_ADV_PAUSE, &ld_pause);
bnx2x_cl45_read(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_AN_DEVAD,
MDIO_AN_REG_LP_AUTO_NEG, &lp_pause);
pause_result = (ld_pause &
MDIO_AN_REG_ADV_PAUSE_MASK) >> 8;
pause_result |= (lp_pause &
MDIO_AN_REG_ADV_PAUSE_MASK) >> 10;
DP(NETIF_MSG_LINK, "Ext PHY pause result 0x%x \n",
pause_result);
bnx2x_pause_resolve(vars, pause_result);
if (vars->flow_ctrl == BNX2X_FLOW_CTRL_NONE &&
ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8073) {
bnx2x_cl45_read(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_AN_DEVAD,
MDIO_AN_REG_CL37_FC_LD, &ld_pause);
bnx2x_cl45_read(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_AN_DEVAD,
MDIO_AN_REG_CL37_FC_LP, &lp_pause);
pause_result = (ld_pause &
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH) >> 5;
pause_result |= (lp_pause &
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH) >> 7;
bnx2x_pause_resolve(vars, pause_result);
DP(NETIF_MSG_LINK, "Ext PHY CL37 pause result 0x%x \n",
pause_result);
}
}
return ret;
}
static void bnx2x_flow_ctrl_resolve(struct link_params *params,
struct link_vars *vars,
u32 gp_status)
{
struct bnx2x *bp = params->bp;
u16 ld_pause; /* local driver */
u16 lp_pause; /* link partner */
u16 pause_result;
vars->flow_ctrl = BNX2X_FLOW_CTRL_NONE;
/* resolve from gp_status in case of AN complete and not sgmii */
if ((params->req_flow_ctrl == BNX2X_FLOW_CTRL_AUTO) &&
(gp_status & MDIO_AN_CL73_OR_37_COMPLETE) &&
(!(vars->phy_flags & PHY_SGMII_FLAG)) &&
(XGXS_EXT_PHY_TYPE(params->ext_phy_config) ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)) {
CL45_RD_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_AUTO_NEG_ADV,
&ld_pause);
CL45_RD_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_COMBO_IEEE0,
MDIO_COMBO_IEEE0_AUTO_NEG_LINK_PARTNER_ABILITY1,
&lp_pause);
pause_result = (ld_pause &
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK)>>5;
pause_result |= (lp_pause &
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK)>>7;
DP(NETIF_MSG_LINK, "pause_result 0x%x\n", pause_result);
bnx2x_pause_resolve(vars, pause_result);
} else if ((params->req_flow_ctrl == BNX2X_FLOW_CTRL_AUTO) &&
(bnx2x_ext_phy_resolve_fc(params, vars))) {
return;
} else {
if (params->req_flow_ctrl == BNX2X_FLOW_CTRL_AUTO)
vars->flow_ctrl = params->req_fc_auto_adv;
else
vars->flow_ctrl = params->req_flow_ctrl;
}
DP(NETIF_MSG_LINK, "flow_ctrl 0x%x\n", vars->flow_ctrl);
}
static void bnx2x_check_fallback_to_cl37(struct link_params *params)
{
struct bnx2x *bp = params->bp;
u16 rx_status, ustat_val, cl37_fsm_recieved;
DP(NETIF_MSG_LINK, "bnx2x_check_fallback_to_cl37\n");
/* Step 1: Make sure signal is detected */
CL45_RD_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_RX0,
MDIO_RX0_RX_STATUS,
&rx_status);
if ((rx_status & MDIO_RX0_RX_STATUS_SIGDET) !=
(MDIO_RX0_RX_STATUS_SIGDET)) {
DP(NETIF_MSG_LINK, "Signal is not detected. Restoring CL73."
"rx_status(0x80b0) = 0x%x\n", rx_status);
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_CL73_IEEEB0,
MDIO_CL73_IEEEB0_CL73_AN_CONTROL,
MDIO_CL73_IEEEB0_CL73_AN_CONTROL_AN_EN);
return;
}
/* Step 2: Check CL73 state machine */
CL45_RD_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_CL73_USERB0,
MDIO_CL73_USERB0_CL73_USTAT1,
&ustat_val);
if ((ustat_val &
(MDIO_CL73_USERB0_CL73_USTAT1_LINK_STATUS_CHECK |
MDIO_CL73_USERB0_CL73_USTAT1_AN_GOOD_CHECK_BAM37)) !=
(MDIO_CL73_USERB0_CL73_USTAT1_LINK_STATUS_CHECK |
MDIO_CL73_USERB0_CL73_USTAT1_AN_GOOD_CHECK_BAM37)) {
DP(NETIF_MSG_LINK, "CL73 state-machine is not stable. "
"ustat_val(0x8371) = 0x%x\n", ustat_val);
return;
}
/* Step 3: Check CL37 Message Pages received to indicate LP
supports only CL37 */
CL45_RD_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_REMOTE_PHY,
MDIO_REMOTE_PHY_MISC_RX_STATUS,
&cl37_fsm_recieved);
if ((cl37_fsm_recieved &
(MDIO_REMOTE_PHY_MISC_RX_STATUS_CL37_FSM_RECEIVED_OVER1G_MSG |
MDIO_REMOTE_PHY_MISC_RX_STATUS_CL37_FSM_RECEIVED_BRCM_OUI_MSG)) !=
(MDIO_REMOTE_PHY_MISC_RX_STATUS_CL37_FSM_RECEIVED_OVER1G_MSG |
MDIO_REMOTE_PHY_MISC_RX_STATUS_CL37_FSM_RECEIVED_BRCM_OUI_MSG)) {
DP(NETIF_MSG_LINK, "No CL37 FSM were received. "
"misc_rx_status(0x8330) = 0x%x\n",
cl37_fsm_recieved);
return;
}
/* The combined cl37/cl73 fsm state information indicating that we are
connected to a device which does not support cl73, but does support
cl37 BAM. In this case we disable cl73 and restart cl37 auto-neg */
/* Disable CL73 */
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_CL73_IEEEB0,
MDIO_CL73_IEEEB0_CL73_AN_CONTROL,
0);
/* Restart CL37 autoneg */
bnx2x_restart_autoneg(params, 0);
DP(NETIF_MSG_LINK, "Disabling CL73, and restarting CL37 autoneg\n");
}
static u8 bnx2x_link_settings_status(struct link_params *params,
struct link_vars *vars,
u32 gp_status,
u8 ext_phy_link_up)
{
struct bnx2x *bp = params->bp;
u16 new_line_speed;
u8 rc = 0;
vars->link_status = 0;
if (gp_status & MDIO_GP_STATUS_TOP_AN_STATUS1_LINK_STATUS) {
DP(NETIF_MSG_LINK, "phy link up gp_status=0x%x\n",
gp_status);
vars->phy_link_up = 1;
vars->link_status |= LINK_STATUS_LINK_UP;
if (gp_status & MDIO_GP_STATUS_TOP_AN_STATUS1_DUPLEX_STATUS)
vars->duplex = DUPLEX_FULL;
else
vars->duplex = DUPLEX_HALF;
bnx2x_flow_ctrl_resolve(params, vars, gp_status);
switch (gp_status & GP_STATUS_SPEED_MASK) {
case GP_STATUS_10M:
new_line_speed = SPEED_10;
if (vars->duplex == DUPLEX_FULL)
vars->link_status |= LINK_10TFD;
else
vars->link_status |= LINK_10THD;
break;
case GP_STATUS_100M:
new_line_speed = SPEED_100;
if (vars->duplex == DUPLEX_FULL)
vars->link_status |= LINK_100TXFD;
else
vars->link_status |= LINK_100TXHD;
break;
case GP_STATUS_1G:
case GP_STATUS_1G_KX:
new_line_speed = SPEED_1000;
if (vars->duplex == DUPLEX_FULL)
vars->link_status |= LINK_1000TFD;
else
vars->link_status |= LINK_1000THD;
break;
case GP_STATUS_2_5G:
new_line_speed = SPEED_2500;
if (vars->duplex == DUPLEX_FULL)
vars->link_status |= LINK_2500TFD;
else
vars->link_status |= LINK_2500THD;
break;
case GP_STATUS_5G:
case GP_STATUS_6G:
DP(NETIF_MSG_LINK,
"link speed unsupported gp_status 0x%x\n",
gp_status);
return -EINVAL;
case GP_STATUS_10G_KX4:
case GP_STATUS_10G_HIG:
case GP_STATUS_10G_CX4:
new_line_speed = SPEED_10000;
vars->link_status |= LINK_10GTFD;
break;
case GP_STATUS_12G_HIG:
new_line_speed = SPEED_12000;
vars->link_status |= LINK_12GTFD;
break;
case GP_STATUS_12_5G:
new_line_speed = SPEED_12500;
vars->link_status |= LINK_12_5GTFD;
break;
case GP_STATUS_13G:
new_line_speed = SPEED_13000;
vars->link_status |= LINK_13GTFD;
break;
case GP_STATUS_15G:
new_line_speed = SPEED_15000;
vars->link_status |= LINK_15GTFD;
break;
case GP_STATUS_16G:
new_line_speed = SPEED_16000;
vars->link_status |= LINK_16GTFD;
break;
default:
DP(NETIF_MSG_LINK,
"link speed unsupported gp_status 0x%x\n",
gp_status);
return -EINVAL;
}
/* Upon link speed change set the NIG into drain mode.
Comes to deals with possible FIFO glitch due to clk change
when speed is decreased without link down indicator */
if (new_line_speed != vars->line_speed) {
if (XGXS_EXT_PHY_TYPE(params->ext_phy_config) !=
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT &&
ext_phy_link_up) {
DP(NETIF_MSG_LINK, "Internal link speed %d is"
" different than the external"
" link speed %d\n", new_line_speed,
vars->line_speed);
vars->phy_link_up = 0;
return 0;
}
REG_WR(bp, NIG_REG_EGRESS_DRAIN0_MODE
+ params->port*4, 0);
msleep(1);
}
vars->line_speed = new_line_speed;
vars->link_status |= LINK_STATUS_SERDES_LINK;
if ((params->req_line_speed == SPEED_AUTO_NEG) &&
((XGXS_EXT_PHY_TYPE(params->ext_phy_config) ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) ||
(XGXS_EXT_PHY_TYPE(params->ext_phy_config) ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8705) ||
(XGXS_EXT_PHY_TYPE(params->ext_phy_config) ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8726))) {
vars->autoneg = AUTO_NEG_ENABLED;
if (gp_status & MDIO_AN_CL73_OR_37_COMPLETE) {
vars->autoneg |= AUTO_NEG_COMPLETE;
vars->link_status |=
LINK_STATUS_AUTO_NEGOTIATE_COMPLETE;
}
vars->autoneg |= AUTO_NEG_PARALLEL_DETECTION_USED;
vars->link_status |=
LINK_STATUS_PARALLEL_DETECTION_USED;
}
if (vars->flow_ctrl & BNX2X_FLOW_CTRL_TX)
vars->link_status |=
LINK_STATUS_TX_FLOW_CONTROL_ENABLED;
if (vars->flow_ctrl & BNX2X_FLOW_CTRL_RX)
vars->link_status |=
LINK_STATUS_RX_FLOW_CONTROL_ENABLED;
} else { /* link_down */
DP(NETIF_MSG_LINK, "phy link down\n");
vars->phy_link_up = 0;
vars->duplex = DUPLEX_FULL;
vars->flow_ctrl = BNX2X_FLOW_CTRL_NONE;
vars->autoneg = AUTO_NEG_DISABLED;
vars->mac_type = MAC_TYPE_NONE;
if ((params->req_line_speed == SPEED_AUTO_NEG) &&
((XGXS_EXT_PHY_TYPE(params->ext_phy_config) ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT))) {
/* Check signal is detected */
bnx2x_check_fallback_to_cl37(params);
}
}
DP(NETIF_MSG_LINK, "gp_status 0x%x phy_link_up %x line_speed %x \n",
gp_status, vars->phy_link_up, vars->line_speed);
DP(NETIF_MSG_LINK, "duplex %x flow_ctrl 0x%x"
" autoneg 0x%x\n",
vars->duplex,
vars->flow_ctrl, vars->autoneg);
DP(NETIF_MSG_LINK, "link_status 0x%x\n", vars->link_status);
return rc;
}
static void bnx2x_set_gmii_tx_driver(struct link_params *params)
{
struct bnx2x *bp = params->bp;
u16 lp_up2;
u16 tx_driver;
u16 bank;
/* read precomp */
CL45_RD_OVER_CL22(bp, params->port,
params->phy_addr,
MDIO_REG_BANK_OVER_1G,
MDIO_OVER_1G_LP_UP2, &lp_up2);
/* bits [10:7] at lp_up2, positioned at [15:12] */
lp_up2 = (((lp_up2 & MDIO_OVER_1G_LP_UP2_PREEMPHASIS_MASK) >>
MDIO_OVER_1G_LP_UP2_PREEMPHASIS_SHIFT) <<
MDIO_TX0_TX_DRIVER_PREEMPHASIS_SHIFT);
if (lp_up2 == 0)
return;
for (bank = MDIO_REG_BANK_TX0; bank <= MDIO_REG_BANK_TX3;
bank += (MDIO_REG_BANK_TX1 - MDIO_REG_BANK_TX0)) {
CL45_RD_OVER_CL22(bp, params->port,
params->phy_addr,
bank,
MDIO_TX0_TX_DRIVER, &tx_driver);
/* replace tx_driver bits [15:12] */
if (lp_up2 !=
(tx_driver & MDIO_TX0_TX_DRIVER_PREEMPHASIS_MASK)) {
tx_driver &= ~MDIO_TX0_TX_DRIVER_PREEMPHASIS_MASK;
tx_driver |= lp_up2;
CL45_WR_OVER_CL22(bp, params->port,
params->phy_addr,
bank,
MDIO_TX0_TX_DRIVER, tx_driver);
}
}
}
static u8 bnx2x_emac_program(struct link_params *params,
u32 line_speed, u32 duplex)
{
struct bnx2x *bp = params->bp;
u8 port = params->port;
u16 mode = 0;
DP(NETIF_MSG_LINK, "setting link speed & duplex\n");
bnx2x_bits_dis(bp, GRCBASE_EMAC0 + port*0x400 +
EMAC_REG_EMAC_MODE,
(EMAC_MODE_25G_MODE |
EMAC_MODE_PORT_MII_10M |
EMAC_MODE_HALF_DUPLEX));
switch (line_speed) {
case SPEED_10:
mode |= EMAC_MODE_PORT_MII_10M;
break;
case SPEED_100:
mode |= EMAC_MODE_PORT_MII;
break;
case SPEED_1000:
mode |= EMAC_MODE_PORT_GMII;
break;
case SPEED_2500:
mode |= (EMAC_MODE_25G_MODE | EMAC_MODE_PORT_GMII);
break;
default:
/* 10G not valid for EMAC */
DP(NETIF_MSG_LINK, "Invalid line_speed 0x%x\n", line_speed);
return -EINVAL;
}
if (duplex == DUPLEX_HALF)
mode |= EMAC_MODE_HALF_DUPLEX;
bnx2x_bits_en(bp,
GRCBASE_EMAC0 + port*0x400 + EMAC_REG_EMAC_MODE,
mode);
bnx2x_set_led(bp, params->port, LED_MODE_OPER,
line_speed, params->hw_led_mode, params->chip_id);
return 0;
}
/*****************************************************************************/
/* External Phy section */
/*****************************************************************************/
void bnx2x_ext_phy_hw_reset(struct bnx2x *bp, u8 port)
{
bnx2x_set_gpio(bp, MISC_REGISTERS_GPIO_1,
MISC_REGISTERS_GPIO_OUTPUT_LOW, port);
msleep(1);
bnx2x_set_gpio(bp, MISC_REGISTERS_GPIO_1,
MISC_REGISTERS_GPIO_OUTPUT_HIGH, port);
}
static void bnx2x_ext_phy_reset(struct link_params *params,
struct link_vars *vars)
{
struct bnx2x *bp = params->bp;
u32 ext_phy_type;
u8 ext_phy_addr = XGXS_EXT_PHY_ADDR(params->ext_phy_config);
DP(NETIF_MSG_LINK, "Port %x: bnx2x_ext_phy_reset\n", params->port);
ext_phy_type = XGXS_EXT_PHY_TYPE(params->ext_phy_config);
/* The PHY reset is controled by GPIO 1
* Give it 1ms of reset pulse
*/
if (vars->phy_flags & PHY_XGXS_FLAG) {
switch (ext_phy_type) {
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT:
DP(NETIF_MSG_LINK, "XGXS Direct\n");
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8705:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8706:
DP(NETIF_MSG_LINK, "XGXS 8705/8706\n");
/* Restore normal power mode*/
bnx2x_set_gpio(bp, MISC_REGISTERS_GPIO_2,
MISC_REGISTERS_GPIO_OUTPUT_HIGH,
params->port);
/* HW reset */
bnx2x_ext_phy_hw_reset(bp, params->port);
bnx2x_cl45_write(bp, params->port,
ext_phy_type,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_CTRL, 0xa040);
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727:
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8726:
/* Restore normal power mode*/
bnx2x_set_gpio(bp, MISC_REGISTERS_GPIO_2,
MISC_REGISTERS_GPIO_OUTPUT_HIGH,
params->port);
bnx2x_set_gpio(bp, MISC_REGISTERS_GPIO_1,
MISC_REGISTERS_GPIO_OUTPUT_HIGH,
params->port);
bnx2x_cl45_write(bp, params->port,
ext_phy_type,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_CTRL,
1<<15);
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8072:
DP(NETIF_MSG_LINK, "XGXS 8072\n");
/* Unset Low Power Mode and SW reset */
/* Restore normal power mode*/
bnx2x_set_gpio(bp, MISC_REGISTERS_GPIO_2,
MISC_REGISTERS_GPIO_OUTPUT_HIGH,
params->port);
bnx2x_cl45_write(bp, params->port,
ext_phy_type,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_CTRL,
1<<15);
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8073:
DP(NETIF_MSG_LINK, "XGXS 8073\n");
/* Restore normal power mode*/
bnx2x_set_gpio(bp, MISC_REGISTERS_GPIO_2,
MISC_REGISTERS_GPIO_OUTPUT_HIGH,
params->port);
bnx2x_set_gpio(bp, MISC_REGISTERS_GPIO_1,
MISC_REGISTERS_GPIO_OUTPUT_HIGH,
params->port);
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_SFX7101:
DP(NETIF_MSG_LINK, "XGXS SFX7101\n");
/* Restore normal power mode*/
bnx2x_set_gpio(bp, MISC_REGISTERS_GPIO_2,
MISC_REGISTERS_GPIO_OUTPUT_HIGH,
params->port);
/* HW reset */
bnx2x_ext_phy_hw_reset(bp, params->port);
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8481:
/* Restore normal power mode*/
bnx2x_set_gpio(bp, MISC_REGISTERS_GPIO_2,
MISC_REGISTERS_GPIO_OUTPUT_HIGH,
params->port);
/* HW reset */
bnx2x_ext_phy_hw_reset(bp, params->port);
bnx2x_cl45_write(bp, params->port,
ext_phy_type,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_CTRL,
1<<15);
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE:
DP(NETIF_MSG_LINK, "XGXS PHY Failure detected\n");
break;
default:
DP(NETIF_MSG_LINK, "BAD XGXS ext_phy_config 0x%x\n",
params->ext_phy_config);
break;
}
} else { /* SerDes */
ext_phy_type = SERDES_EXT_PHY_TYPE(params->ext_phy_config);
switch (ext_phy_type) {
case PORT_HW_CFG_SERDES_EXT_PHY_TYPE_DIRECT:
DP(NETIF_MSG_LINK, "SerDes Direct\n");
break;
case PORT_HW_CFG_SERDES_EXT_PHY_TYPE_BCM5482:
DP(NETIF_MSG_LINK, "SerDes 5482\n");
bnx2x_ext_phy_hw_reset(bp, params->port);
break;
default:
DP(NETIF_MSG_LINK, "BAD SerDes ext_phy_config 0x%x\n",
params->ext_phy_config);
break;
}
}
}
static void bnx2x_save_spirom_version(struct bnx2x *bp, u8 port,
u32 shmem_base, u32 spirom_ver)
{
DP(NETIF_MSG_LINK, "FW version 0x%x:0x%x for port %d\n",
(u16)(spirom_ver>>16), (u16)spirom_ver, port);
REG_WR(bp, shmem_base +
offsetof(struct shmem_region,
port_mb[port].ext_phy_fw_version),
spirom_ver);
}
static void bnx2x_save_bcm_spirom_ver(struct bnx2x *bp, u8 port,
u32 ext_phy_type, u8 ext_phy_addr,
u32 shmem_base)
{
u16 fw_ver1, fw_ver2;
bnx2x_cl45_read(bp, port, ext_phy_type, ext_phy_addr, MDIO_PMA_DEVAD,
MDIO_PMA_REG_ROM_VER1, &fw_ver1);
bnx2x_cl45_read(bp, port, ext_phy_type, ext_phy_addr, MDIO_PMA_DEVAD,
MDIO_PMA_REG_ROM_VER2, &fw_ver2);
bnx2x_save_spirom_version(bp, port, shmem_base,
(u32)(fw_ver1<<16 | fw_ver2));
}
static void bnx2x_save_8481_spirom_version(struct bnx2x *bp, u8 port,
u8 ext_phy_addr, u32 shmem_base)
{
u16 val, fw_ver1, fw_ver2, cnt;
/* For the 32 bits registers in 8481, access via MDIO2ARM interface.*/
/* (1) set register 0xc200_0014(SPI_BRIDGE_CTRL_2) to 0x03000000 */
bnx2x_cl45_write(bp, port,
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8481,
ext_phy_addr, MDIO_PMA_DEVAD,
0xA819, 0x0014);
bnx2x_cl45_write(bp, port,
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8481,
ext_phy_addr,
MDIO_PMA_DEVAD,
0xA81A,
0xc200);
bnx2x_cl45_write(bp, port,
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8481,
ext_phy_addr,
MDIO_PMA_DEVAD,
0xA81B,
0x0000);
bnx2x_cl45_write(bp, port,
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8481,
ext_phy_addr,
MDIO_PMA_DEVAD,
0xA81C,
0x0300);
bnx2x_cl45_write(bp, port,
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8481,
ext_phy_addr,
MDIO_PMA_DEVAD,
0xA817,
0x0009);
for (cnt = 0; cnt < 100; cnt++) {
bnx2x_cl45_read(bp, port,
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8481,
ext_phy_addr,
MDIO_PMA_DEVAD,
0xA818,
&val);
if (val & 1)
break;
udelay(5);
}
if (cnt == 100) {
DP(NETIF_MSG_LINK, "Unable to read 8481 phy fw version(1)\n");
bnx2x_save_spirom_version(bp, port,
shmem_base, 0);
return;
}
/* 2) read register 0xc200_0000 (SPI_FW_STATUS) */
bnx2x_cl45_write(bp, port,
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8481,
ext_phy_addr, MDIO_PMA_DEVAD,
0xA819, 0x0000);
bnx2x_cl45_write(bp, port,
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8481,
ext_phy_addr, MDIO_PMA_DEVAD,
0xA81A, 0xc200);
bnx2x_cl45_write(bp, port,
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8481,
ext_phy_addr, MDIO_PMA_DEVAD,
0xA817, 0x000A);
for (cnt = 0; cnt < 100; cnt++) {
bnx2x_cl45_read(bp, port,
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8481,
ext_phy_addr,
MDIO_PMA_DEVAD,
0xA818,
&val);
if (val & 1)
break;
udelay(5);
}
if (cnt == 100) {
DP(NETIF_MSG_LINK, "Unable to read 8481 phy fw version(2)\n");
bnx2x_save_spirom_version(bp, port,
shmem_base, 0);
return;
}
/* lower 16 bits of the register SPI_FW_STATUS */
bnx2x_cl45_read(bp, port,
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8481,
ext_phy_addr,
MDIO_PMA_DEVAD,
0xA81B,
&fw_ver1);
/* upper 16 bits of register SPI_FW_STATUS */
bnx2x_cl45_read(bp, port,
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8481,
ext_phy_addr,
MDIO_PMA_DEVAD,
0xA81C,
&fw_ver2);
bnx2x_save_spirom_version(bp, port,
shmem_base, (fw_ver2<<16) | fw_ver1);
}
static void bnx2x_bcm8072_external_rom_boot(struct link_params *params)
{
struct bnx2x *bp = params->bp;
u8 port = params->port;
u8 ext_phy_addr = XGXS_EXT_PHY_ADDR(params->ext_phy_config);
u32 ext_phy_type = XGXS_EXT_PHY_TYPE(params->ext_phy_config);
/* Need to wait 200ms after reset */
msleep(200);
/* Boot port from external ROM
* Set ser_boot_ctl bit in the MISC_CTRL1 register
*/
bnx2x_cl45_write(bp, port, ext_phy_type, ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_MISC_CTRL1, 0x0001);
/* Reset internal microprocessor */
bnx2x_cl45_write(bp, port, ext_phy_type, ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_GEN_CTRL,
MDIO_PMA_REG_GEN_CTRL_ROM_RESET_INTERNAL_MP);
/* set micro reset = 0 */
bnx2x_cl45_write(bp, port, ext_phy_type, ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_GEN_CTRL,
MDIO_PMA_REG_GEN_CTRL_ROM_MICRO_RESET);
/* Reset internal microprocessor */
bnx2x_cl45_write(bp, port, ext_phy_type, ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_GEN_CTRL,
MDIO_PMA_REG_GEN_CTRL_ROM_RESET_INTERNAL_MP);
/* wait for 100ms for code download via SPI port */
msleep(100);
/* Clear ser_boot_ctl bit */
bnx2x_cl45_write(bp, port, ext_phy_type, ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_MISC_CTRL1, 0x0000);
/* Wait 100ms */
msleep(100);
bnx2x_save_bcm_spirom_ver(bp, port,
ext_phy_type,
ext_phy_addr,
params->shmem_base);
}
static u8 bnx2x_8073_is_snr_needed(struct link_params *params)
{
/* This is only required for 8073A1, version 102 only */
struct bnx2x *bp = params->bp;
u8 ext_phy_addr = XGXS_EXT_PHY_ADDR(params->ext_phy_config);
u16 val;
/* Read 8073 HW revision*/
bnx2x_cl45_read(bp, params->port,
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8073,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8073_CHIP_REV, &val);
if (val != 1) {
/* No need to workaround in 8073 A1 */
return 0;
}
bnx2x_cl45_read(bp, params->port,
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8073,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_ROM_VER2, &val);
/* SNR should be applied only for version 0x102 */
if (val != 0x102)
return 0;
return 1;
}
static u8 bnx2x_bcm8073_xaui_wa(struct link_params *params)
{
struct bnx2x *bp = params->bp;
u8 ext_phy_addr = XGXS_EXT_PHY_ADDR(params->ext_phy_config);
u16 val, cnt, cnt1 ;
bnx2x_cl45_read(bp, params->port,
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8073,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8073_CHIP_REV, &val);
if (val > 0) {
/* No need to workaround in 8073 A1 */
return 0;
}
/* XAUI workaround in 8073 A0: */
/* After loading the boot ROM and restarting Autoneg,
poll Dev1, Reg $C820: */
for (cnt = 0; cnt < 1000; cnt++) {
bnx2x_cl45_read(bp, params->port,
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8073,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8073_SPEED_LINK_STATUS,
&val);
/* If bit [14] = 0 or bit [13] = 0, continue on with
system initialization (XAUI work-around not required,
as these bits indicate 2.5G or 1G link up). */
if (!(val & (1<<14)) || !(val & (1<<13))) {
DP(NETIF_MSG_LINK, "XAUI work-around not required\n");
return 0;
} else if (!(val & (1<<15))) {
DP(NETIF_MSG_LINK, "clc bit 15 went off\n");
/* If bit 15 is 0, then poll Dev1, Reg $C841 until
it's MSB (bit 15) goes to 1 (indicating that the
XAUI workaround has completed),
then continue on with system initialization.*/
for (cnt1 = 0; cnt1 < 1000; cnt1++) {
bnx2x_cl45_read(bp, params->port,
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8073,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8073_XAUI_WA, &val);
if (val & (1<<15)) {
DP(NETIF_MSG_LINK,
"XAUI workaround has completed\n");
return 0;
}
msleep(3);
}
break;
}
msleep(3);
}
DP(NETIF_MSG_LINK, "Warning: XAUI work-around timeout !!!\n");
return -EINVAL;
}
static void bnx2x_bcm8073_bcm8727_external_rom_boot(struct bnx2x *bp, u8 port,
u8 ext_phy_addr,
u32 ext_phy_type,
u32 shmem_base)
{
/* Boot port from external ROM */
/* EDC grst */
bnx2x_cl45_write(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_GEN_CTRL,
0x0001);
/* ucode reboot and rst */
bnx2x_cl45_write(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_GEN_CTRL,
0x008c);
bnx2x_cl45_write(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_MISC_CTRL1, 0x0001);
/* Reset internal microprocessor */
bnx2x_cl45_write(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_GEN_CTRL,
MDIO_PMA_REG_GEN_CTRL_ROM_MICRO_RESET);
/* Release srst bit */
bnx2x_cl45_write(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_GEN_CTRL,
MDIO_PMA_REG_GEN_CTRL_ROM_RESET_INTERNAL_MP);
/* wait for 100ms for code download via SPI port */
msleep(100);
/* Clear ser_boot_ctl bit */
bnx2x_cl45_write(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_MISC_CTRL1, 0x0000);
bnx2x_save_bcm_spirom_ver(bp, port,
ext_phy_type,
ext_phy_addr,
shmem_base);
}
static void bnx2x_bcm8073_external_rom_boot(struct bnx2x *bp, u8 port,
u8 ext_phy_addr,
u32 shmem_base)
{
bnx2x_bcm8073_bcm8727_external_rom_boot(bp, port, ext_phy_addr,
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8073,
shmem_base);
}
static void bnx2x_bcm8727_external_rom_boot(struct bnx2x *bp, u8 port,
u8 ext_phy_addr,
u32 shmem_base)
{
bnx2x_bcm8073_bcm8727_external_rom_boot(bp, port, ext_phy_addr,
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727,
shmem_base);
}
static void bnx2x_bcm8726_external_rom_boot(struct link_params *params)
{
struct bnx2x *bp = params->bp;
u8 port = params->port;
u8 ext_phy_addr = XGXS_EXT_PHY_ADDR(params->ext_phy_config);
u32 ext_phy_type = XGXS_EXT_PHY_TYPE(params->ext_phy_config);
/* Need to wait 100ms after reset */
msleep(100);
/* Set serial boot control for external load */
bnx2x_cl45_write(bp, port, ext_phy_type, ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_MISC_CTRL1, 0x0001);
/* Micro controller re-boot */
bnx2x_cl45_write(bp, port, ext_phy_type, ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_GEN_CTRL,
MDIO_PMA_REG_GEN_CTRL_ROM_RESET_INTERNAL_MP);
/* Set soft reset */
bnx2x_cl45_write(bp, port, ext_phy_type, ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_GEN_CTRL,
MDIO_PMA_REG_GEN_CTRL_ROM_MICRO_RESET);
/* Set PLL register value to be same like in P13 ver */
bnx2x_cl45_write(bp, port, ext_phy_type, ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_PLL_CTRL,
0x73A0);
/* Clear soft reset.
Will automatically reset micro-controller re-boot */
bnx2x_cl45_write(bp, port, ext_phy_type, ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_GEN_CTRL,
MDIO_PMA_REG_GEN_CTRL_ROM_RESET_INTERNAL_MP);
/* wait for 150ms for microcode load */
msleep(150);
/* Disable serial boot control, tristates pins SS_N, SCK, MOSI, MISO */
bnx2x_cl45_write(bp, port, ext_phy_type, ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_MISC_CTRL1, 0x0000);
msleep(200);
bnx2x_save_bcm_spirom_ver(bp, port,
ext_phy_type,
ext_phy_addr,
params->shmem_base);
}
static void bnx2x_sfp_set_transmitter(struct bnx2x *bp, u8 port,
u32 ext_phy_type, u8 ext_phy_addr,
u8 tx_en)
{
u16 val;
DP(NETIF_MSG_LINK, "Setting transmitter tx_en=%x for port %x\n",
tx_en, port);
/* Disable/Enable transmitter ( TX laser of the SFP+ module.)*/
bnx2x_cl45_read(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_PHY_IDENTIFIER,
&val);
if (tx_en)
val &= ~(1<<15);
else
val |= (1<<15);
bnx2x_cl45_write(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_PHY_IDENTIFIER,
val);
}
static u8 bnx2x_8726_read_sfp_module_eeprom(struct link_params *params,
u16 addr, u8 byte_cnt, u8 *o_buf)
{
struct bnx2x *bp = params->bp;
u16 val = 0;
u16 i;
u8 port = params->port;
u8 ext_phy_addr = XGXS_EXT_PHY_ADDR(params->ext_phy_config);
u32 ext_phy_type = XGXS_EXT_PHY_TYPE(params->ext_phy_config);
if (byte_cnt > 16) {
DP(NETIF_MSG_LINK, "Reading from eeprom is"
" is limited to 0xf\n");
return -EINVAL;
}
/* Set the read command byte count */
bnx2x_cl45_write(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_SFP_TWO_WIRE_BYTE_CNT,
(byte_cnt | 0xa000));
/* Set the read command address */
bnx2x_cl45_write(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_SFP_TWO_WIRE_MEM_ADDR,
addr);
/* Activate read command */
bnx2x_cl45_write(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_SFP_TWO_WIRE_CTRL,
0x2c0f);
/* Wait up to 500us for command complete status */
for (i = 0; i < 100; i++) {
bnx2x_cl45_read(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_SFP_TWO_WIRE_CTRL, &val);
if ((val & MDIO_PMA_REG_SFP_TWO_WIRE_CTRL_STATUS_MASK) ==
MDIO_PMA_REG_SFP_TWO_WIRE_STATUS_COMPLETE)
break;
udelay(5);
}
if ((val & MDIO_PMA_REG_SFP_TWO_WIRE_CTRL_STATUS_MASK) !=
MDIO_PMA_REG_SFP_TWO_WIRE_STATUS_COMPLETE) {
DP(NETIF_MSG_LINK,
"Got bad status 0x%x when reading from SFP+ EEPROM\n",
(val & MDIO_PMA_REG_SFP_TWO_WIRE_CTRL_STATUS_MASK));
return -EINVAL;
}
/* Read the buffer */
for (i = 0; i < byte_cnt; i++) {
bnx2x_cl45_read(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8726_TWO_WIRE_DATA_BUF + i, &val);
o_buf[i] = (u8)(val & MDIO_PMA_REG_8726_TWO_WIRE_DATA_MASK);
}
for (i = 0; i < 100; i++) {
bnx2x_cl45_read(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_SFP_TWO_WIRE_CTRL, &val);
if ((val & MDIO_PMA_REG_SFP_TWO_WIRE_CTRL_STATUS_MASK) ==
MDIO_PMA_REG_SFP_TWO_WIRE_STATUS_IDLE)
return 0;;
msleep(1);
}
return -EINVAL;
}
static u8 bnx2x_8727_read_sfp_module_eeprom(struct link_params *params,
u16 addr, u8 byte_cnt, u8 *o_buf)
{
struct bnx2x *bp = params->bp;
u16 val, i;
u8 port = params->port;
u8 ext_phy_addr = XGXS_EXT_PHY_ADDR(params->ext_phy_config);
u32 ext_phy_type = XGXS_EXT_PHY_TYPE(params->ext_phy_config);
if (byte_cnt > 16) {
DP(NETIF_MSG_LINK, "Reading from eeprom is"
" is limited to 0xf\n");
return -EINVAL;
}
/* Need to read from 1.8000 to clear it */
bnx2x_cl45_read(bp, port,
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_SFP_TWO_WIRE_CTRL,
&val);
/* Set the read command byte count */
bnx2x_cl45_write(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_SFP_TWO_WIRE_BYTE_CNT,
((byte_cnt < 2) ? 2 : byte_cnt));
/* Set the read command address */
bnx2x_cl45_write(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_SFP_TWO_WIRE_MEM_ADDR,
addr);
/* Set the destination address */
bnx2x_cl45_write(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_PMA_DEVAD,
0x8004,
MDIO_PMA_REG_8727_TWO_WIRE_DATA_BUF);
/* Activate read command */
bnx2x_cl45_write(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_SFP_TWO_WIRE_CTRL,
0x8002);
/* Wait appropriate time for two-wire command to finish before
polling the status register */
msleep(1);
/* Wait up to 500us for command complete status */
for (i = 0; i < 100; i++) {
bnx2x_cl45_read(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_SFP_TWO_WIRE_CTRL, &val);
if ((val & MDIO_PMA_REG_SFP_TWO_WIRE_CTRL_STATUS_MASK) ==
MDIO_PMA_REG_SFP_TWO_WIRE_STATUS_COMPLETE)
break;
udelay(5);
}
if ((val & MDIO_PMA_REG_SFP_TWO_WIRE_CTRL_STATUS_MASK) !=
MDIO_PMA_REG_SFP_TWO_WIRE_STATUS_COMPLETE) {
DP(NETIF_MSG_LINK,
"Got bad status 0x%x when reading from SFP+ EEPROM\n",
(val & MDIO_PMA_REG_SFP_TWO_WIRE_CTRL_STATUS_MASK));
return -EINVAL;
}
/* Read the buffer */
for (i = 0; i < byte_cnt; i++) {
bnx2x_cl45_read(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_8727_TWO_WIRE_DATA_BUF + i, &val);
o_buf[i] = (u8)(val & MDIO_PMA_REG_8727_TWO_WIRE_DATA_MASK);
}
for (i = 0; i < 100; i++) {
bnx2x_cl45_read(bp, port,
ext_phy_type,
ext_phy_addr,
MDIO_PMA_DEVAD,
MDIO_PMA_REG_SFP_TWO_WIRE_CTRL, &val);
if ((val & MDIO_PMA_REG_SFP_TWO_WIRE_CTRL_STATUS_MASK) ==
MDIO_PMA_REG_SFP_TWO_WIRE_STATUS_IDLE)
return 0;;
msleep(1);
}
return -EINVAL;
}
u8 bnx2x_read_sfp_module_eeprom(struct link_params *params, u16 addr,
u8 byte_cnt, u8 *o_buf)
{
u32 ext_phy_type = XGXS_EXT_PHY_TYPE(params->ext_phy_config);
if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8726)
return bnx2x_8726_read_sfp_module_eeprom(params, addr,
byte_cnt, o_buf);
else if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727)
return bnx2x_8727_read_sfp_module_eeprom(params, addr,
byte_cnt, o_buf);
return -EINVAL;
}
static u8 bnx2x_get_edc_mode(struct link_params *params,
u16 *edc_mode)
{
struct bnx2x *bp = params->bp;
u8 val, check_limiting_mode = 0;
*edc_mode = EDC_MODE_LIMITING;
/* First check for copper cable */
if (bnx2x_read_sfp_module_eeprom(params,
SFP_EEPROM_CON_TYPE_ADDR,
1,
&val) != 0) {
DP(NETIF_MSG_LINK, "Failed to read from SFP+ module EEPROM\n");
return -EINVAL;
}
switch (val) {
case SFP_EEPROM_CON_TYPE_VAL_COPPER:
{
u8 copper_module_type;
/* Check if its active cable( includes SFP+ module)
of passive cable*/
if (bnx2x_read_sfp_module_eeprom(params,
SFP_EEPROM_FC_TX_TECH_ADDR,
1,
&copper_module_type) !=
0) {
DP(NETIF_MSG_LINK,
"Failed to read copper-cable-type"
" from SFP+ EEPROM\n");
return -EINVAL;
}
if (copper_module_type &
SFP_EEPROM_FC_TX_TECH_BITMASK_COPPER_ACTIVE) {
DP(NETIF_MSG_LINK, "Active Copper cable detected\n");
check_limiting_mode = 1;
} else if (copper_module_type &
SFP_EEPROM_FC_TX_TECH_BITMASK_COPPER_PASSIVE) {
DP(NETIF_MSG_LINK, "Passive Copper"
" cable detected\n");
*edc_mode =
EDC_MODE_PASSIVE_DAC;
} else {
DP(NETIF_MSG_LINK, "Unknown copper-cable-"
"type 0x%x !!!\n", copper_module_type);
return -EINVAL;
}
break;
}
case SFP_EEPROM_CON_TYPE_VAL_LC:
DP(NETIF_MSG_LINK, "Optic module detected\n");
check_limiting_mode = 1;
break;
default:
DP(NETIF_MSG_LINK, "Unable to determine module type 0x%x !!!\n",
val);
return -EINVAL;
}
if (check_limiting_mode) {
u8 options[SFP_EEPROM_OPTIONS_SIZE];
if (bnx2x_read_sfp_module_eeprom(params,
SFP_EEPROM_OPTIONS_ADDR,
SFP_EEPROM_OPTIONS_SIZE,
options) != 0) {
DP(NETIF_MSG_LINK, "Failed to read Option"
" field from module EEPROM\n");
return -EINVAL;
}
if ((options[0] & SFP_EEPROM_OPTIONS_LINEAR_RX_OUT_MASK))
*edc_mode = EDC_MODE_LINEAR;
else
*edc_mode = EDC_MODE_LIMITING;
}
DP(NETIF_MSG_LINK, "EDC mode is set to 0x%x\n", *edc_mode);
return 0;
}
/* This function read the relevant field from the module ( SFP+ ),
and verify it is compliant with this board */
static u8 bnx2x_verify_sfp_module(struct link_params *params)
{
struct bnx2x *bp = params->bp;
u32 val;
u32 fw_resp;
char vendor_name[SFP_EEPROM_VENDOR_NAME_SIZE+1];
char vendor_pn[SFP_EEPROM_PART_NO_SIZE+1];
val = REG_RD(bp, params->shmem_base +
offsetof(struct shmem_region, dev_info.
port_feature_config[params->port].config));
if ((val & PORT_FEAT_CFG_OPT_MDL_ENFRCMNT_MASK) ==
PORT_FEAT_CFG_OPT_MDL_ENFRCMNT_NO_ENFORCEMENT) {
DP(NETIF_MSG_LINK, "NOT enforcing module verification\n");
return 0;
}
/* Ask the FW to validate the module */
if (!(params->feature_config_flags &
FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY)) {
DP(NETIF_MSG_LINK, "FW does not support OPT MDL "
"verification\n");
return -EINVAL;
}
fw_resp = bnx2x_fw_command(bp, DRV_MSG_CODE_VRFY_OPT_MDL);
if (fw_resp == FW_MSG_CODE_VRFY_OPT_MDL_SUCCESS) {
DP(NETIF_MSG_LINK, "Approved module\n");
return 0;
}
/* format the warning message */
if (bnx2x_read_sfp_module_eeprom(params,
SFP_EEPROM_VENDOR_NAME_ADDR,
SFP_EEPROM_VENDOR_NAME_SIZE,
(u8 *)vendor_name))
vendor_name[0] = '\0';